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Abstract

Accurate assessment of the severity of a patient’s condition
plays a fundamental role in acute hospital care such as that
provided in an intensive care unit (ICU). ICU clinicians are
required to make sense of a large amount of clinical data in a
limited time to estimate the severity of a patient’s condition,
which ultimately leads to the planning of appropriate care.
The ICU is an especially demanding environment for clin-
icians because of the diversity of patients who mostly suf-
fer from multiple diseases of various types. In this paper, we
propose a mortality risk prediction method for ICU patients.
The method is intended to enhance the severity assessment
by considering the diversity of patients. Our method produces
patient-specific risk models that reflect the collection of dis-
eases associated with the patient. Specifically, we assume a
small number of latent basis tasks, where each latent task is
associated with its own parameter vector; a parameter vector
for a specific patient is constructed as a linear combination
of these. The latent representation of a patient, namely, the
coefficients of the combination, is learned based on the col-
lection of diseases associated with the patient. Our method
could be considered a multi-task learning method where la-
tent tasks are learned based on the collection of diseases. We
demonstrate the effectiveness of our proposed method using a
dataset collected from a hospital. Our method achieved higher
predictive performance compared with a single-task learning
method, the “de facto standard,” and several multi-task learn-
ing methods including a recently proposed method for ICU
mortality risk prediction. Furthermore, our proposed method
could be used not only for predictions but also for uncovering
patient-specificity from different viewpoints.

Introduction

Accurate assessment of the severity of a patient’s condition
plays a fundamental role in acute hospital care such as in an
intensive care unit (ICU), where clinicians intensively attend
to seriously ill patients. The ICU is an especially demand-
ing environment for clinicians due to the diversity of the pa-
tients: ICU clinicians are faced with patients with various
different types of diseases and who are all severely ill. For
instance, some patients are admitted to ICU due to infectious
diseases such as sepsis and pneumonia, whereas others are
postoperative patients admitted after some major surgery.
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Furthermore, patients are usually associated with multiple
diseases; thus, together with the diversity of diseases, ICU
patients present rather varied and complicated clinical states.

To date, numerous studies have focused on mortality risk
predictive modeling in an attempt to enhance the severity as-
sessment of ICU patients (Tabak et al. 2014; Ghassemi et al.
2014; 2015; Cai et al. 2015; Luo et al. 2016). The underlying
assumption is that mortality risk could be used as a surrogate
to describe the severity of a patient’s condition, and accurate
prediction of this risk could lead to preventive actions by, for
example, a medical alarm. Thus far, most studies on mortal-
ity risk prediction for ICU patients have implicitly assumed
that one common risk model could be developed and ap-
plied to all the patients; however, this approach might fail to
capture the diversity of ICU patients. For example, a kind
of stomach medicine can be administered to patients who
have received artificial respiration because artificial respira-
tion frequently causes gastric ulcers, whereas the stomach
medicine is also directly administered to treat severe gastric
ulcers with bleeding; as a result, the corresponding predic-
tion rule would differ depending on which type of disease a
patient has. In an attempt to address situations such as this,
a recent study explored disease-specific risk modeling for
ICU patients by employing multi-task learning where a task
corresponds to a disease (Nori et al. 2015). They assumed
that each disease has a specific prediction rule that explains
its mortality risk, and therefore, customizing the risk model
for each disease would enhance the predictive modeling.

Yet, their approach continues to be insufficient to cap-
ture patient-specific aspects of mortality risk modeling for
ICU patients. Specifically, patients are usually associated
with multiple diseases, thereby further complicating ICU pa-
tients’ clinical states. In such a case, one straightforward ap-
proach might be to create a task corresponding to a com-
bination of the diseases that each patient has; however, this
approach would be ineffective due to the combinatorial ex-
plosion among diseases. This problem is illustrated in Fig-
ure 1, which shows a histogram of a combination of diseases
that was created from an ICU dataset. This dataset consists
of about 200,000 patients from about 170 hospitals in Japan.
Each patient is associated with his or her main disease and
several comorbidities. A disease is identified by a three-digit
ICD-10 code, and the number of comorbidities is at most
four. It is observed that many combinations are identical to
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Figure 1: Histogram of combination of diseases in an ICU
dataset.

a specific patient: they only occur in one patient. As a result,
a naı̈ve approach to create tasks corresponding to combina-
tions of diseases would be unfeasible.

