
Discrete Personalized Ranking for Fast
Collaborative Filtering from Implicit Feedback

Yan Zhang, Defu Lian,∗ Guowu Yang
Big Data Research Center, University of Electronic Science and Technology of China

yixianqianzy@gmail.com, dove@uestc.edu.cn, guowu@uestc.edu.cn

Abstract

Personalized ranking is usually considered as an ultimate goal
of recommendation systems, but it suffers from efficiency is-
sues when making recommendations. To this end, we propose
a learning-based hashing framework called Discrete Person-
alized Ranking (DPR), to map users and items to a Ham-
ming space, where user-item affinity can be efficiently cal-
culated via Hamming distance. Due to the existence of dis-
crete constraints, it is possible to exploit a two-stage learn-
ing procedure for learning binary codes according to most
existing methods. This two-stage procedure consists of re-
laxed optimization by discarding discrete constraints and sub-
sequent binary quantization. However, such a procedure has
been shown resulting in a large quantization loss, so that
longer binary codes would be required. To this end, DPR di-
rectly tackles the discrete optimization problem of personal-
ized ranking. And the balance and un-correlation constraints
of binary codes are imposed to derive compact but informat-
ics binary codes. Based on the evaluation on several datasets,
the proposed framework shows consistent superiority to the
competing baselines even though only using shorter binary
code.

Introduction
Recommender systems have been recently used in a growing
number of e-commerce websites for helping their customers
find desirable products to purchase. The ultimate goal of
such systems is to present personalized ranking list for each
user. However, a growing scale of users and products ren-
ders todays’s recommendation much more challenging. Tak-
ing a Taobao user as an example, a recommendation system
should make fast response to recommend products from a
billion-scale collection by analyzing her browsing, purchas-
ing and searching history.

Dimension reduction techniques such as matrix factoriza-
tion has been shown to balance perfectly between accuracy
and efficiency in recommendation. Such matrix factorization
methods factorize a n × m user-item matrix to map both
users and items into a joint r-dimensional latent space. Then
users’ preference for items could be efficiently predicted
by inner product between them. To align with the ultimate

∗Corresponding author
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

goal of recommender systems, matrix factorization has been
equipped with ranking based objective functions, such as
WR-MF (Hu, Koren, and Volinsky 2008), BPR-MF (Rendle
et al. 2009), CofiRank (Weimer et al. 2007), LA-LDA (Yin
et al. 2015) and ListCF (Shi, Larson, and Hanjalic 2010), to
directly generating a preference ranking of items for each
user. To extract top-k preferred items for each user, recom-
mendation systems need compute users’ preference for all
items and rank them by preference descendingly. Thus rec-
ommendation of time complexity O(nmr + nm log k) is a
critical efficiency bottleneck.

Fortunately, hashing techniques, encoding real-valued
vectors into compact binary codes, could a promising ap-
proach to tackle this challenge, since inner product in this
case could be efficiently achieved by bit operations, i.e.,
Hamming distance. One can even use a fast and accu-
rate indexing methods for finding approximate top-K pre-
ferred items with sublinear or logarithmic time complex-
ity (Wang, Kumar, and Chang 2012; Muja and Lowe 2009).
Due to challenging discrete constraints, the learning of the
compact binary codes is generally NP-hard (Håstad 2001),
but can resort to a two-stage procedure (Liu et al. 2014b;
Zhou and Zha 2012; Zhang et al. 2014), which consists
of relaxed optimization via discarding the discrete con-
straints, and subsequent binary quantization. But according
to (Zhang et al. 2016), these two-stage approaches over-
simplify original discrete optimization, resulting in a large
quantization loss, thus a principle hashing framework called
Discrete Collaborative Filtering was proposed for direct dis-
crete optimization. Unfortunately, the objective function of
this framework is for rating prediction instead of for person-
alized item ranking, thus without aligning with the ultimate
goal of recommendation system.