In this study, we propose a multi-task learning method
for ICU mortality prediction capable of producing patient-
specific risk models reflecting the collection of diseases as-
sociated with the patient. We do not explicitly create tasks
corresponding to the collection of diseases; instead, we as-
sume implicit, or latent tasks and learn a latent representa-
tion of the diseases. Figure 2 illustrates our model. Specifi-
cally, we assume a small number of latent basis tasks, where
each latent task is associated with its own parameter vec-
tor (which composes parameter matrix L), and a parameter
vector for a specific patient (which comprises parameter ma-
trix W ) is constructed as a linear combination of these. The
latent representation of a patient, namely, the coefficients
of the combination (which comprises parameter matrix S),
is learned based on the collection of diseases the patient
is associated with (which comprises the association matrix
A). Our method could be considered a multi-task learning
method where latent tasks are learned based on the collec-
tion of diseases.

The contributions of our study are as follows.

• We propose a multi-task learning method for ICU mor-
tality prediction that can produce a patient-specific risk
model reflecting the collection of diseases the patient is
associated with. For patient-specific modeling, one crit-
ical issue is to determine which unit we should use to
model patient specificity. Our method enables us to learn
the unit of the task itself based on the collection of dis-
eases the patients are associated with, by introducing la-
tent basis tasks.

• We demonstrate the effectiveness of our method by using
a real-world dataset from a hospital. Our method is capa-
ble of constructing patient-specific models from different
viewpoints.

Figure 2: Our model of multi-task learning for patients with
multiple diseases.

Related Work

Patient-Specific Modeling

Addressing both the specificity and the commonality among
a patient population - that is, addressing the specificity of the
target patient while capturing the common structure shared
among the population - has been one of the most fundamen-
tal issues at the intersection of clinical and machine-learning
research. Obtaining clinically useful models requires the
model to be customized to the target of the analysis; on
the other hand, restricting the data to those that are faith-
fully relevant to the target often results in an impractically
small sample size. Thus, to develop clinically useful target-
specific models, recent studies have focused on multi-task
learning and transfer learning for clinical data. One criti-
cal issue is to determine the aspects we should use to cap-
ture the specificity of the patients, that is, how to define
the tasks for patient-specific modeling. Jenna et al. inves-
tigated the effectiveness of hospital-specific (Wiens, Guttag,
and Horvitz 2014) modeling via a feature-representation-
transfer method. Gong et al. exploited an instance-transfer
method for hospital-specific and surgery-specific risk mod-
eling (Gong et al. 2015). Nori et al. proposed a multi-
task learning method in which a task corresponds to a dis-
ease (Nori et al. 2015) and Liu and Hauskrecht developed
a forecasting model that captures both the patient-specific
time series pattern and population-level information for clin-
ical time series data (Liu and Hauskrecht 2016). Our study
differs from the above-mentioned research in that we learn
the unit of the tasks itself by assuming a small number of
latent basis tasks that are learned from the collection of dis-
eases each patient is associated with. To the best of our
knowledge, this is the first study in which patient risk mod-
eling is formulated as multi-task learning in which a task
corresponds to a combination of diseases.

Mortality Risk Modeling for ICU Patients

Traditionally, mortality modeling for the ICU patients has
been conducted via scoring systems such as the simpli-
fied acute physiology score (SAPS) and acute physiology
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and chronic health evaluation (APACHE) both of which
use fixed clinical decision rules based mainly on physio-
logical data (Siontis, Tzoulaki, and Ioannidis 2011). How-
ever, it should be noted that these ICU scoring systems are
only used in rather limited situations. Specifically, as of
2012, they were used for 10-15% of ICU patients in the
US (Breslow and Badawi 2012). With the increased avail-
ability of varied data from hospital electronic health records
(EHRs), the feasibility of data-driven mortality predictive
models based on EHRs has been explored extensively in
the clinical domain (Hug and Szolovits 2009; Joshi and
Szolovits 2014; Tabak et al. 2014; Lehman et al. 2012).
These studies demonstrate that EHRs can be used to gen-
erate clinically plausible mortality predictive models with
superior discrimination. Many studies have attempted to ad-
equately address the typical nature of EHRs, such as data
sparsity, in developing mortality prediction methods (Ca-
ballero Barajas and Akella 2015; Ghassemi et al. 2014;
2015; Nori et al. 2015).