To this end, we propose a learning-based hashing frame-
work called Discrete Personalized Ranking, which directly
addresses the discrete optimization problem of personalized
ranking from implicit feedback. In particular, DPR replaces
user/item latent representation with binary codes and opti-
mizes the objective – the Area Under ROC (Receiver Oper-
ating Characteristics) Curve (Rendle et al. 2009). The rea-
son why targeting for implicit feedback is that personalized
ranking in this case is more challenging due to the neces-
sity of comparing the preference of each user’s positively-
preferred items with others. Additionally, DPR imposes the

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1669

balance and un-correlation constraints to derive the compact
but informative codes. For the tractable discrete optimiza-
tion of DPR, we develop an efficient alternating optimization
method consisting of iteratively solving mixed-integer pro-
gramming subproblems. Finally, we evaluate the proposed
framework on three different sizes of datasets and show its
consistent superiority to the competing baselines.

Related work
Below we mainly review recent advance of hashing-based
collaborative filtering. For comprehensive reviews of hash-
ing techniques, please refer to (Wang et al. 2016).

A pioneer work was to exploit Locality-Sensitive Hash-
ing to generate hash codes for Google News readers based
on their click history (Das et al. 2007). Following this,
(Karatzoglou, Smola, and Weimer 2010) randomly pro-
jected user/item latent representation learned from regular-
ized matrix factorization into the Hamming space, to ob-
tain hash codes for users and items. Similar to this, (Zhou
and Zha 2012) followed the idea of Iterative Quantization to
generate binary code from rotated user/item latent represen-
tation. In order to derive more compact binary codes, before
producing binary codes, the uncorrelated bit constraints was
imposed on user/item latent representation in regularized
matrix factorization (Liu et al. 2014b). However, according
to analysis in (Zhang et al. 2014), hashing essentially only
preserves similarity rather than inner product based prefer-
ence, since user/item’s magnitudes are lost in the subsequent
binary quantization. Thus they imposed Constant Feature
Norm (CFN) constraint when learning user/item latent rep-
resentation, and then quantized their magnitudes and simi-
larity respectively.

To summarize the aforementioned work, hashing codes
are generated by two independent stages: relaxed learning
of user/item latent representation and binary quantization.
Since such two-stage methods suffer from a large quantiza-
tion loss according to (Zhang et al. 2016), direct optimiza-
tion for regularized matrix factorization with discrete con-
straints was proposed. To derive compact hash codes, the
balance and uncorrelation constraints were further imposed.
However, their algorithm was designed for rating prediction
instead of for personalized ranking, so it is inconsistent with
the ultimate goal of recommendation systems: providing a
personalized ranking list of items.

Preliminary
In this section we will introduce some notations related to
this paper. All of the vectors in this paper represent column
vectors. Uppercase bold and lowercase bold letters denote
matrices and vectors, respectively. Non-bold letters repre-
sent scalars.

Notations
Let user and item sets are denoted by U = {1, · · · , n}
and I = {1 · · · ,m} respectively. The implicit feedback S
used in this paper is defined as a subset of the Cartesian
product of U and I: S ⊆ U × I . Examples for such feed-
back are product purchase/click/collection history in online

shops, location visit history and music listening records. The
task of personalized collaborative filtering is to provide a
personalized total ranking of all items for each user. For
convenience, following BPR (Rendle et al. 2009), we de-
fine the positive items for user u (on which the user has
actions) as I+u = {i ∈ I : (u, i) ∈ S}; and other items as
I−u = I\I+u . Users who have actions on item i are denoted
as U+

i = {u ∈ U : (u, i) ∈ S}; other users are denoted as
U−i = U\U+

i

AUC Objective
As introduced above, only positive instances are observed
in implicit feedback datasets. The rest data is a mixture of
actually negative and potentially positive data. In order to
obtain a personalized total ranking of all items, one com-
mon approach is to predict a user’s personalized preference
scores x̂ui for each item. Then the total ranking of items are
determined by these scores. We denote x̂uij = x̂ui − x̂uj

as the comparison of x̂ui and x̂uj . If x̂uij > 0, we can con-
clude that user u prefers item i over j; otherwise, user u
prefers item j over i. For a particular user u, we expect that
the goal that positive items will get higher scores than other
items could be satisfied as much as possible, so that AUC
is a commonly used objective. According to (Rendle et al.
2009), AUC per user is defined as

AUC(u) =
1∣∣I+u ∣∣ · ∣∣I−u ∣∣

∑
i∈I+

u

∑
j∈I−u

I (x̂uij > 0), (1)

where I (t) is a delta function, which returns 1 if t is true
and 0 otherwise. It ranges from zero to one, and it is larger
if more pairs of items are preserved for comparative prefer-
ence. The overall AUC averaged over all users is

AUC =
1

|U |
∑
u∈U

AUC (u)

For simplifying notations, we define DS as DS =
{(u, i, j) |u ∈ U, i ∈ I+u and j ∈ I−u }, and rewrite AUC as

AUC =
∑

(u,i,j)∈DS

1

|U | ∣∣I+u ∣∣ ∣∣I−u ∣∣ I (x̂ui > x̂uj)

However, optimizing AUC directly often leads to an NP-
hard problem (Gao et al. 2013). A feasible solution in prac-
tice is to minimize some pairwise surrogate losses

L =
∑

(u,i,j)∈DS

1

|U | ∣∣I+u ∣∣ ∣∣I−u ∣∣�(x̂ui − x̂uj)

where � : R → R
+ is a convex function such as exponential

loss �(t) = e−t, hinge loss �(t) = max(0, 1 − t), logistic
loss �(t) = log(1 + e−t), least square loss �(t) = (1 − t)2,
etc.

Discrete Personalized Ranking
Problem formulation
In this paper, we propose a novel personalized ranking ap-
proach that directly optimizes the personalized ranking ob-
jective – AUC to learn effective hash codes for users and

1670

items. As the least square loss is consistent with AUC (Gao
et al. 2013) and could lead to efficient and closed forms for
updating latent factors without sampling in an either contin-
uous or discrete case. So we propose to use the least square
loss �(t) = (1− t)2, and to minimize the following pairwise
least square loss:

min
∑

(u,i,j)∈DS

1

|U | ∣∣I+u ∣∣ ∣∣I−u ∣∣ (1− (x̂ui − x̂uj))
2
, (2)

In this paper, we are interested in mapping users and items
into r-bits binary codes for fast recommendation, where
user-item affinity can be efficiently calculated via Ham-
ming distance in the r-d Hamming space. Let bu ∈ {±1}r
and di ∈ {±1}r represent user codes and item codes re-
spectively. We stack them by column into a matrix B ∈
{±1}r×n and a D ∈ {±1}r×m, respectively. The user-item
affinity (similarity) can be defined as (Zhou and Zha 2012):

sim(u, i) =
1

r

r∑
k=1

I (buk = dik) =
1

2
+

1

2r
bT
udi

If sim (u, i) > sim (u, j), the user u is more affinitive to item
i than j. To preserve such affinity, we take the affinity as
preference, then the preference of user u to item i is defined
as

x̂ui =
1

2
+

1

2r
bT
udi (3)

Substituting Eq(3) into Eq (2), we rewrite the objective func-
tion

argmin
B,D

∑
(u,i,j)∈DS

1

|U | ∣∣I+u ∣∣ ∣∣I−u ∣∣
(
2r − bT

u (di − dj)
)2

In oder to maximize the entropy of each binary bit, a bal-
ance constraint need be imposed, so that each bit carries as
much information as possible (Zhou and Zha 2012). In order
to learn compact binary codes, a un-correlation constraints
is also imposed, so that each bit should be as independent
as possible, that is, to remove the redundancy among the
bits. Together with these two additional constraints on B
and D respectively to maximize information load in short
code (Weiss, Torralba, and Fergus 2009), we can formulate
the objective function of the proposed Discrete Personalized
Ranking (DPR) as follows:

argmin
B,D

∑
(u,i,j)∈DS

1

|U | ∣∣I+u ∣∣ ∣∣I−u ∣∣
(
2r − bT

u (di − dj)
)2

s.t. B ∈ {±1}r×n
,D ∈ {±1}r×m

B1n = 0,D1m = 0︸ ︷︷ ︸
Balance

, BBT=nIr,DDT=mIr︸ ︷︷ ︸
Un-correlation

(4)

Learning Model
Next we will introduce a learning model that can solve
DPR in a computationally tractable manner. DPR in
Eq(4) is essentially a discrete optimization problem, which
has been proved as an NP-hard problem (Håstad 2001).