Nevertheless, thus far it has been implicitly assumed that
one common predictive model should be developed and ap-
plied to all diseases. In a recent study (Nori et al. 2015), the
authors formulated mortality prediction as multi-task learn-
ing in which a task corresponds to a disease, thereby pro-
ducing disease-specific models. However, their method is
unable to accommodate the collection of diseases each pa-
tient is associated with; thus, in their method each task cor-
responds to one disease. Yet, because patients are usually
associated with multiple diseases, it would be necessary to
capture patient specificity by constructing the tasks based
on the collection of diseases each patient is associated with.
In addition, their method does not learn the relations among
diseases, whereas our method learns the relations among dis-
eases by learning latent tasks from the collection of the dis-
eases. Contrary to this, their method increases the similarity
between the model parameters of two diseases if the diseases
are similar in terms of domain knowledge via regularization.
Although domain knowledge can be exploited to some ex-
tent, there should be intrinsic relations among diseases that
can be learned from data and can be exploited for prediction
purposes.

Multi-task learning

One of the most fundamental issues in multi-task learning is
how to introduce an inductive bias in modeling task relation-
ships. There have been numerous studies conducted in an at-
tempt to introduce appropriate assumptions: task parameters
might be assumed to lie in close proximity with each other in
some geometric sense (Evgeniou and Pontil 2004), or they
might be assumed to lie in a low-dimensional subspace (Ji
and Ye 2009) or to share a prior in common (Yu, Tresp, and
Schwaighofer 2005), to name a few. One major challenge
in multi-task learning is how to avoid negative-transfer: that
is, how to selectively share information among tasks in or-
der that unrelated tasks do not affect each other. Approaches
to this challenge include clustering tasks (Jacob, philippe
Vert, and Bach 2009) and learning grouping of tasks with
overlap (Kumar and Daumé III 2012). Our method could
be considered a multi-task learning method with the as-

sumption that tasks lie in a low-dimensional subspace, sim-
ilar to several above-mentioned research (Ji and Ye 2009;
Kumar and Daumé III 2012). However, our method basi-
cally differs other research in that we learn the unit of the
task itself. We assume components of the tasks, namely, a
collection of diseases, and assume that a combination of the
components produces a task; in addition, we do not explic-
itly list the combination.

Learning patient-specific risk models

Problem setting

In this section, we describe our approach for learning
patient-specific risk models, where each patient is associated
with one or more diseases. Let N denote the number of total
patients. A risk model is developed for each patient. The n-
th patient is represented by an M -dimensional feature vector
xn derived from the EHRs, which contain a variety of in-
formation about patients, such as their demographic profile,
clinical history, and medications. Each patient is also asso-
ciated with one or more diseases. They are usually several
main diagnoses coded by the International Statistical Clas-
sification of Diseases and Related Health Problems, ICD,
which is a widely used classification of diseases maintained
by the World Health Organization. The total number of dis-
eases is denoted by D. Each patient is associated with a bi-
nary class label, yn ∈ {0, 1}, where yn = 1 when the pa-
tient died during his or her hospital stay and yn = 0 other-
wise. Since we are interested in the probability of a mortality
risk, we opt for logistic regression and represent the pos-
terior probability of the outcome of patient n being death
as Pr[yn = 1|xn] = σ(wn

Txn) , where σ(a) is the sig-
moid function: σ(a) ≡ (1 + exp(−a))−1, and wn is an
M -dimensional model parameter vector for the n-th patient.

Decomposition model. We need to address the data spar-
sity inherent in constructing patient-specific risk models; to
that end, we learn models for all the patients jointly, i.e., by
sharing information across patients. We represent the whole
parameter matrix as an M ×N parameter matrix W , where
the n-th column vector wn denotes a parameter vector for
the n-th patient. We also assume there are K latent basis
tasks and that a specific risk model for each patient can
be represented as a linear combination of these latent ba-
sis tasks. Under this assumption, we can write the parameter
matrix W as W = LS, where L is an M × K matrix
with each column representing a latent basis task, and S is a
K ×N matrix containing the weights of linear combination
for each patient. The parameter for the n-th patient wn is
given as LS∗,n. The predictive structure of the latent tasks
is captured by the matrix L and the latent representation of
the patients is captured by the matrix S. Next, we exploit
the relations between diseases and patients. Let A denote a
D × N matrix containing the relation information between
diseases and patients. Specifically, Ad,n = 1 if the n-th pa-
tient is associated with the d-th disease and Ad,n = 0 oth-
erwise. Using this relational information, we further rewrite
the matrix S as S = S̃A, where S̃ is a K ×D matrix with
each column representing a latent representation of the dis-
ease.
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Prior knowledge. We overcome the problem of data spar-
sity and guide effective decomposition of the parameter ma-
trix by further assuming some prior knowledge. We adopt
prior knowledge relating to population-level information,
which is some common structure shared among all the pa-
tients. For the population-level information, we assume an
M × N matrix W 0 with each column containing a parame-
ter vector obtained from a single-task learning method that is
learned from all the patients in the training dataset. Namely,
W 0 ≡ [w0,w0, . . . ,w0], where w0 is an M -dimensional
parameter vector learned by applying a machine-learning
method to all the patients in the training dataset.