Therefore, we adopt a strategy to solve DPR by soft-
ening the balance and decorrelation constraints (Zhang
et al. 2016; Liu et al. 2014a). Let us define two
sets B =

{
X ∈ R

r×n
∣∣X1n = 0, XXT=nIr

}
, D ={

Y ∈ R
r×m

∣∣Y1m = 0, YYT=mIr
}

. We can soften
these balance and un-correlation constraints to derive the
following objective function, making Eq (4) computation-
ally tractable,

argmin
B,D

∑
(u,i,j)∈DS

1

|U | ∣∣I+u ∣∣ ∣∣I−u ∣∣
(
2r − bu

T (di − dj)
)2

+ αd2 (B,B) + βd2 (D,D)

s.t. B ∈ {±1}r×n
,D ∈ {±1}r×m

, (5)

where d (B,B) = minX∈B‖B−X‖F represents dis-
tance from a matrix B from the corresponding set B, and
d (D,D) = minY∈D‖D−Y‖F represents distance of a
matrix D from the corresponding set D. And α > 0 and
β > 0 are tuning parameters so that the second and third
term of Eq (5) respectively allow certain discrepancy be-
tween the binary codes B and delegated values X, and be-
tween D and Y. Since tr(BBT) = tr(XXT) = nr and
tr(DDT) = tr(YYT) = mr, Eq (5) can be equivalently
transformed to the following problem.

argmin
B,D,X,Y

∑
(u,i,j)∈DS

1

|U | ∣∣I+u
∣∣ ∣∣I−u

∣∣
(
2r − bu

T (di − dj)
)2

− 2αtr(BTX)− 2βtr(DTY)

s.t. B ∈ {±1}r×n,D ∈ {±1}r×m

X1n = 0,Y1m = 0, XXT=nIr,YYT=mIr (6)

It’s worth noting that we do not discard the binary constraint
and directly optimize the substitution of AUC. Through
alternating optimization for B, D, X, and Y, we can
obtain nearly balanced and uncorrelated hashing codes for
users and items. Next, we will introduce the alternating
optimization. Below, for convenience, denote z+u = 1

|I+
u |

and z−u = 1
|I−u | .

B-subproblem: Fix D, X and Y, update B.
Since the objective function in the problem (6) sums over

users independently, we can update B by updating bu in
parallel by solving the following problem,

argmin
bu∈{±1}r

∑
i,j∈I

z+u z
−
u rui(1− ruj)

(
((di − dj)

T
bu)

2

−4r(di − dj)
T
bu

)
− 2αnxT

ubu (7)

where rui represent whether user u has action on item i, that
is, returning 1 if (u, i) ∈ S and 0 otherwise. However, this
discrete optimization problem is generally NP-hard, so we
adopt the bitwise learning method called Discrete Coordi-
nate Descent (Shen et al. 2015) to update bu. In particular,
denoting buk as the k-th bit of bu and buk̄ as the rest codes
excluding buk, Discrete Coordinate Descent will update buk

1671

given buk̄ fixed. Discarding the terms independent to buk,
the problem (7) could be rewritten as,

argmin
buk∈{±1}

buk b̂uk (8)

where b̂uk =
∑
i,j

z+u z
−
u rui(1− ruj)((dik̄ −djk̄)

Tbuk̄(dik −
djk)− 2rdik + 2rdjk)− αnxuk. For efficient computation
of this quantity, please refer to Appendix. Based on this op-
timization problem, we can easily deduce that the optimal
buk is just the opposite sign of b̂uk. However, if b̂uk equals
to zero, buk should not be updated. Therefore, the update
rule of buk is

buk = sgn
(
K(−b̂uk, buk)

)
(9)

where K(t, r) = t if t �= 0 and K(t, r) = r otherwise.
Out of insufficient space, and to keep the paper reasonably
concise, the detailed derivation of Eq (8) is not presented in
this paper.

D-subproblem: Fix B, X and Y, update D.
As B, X and Y fixed, discarding terms irrelevant to di

in Eq(6), we can rewrite the objective function as follows:

argmin
di∈{±1}r

∑
u∈U+

i

∑
j∈I−u

z+u z
−
u

(
2r − bu

T (di − dj)
)2

+
∑

u∈U−i

∑
j∈I+

u

z+u z
−
u

(
2r − bu

T (dj − di)
)2

− 2βntr(DTY). (10)

Making use of rui to represent whether user u has action on
item i, we can deduce the following objective.

argmin
di∈{±1}r

∑
u,j

z
+
u z
−
u rui (1− ruj)

((
b

T
u (di − dj)

)2 − 4rb
T
udi

)

+
∑
u,j

z
+
u z
−
u ruj (1− rui)

((
b

T
u (dj − di)

)2
+ 4rb

T
udi

)

− 2βnyi
T
di. (11)

Similar to B-subproblem, we can derive the update rule of
dik as follows:

dik = sgn
(
K(−d̂ik, dik)

)
(12)

where

d̂ik =
∑
u,j

z+u z
−
u rui (1− ruj) (−djk − 2rbuk)+

+
∑
u,j

z+u z
−
u rui (1− ruj)

(
bT
uk̄

(
dik̄ − djk̄

)
buk

)

+
∑
u,j

z+u z
−
u ruj (1− rui)

(−bT
uk̄

(
djk̄ − dik̄

)
buk

)
∑
u,j

z+u z
−
u ruj (1− rui) (−djk + 2rbuk)− βnyik. (13)

For its efficient computation , please refer to Appendix.

X-subproblem: Fix B, D and Y, update X.
The X-subproblem is

argmax
X∈Rr×n

tr
(
BTX

)
, s.t. X1 = 0, XXT=nI.

It can be solved by the aid of SVD according to (Liu et al.
2014a). In particular, X can be updated by

X =
√
n[Pb P̂b][Qb Q̂b]

T
, (11)

where Pb and Qb are the left and right singular vectors of

the row-centered matrix B̄ : b̄iu = biu − 1
n

n∑
u=1

biu, P̂b is

stacked by the left singular vectors of zero singular values
and Q̂b can be calculated by Gram-Schmidt orthogonaliza-
tion based on [Qb 1].

Y-subproblem: Fix B, D and X, update Y. The Y-
subproblem is

argmax
Y∈Rr×m

tr
(
DTY

)
, s.t. Y1 = 0, YYT=mI.

Similar to the X-subproblem, Y can be updated by

Y =
√
m[Pd P̂d][Qd Q̂d]

T
. (12)

Initialization
Due to learning DPR is a mixed-integer non-convex opti-
mization, initialization is significant for better convergence
and local optimal solution. In order to achieve an efficient
initialization, we initialize B ,D, X and Y by relaxing
the discrete constraints of B ,D in Eq (6). In particular,
in Eq (6), substitute B with

√
2rP and substitute D with√

2rQ. Eq (6) will be finally equivalent to

argmin
P,Q,X,Y

∑
(u,i,j)∈DS

1

|U | ∣∣I+u
∣∣ ∣∣I−u

∣∣
(
1− pT

u (qi − qj)
)2

+
α

2r
‖P‖2F +

β

2r
‖Q‖2F − α

√
2r

2r2
tr(PTX)− β

√
2r

2r2
tr(QTY)

s.t., X1 = 0,Y1 = 0, XXT=nI,YYT=mI,

where P ∈ R
r×n, Q ∈ R

r×m. The user-item affinity can
be approximated by the dot product of real latent features of
users and items, x̂ui = pTu qi.