Our goal is to estimate the probability of mortality risk
of a new patient represented by an M -dimensional feature
vector xn′ , given a D-dimensional vector containing the
collection of diseases the patient is associated with, and
some observed training dataset {(xn, yn)}n=1,...,N and a
D ×N patient-disease matrix A. After learning the param-
eter matrices L and S̃ using a training dataset, we can con-
struct a parameter matrix specialized to new patients, given
a patient-disease relation matrix for encoding the collection
of diseases each new patient is associated with.

Optimization problem

We define our loss function as the log loss denoted by
L(S̃,L):

L(S̃,L) ≡ − 1

N

N∑
n=1

{yn log σ(A∗,n�S̃
�
L�xn)

+ (1− yn) log(1− σ(A∗,n�S̃
�
L�xn)}. (1)

We include several regularization terms to exploit our
prior knowledge and to avoid overfitting. First, to exploit
the population level information, we include the following
regularization term Ω1:

Ω1 ≡ ||LS̃A−W 0||2F , (2)

where W 0 is a matrix with each column containing a pa-
rameter vector obtained from a single-task learning method.

Adding the following �2-norm regularization term:

Ω2 ≡ ||S̃||2F , (3)

we define our regularization term as follows:

Ω ≡ λ1Ω1 + λ2Ω2, (4)

where λ1 ≥ 0 and λ2 ≥ 0 are hyperparameters for tuning
the weight of the regularization terms Ω1,Ω2, respectively.

The optimization problem is defined as follows:

min
˜S,L

L(S̃,L) + Ω. (5)

In the following, we show the optimization problem is
convex in S̃ for a fixed L, and vice versa.

The derivatives of the loss function with respect to S̃ and
L are given as follows, respectively:

∂L
∂S̃

=

N∑
n=1

(σn − yn)L
�xnA∗,n�, (6)

∂L
∂L

=
N∑

n=1

(σn − yn)xnA∗,n�S̃
�
, (7)

where σn ≡ σ(A∗,n�S̃
�
L�xn).

The derivatives of the regularization term with respect to
S̃ and L are given as follows, respectively:

∂Ω

∂S̃
= 2λ1(L

�LS̃AA� − 2L�W 0A
�) + 2λ2S̃. (8)

∂Ω

∂L
= 2λ1(LS̃AA�S̃

� − 2W 0A
�S̃

�
). (9)

The second derivative of the loss function and regulariza-
tion term Ω1 with respect to S̃ are given as follows, respec-
tively:

∂vec (L′)

∂vec
(
S̃
)� =

N∑
n=1

σn(1− σn)V V �, (10)

∂vec (Ω′
1)

∂vec
(
S̃
)� = 2AA� ⊗L�L,

(11)

where V ≡ vec
(
L�xnA∗,n�

)
, and ⊗ is Kronecker prod-

uct.
The loss function is convex in S̃ for a fixed L and vice

versa, since the sum of positive semidefinite matrices is pos-
itive semidefinite. Since the Kronecker product of two pos-
itive semidefinite matrices is positive semidefinite, Eq.(11)
produces a positive semidefinite matrix; hence, the regular-
ization term is convex in S̃ for a fixed L. Similarly, the
regularization term is convex in L for a fixed S̃. However,
they are not jointly convex. We adopt an alternating opti-
mization procedure that converges to a local minimum. For
each optimization problem, the optimal solution is found by
using standard gradient-based methods. We applied the L-
BFGS optimizer (Liu and Nocedal 1989) with the above-
mentioned derivatives. For initializing L, we adopted the
following strategy: assuming an M × N matrix W 0 with
each column containing a parameter vector obtained from a
single-task learning method, the matrix L is then initialized
to the top-K left singular vectors of W 0 : W 0 = UΣV .
The alternating optimization procedure is terminated when
some prearranged criterion is satisfied.