Making use of rui to represent whether user u has action
on item i, we can rewrite the initialization problem as fol-
lows:

argmin
P,Q,X,Y

∑
u,i,j

z+u z
−
u rui (1− ruj)

(
1− pT

u (qi − qj)
)2
+

α1n ‖P‖2F +β1n ‖Q‖2F −2α2ntr(P
TX)−2β2ntr(Q

TY)

s.t. X1n = 0,Y1m = 0, XXT = nIr,YYT = mIr,
(14)

where α1, α2, β1 and β2 are the corresponding parame-
ters. In order to solve the objective function of Eq(14), we

1672

Figure 1: Convergence curve of AUC with/without initial-
ization on MovieLens-1M/10M

also adopt alternating optimization. P and Q are randomly
initialized. They are updated based on the updating rules
through setting the corresponding derivative of the objec-
tive function to zero. X and Ycan also be solved by X/Y-
subproblem introduced in the previous subsection. Assume
the solutions are P0, Q0, X0 and Y0, we can initialize DPR
framework as

B ← sgn
(
P0

)
, D ← sgn

(
Q0

)
, X ← X0, Y ← Y0.

(15)
It’s easy to see that the above initialization is feasible to
Eq(6). The effectiveness of the initialization is illustrated
in Figure 1. We can see that the proposed initialization
scheme can help to achieve faster convergence and better
performance on personalized ranking. The objective func-
tions’ convergence of the initialization and DPR framework
are demonstrated on MovieLens-1M shown in Figure 2. To
keep this paper concise, theoretical analysis of convergence
is omitted.

Figure 2: Convergence of DPR/Initialization on MovieLens-
1M

Experiments
In this section, we mainly introduce our experiment settings
and analyze the results. Experiments on three real world
datasets show that DPR recommendation framework outper-
forms existing hashing based recommendation methods in
personalized ranking.

Experiment Settings
We evaluate our method on three real world open datasets:
MovieLens-1M, MovieLens-10M, and a subset of Netflix-
100M. The algorithm can also be applied in larger datasets
because the training procedure scales linearly with the data
size, which will be shown in Figure 4. MovieLens-1M con-
tains 1,000,209 ratings from 6040 users to 3706 movies.
MovieLens-10M includes 10,000,054 ratings from 69878
users to 10677 movies. For Netflix dataset, we use a subset
selected by bootstrap sampling from Netflix dataset which
contains 10,387,786 ratings from 20,000 users to 7,000
movies. All of these ratings are within [0,5]. As we focus
on an implicit feedback task in this paper, we remove rating
scores from datasets and keep rating actions in S.

For all datasets, we select subsamples such that each user
u has at least 10 positive items (|I+u | ≥ 10) and each item i
has at least 10 positive users (

∣∣U+
i

∣∣ ≥ 10). We use leave
one out method to evaluate our scheme and tune hyper-
parameters in Eq(6) and Eq(14) . The hyper-parameters α
and β are tuned within [10−4, 10−2] and [10−3, 10−1] re-
spectively.

Comparison Methods
BPR-MF: This is a Bayesian Personalized Ranking frame-
work based on Matrix Factorization, which directly opti-
mized the ranking based evaluation with Bayesian. To align
with the ultimate goal of recommender systems, matrix fac-
torization has been equipped with ranking based objective
functions. BPR-MF learns the real latent factors of users and
items by BPR-OPT (Rendle et al. 2009). Users’ preferences
for items are ranked by inner products between real latent
factors.
DCF: This is a Discrete Collaborative Filtering framework
that directly learns binary codes with the discrete con-
straints. But the objective function of this framework is rat-
ing prediction instead of personalized items ranking, thus
without aligning with the ultimate goal of recommendation
system.
PPH: This is a two-stage Preference Preserving Hashing
framework. Different from traditional MF (Matrix Factor-
ization model), they emphasize the important of real latent
feature norm. They imposed Constant Feature Norm (CFN)
constraint when learning user/item latent representation, and
then quantized their magnitudes and similarity respectively.
PPH quantized each real latent vector into (r − 2)-bit phase
codes and 2−bit magnitude codes. Hence, in order to keep
the code length consistent to our framework, we only learned
(r − 2)-dim real latent features at the relaxed optimization
stage.