Experiment

Setup

Dataset. We used a dataset from a hospital in Japan. 1 All
the patients in the dataset underwent ICU treatment at some
point during their hospital stay. For the coding of diseases,

1This dataset was constructed as part of the Quality Indica-
tor/Improvement Project (Lee et al. 2011) that is administered by
the Department of Healthcare Economics and Quality Manage-
ment, Kyoto University.
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Table 1: Comparison of averaged AUCs. For each method,
AUC and standard error is shown.

Method AUC
Proposed 0.764 ±0.001

Proposed-w/o-A 0.724 ±0.001
Proposed-w/o-pop 0.733 ±0.001

STL (separate) 0.720 ±0.001
STL (common) 0.754 ±0.001

MTL-Trace 0.738 ±0.001
MTL-Mean 0.736 ±0.000
MTL-�2,1 0.738 ±0.000
MTL-DM 0.757 ±0.001

we adopted the three-digit ICD-10 codes and extracted the
following diseases for each patient: the main disease that
caused the patient’s admission, and comorbidities the patient
had at the time of admission, where the number of comor-
bidities is at most four. After excluding patients under 18,
in this study, we obtained 296 patients. This brings the total
number of the diseases to 231. For the features, we used the
age, gender, main disease, and comorbidities of the patient
that are coded by a four-digit ICD-10, and all the medical
events for which patients were billed during their hospital
stay. For the age and gender, we created two binary features:
“Over 65” and “Men”. The medical events mainly describe
patient interventions such as medication, procedures, and
laboratory tests. For patients who received an intervention
once or more than once, the corresponding feature was set
to 1, and otherwise 0.

Prediction settings. As a measure of mortality, we
adopted in-hospital mortality; that is, if a patient died dur-
ing his or her hospital stay, the patient outcome is “death”
and otherwise “survival”. As an evaluation measure for pre-
dictive performance, we adopted the area under the ROC
curve (AUC). We randomly sampled 60% of the patients to
create the training dataset and used the remaining 40% for
evaluation. We used all the features associated with the pa-
tient that were available 1 day before the day he or she was
discharged from the ICU. The total number of features was
1,062. We repeated the procedure of sampling, prediction,
and evaluation and calculated the mean. The hyperparame-
ters were tuned by three-fold cross validation in the train-
ing dataset. For our proposed method, λ1 was tuned among
{0, 10−3, 10−1}, and λ2 was set to 10−5. The number of la-
tent tasks K was tuned among {22, 23, 24}. The matrix W 0

is constructed by applying logistic regression with �2-norm
regularization to all the patients. We used W 0 that is learned
by only the training data in each iteration. In our experi-
ment on this dataset, increasing the number of iterative cy-
cles in the optimization process did not improve prediction
performance. Hence, we only estimated S̃ using the initial
L throughout the experiment.

Compared methods. We compared our proposed method
with the following 8 methods. We first prepared the follow-
ing two variants of our method. First, Proposed-w/o-A is
adopted to determine the effect of the association matrix A.

This method learns two parameter matrices L and S with-
out introducing A; more specifically, we only used the main
disease for each patient in constructing A. Second, we de-
termined the effect of regularization by preparing Proposed-
w/o-pop; Proposed-w/o-pop is identical to our method with
λ1 = 0 in Eq. 4. The next two methods are single-task learn-
ing methods. The method STL (separate) learns separate
models for each disease by using only data item relating to
the particular disease, where the disease is defined based on
the patient’s main disease. STL (common) learns one com-
mon model that is applicable to all the patients by using data
from all the diseases. The other four methods are multi-task
learning baselines; for these methods, tasks are defined as
patients’ main diseases. The first method is MTL-Trace (Ji
and Ye 2009), which incorporates trace norm regulariza-
tion with the assumption that models from different tasks
share a common low-dimensional subspace. The second
method is MTL-Mean (Evgeniou and Pontil 2004), which
assumes each task parameter vector is close to the mean
vector of all the tasks. The third method, MTL-�2,1 (Ar-
gyriou, Evgeniou, and Pontil 2006), incorporates �2,1-norm
regularization to introduce group sparsity and can be consid-
ered as joint feature selection across tasks. The last method
is MTL-DM (Nori et al. 2015), which integrates domain
knowledge relating to the diseases and EHRs via two graph
Laplacians. All the single-task and multi-task learning base-
lines are based on logistic regression with �2 regularization.
For STL (separate) and ST(common), the �2 regularization
hyperparameter was tuned among {10−3, 10−1, 100}. For
MTL-Trace, MTL-Mean, and MTL-�2,1, all the hyperparam-
eters were tuned among {10−2, 10−1, 100}. For MTL-DM,
the hyperparameter relating to the task similarity was tuned
among {10−1, 100}, the hyperparameter relating to the fea-
ture similarity was set to 10−4, and the �2 regularization hy-
perparameter was set to 10−5.

Results and Discussion

Predictive performance. Table 1 compares the AUCs of
the various methods. For each method, we showed AUC and
standard error. The performance improvement compared
with the variant of our method Proposed-w/o-A suggests that
exploiting multiple diseases information for each patient can
improve the prediction performance in fact. Similarly, the
performance improvement compared with Proposed-w/o-
pop suggests that population-level information is important
for effective prediction. The fact that our method outper-
formed the two single-task learning methods suggests the
importance of capturing the diversity of ICU patients in mor-
tality risk prediction. Lastly, the performance improvements
compared to the four multi-task learning methods indicate
that for patient-specific modeling, it is of importance to ex-
ploit not only one disease but also the entire collection of
diseases associated with the patient.

Latent task analysis. Since the number of latent task K
depends on the sample trial, we adopted one sample for the
illustration purpose, where K = 4. We first examined the
relationship among latent tasks in terms of associated dis-
eases by using S̃. Specifically, for each latent task k, we
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Table 2: Example of top 10 predictive features for a latent task.

Latent task High/Low Example of category Example of predictive featuresrisk of predictive features
disease-mortality-related High high-mortality diseases C54, I31, K26

task (k = 1) Low low-mortality diseases I71, K63

Figure 3: Visualization of similarities among latent tasks via
MDS using S̃.

associated it with its disease vector S̃k,∗ and applied multi
dimensional scaling (MDS) in an attempt to see the relation-
ships among latent tasks. Figure 3 show the result: only one
latent task (k = 1) was positioned as an outlier, while all the
other latent tasks aligned with one dimension.

Then, we examined predictive features for each latent task
by using L. Specifically, we examined top 10 features with
positive and negative coefficients for each latent task by cal-
culating the following two ratios for each latent task: the
ratio of high-mortality diseases in the top 10 predictive fea-
tures with positive coefficients and the ratio of low-mortality
diseases in the top 10 predictive features with negative coef-
ficients, where high-mortality means mortality above the av-
erage and low-mortality means mortality below the average.
Figure 4 and Figure 5 show histograms of them: Figure 4
shows a histogram of ratio of high-mortality diseases in the
top 10 high-risk predictive features for each task, and Fig-
ure 5 shows a histogram of ratio of low-mortality diseases
in the top 10 low-risk predictive features for each task. It
is observed that for a latent task (k = 1), the highest risk
predictive features are composed of high-mortality diseases,
and the lowest risk predictive features are composed of low-
mortality diseases, whereas this tendency is not observed for
the other latent tasks.

Together with the MDS result, it is considered that one
latent task (k = 1) plays a role to capture disease-mortality,
while other latent tasks play different roles. Table 2 shows
some examples of the top 10 high-risk features and the top
10 low-risk features for the disease-mortality-related task
(k = 1). For the other latent task (k = 2 ∼ 4), both high-risk
and low-risk predictive features contained a specific combi-
nation of diseases for each task. Together with the above
latent task (k = 1) analysis, it is considered that patient-
specific models are constructed from viewpoints such as
whether the patient is associated with high-mortality dis-

Figure 4: Histogram of ratio of high-mortality diseases in
the top 10 high-risk predictive features.

Figure 5: Histogram of ratio of low-mortality diseases in the
top 10 low-risk predictive features.

eases or low-mortality diseases, and whether the patient has
a specific combination of diseases.

Conclusion

In this study, we considered the risk prediction problem as-
sociated with the mortality of diverse ICU patients by pro-
ducing patient-specific risk models. Our proposed method
could be considered a multi-task learning method in which
latent basis tasks are learned from the collection of diseases
the patients are associated with. Our experimental results us-
ing a real-world dataset from a hospital demonstrated the ef-
fectiveness of our method by outperforming standard single-
task learning methods and various multi-task learning meth-
ods in which a task corresponds to a disease. Furthermore,
our method could be used for uncovering patient-specificity
from different viewpoints.
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