Results analysis
We evaluate the recommendation performance of all meth-
ods above by AUC, which is widely used for assessing rank-
ing based tasks.

Figure 3 shows the personalized ranking performances
(AUC) of DPR and the three state-of-the-art collaborative
filtering methods on three real world datasets. We make the
following observations from the experimental results:

1673

Code Length
8 16 24 32 40

AU
C

0.4

0.5

0.6

0.7

0.8

0.9

1
AUC on MovieLens-1M

BPR
DCF
DPR
PPH

Code Length
8 16 24 32 40

AU
C

0.4

0.5

0.6

0.7

0.8

0.9

1
AUC on MovieLens-10M

BPR
DCF
DPR
PPH

Code Length
8 16 24 32 40

AU
C

0.4

0.5

0.6

0.7

0.8

0.9

1
AUC on a subset of Netflix

BPR
DCF
DPR
PPH

Figure 3: AUC on MovieLens-1M, 10M and a subset of Netflix

(1) Compared with BPR-MF, the performance of our
method is very close to the classic BPR method. However,
BPR-MF is a personalized ranking framework based on real
latent features. For the consideration of storage and time
cost, hash techniques shows superiority to methods based on
real valued data as introduced in the 3rd paragraph of the In-
troduction Section. Specifically, we obtain compact and in-
formatics binary codes under the constraints of balance and
un-correlation. So that DPR can even achieve similar per-
formance by using only 32-bit binary codes as compared to
BPR-MF using 32-dim real features. This suggests that DPR
can reduce a huge amount of space cost. Besides, Fast top-k
recommendation using hash codes of users and items is con-
sidered as a hash-based retrieval problem, whose efficiency
has been theoretically and empirically studied in information
retrieval fields, as introduced in the Introduction Section.

(2) Compared with existing hashing based methods, the
proposed DPR shows consistent superiority to the compet-
ing baselines, such as DCF and PPH. Because DCF aims to
optimize rating square loss instead of items ranking, which
leads to ranking performance is not very good. PPH adopt
a two-stage hashing scheme which brings large information

Data Size(Percentage of MoviesLens-1M)
20% 30% 40% 50% 60% 70% 80% 90% 100%

Tr
ai

ni
ng

 T
im

e
of

 D
PR

76

78

80

82

84

86

88

90

Figure 4: Training time varies with data size on MovieLens-
1M

Figure 5: Convergence curve of AUC for Initialization/DPR
on MovieLens-1M

loss. While DPR proposed in this paper aims to optimize
ranking task directly and adopt an alternating optimization
to learn compact and informatics binary codes. So DPR can
even achieve better performance by using only 8 bits as com-
pared to DCF and PPH using 40 bits.

We ran the proposed algorithm given different size of the
training data and investigated the variation of running time,
whose result is shown in Figure 4. From this figure, we see
that the training procedure scales linearly the data size, the
same as BPR. So hashing framework proposed in this pa-
per can be extended to larger datasets. From Figure 5, we
can conclude that the alternating optimization is an effective
method to solve the discrete optimization problem proposed
in this paper because the AUC is also converged in the pro-
cess of training.

Conclusion
In this paper, we developed a learning-based hashing frame-
work DPR, which directly addresses the discrete opti-
mization problem of personalized ranking from implicit
feedback. Additionally, DPR imposes the balance and un-
correlation constraints to derive the compact but informative
codes. For the tractable discrete optimization of DPR, we de-
velop an efficient alternating optimization method consisting
of iteratively solving mixed-integer programming subprob-
lems. Based on the evaluation on several datasets, the pro-

1674

posed framework shows consistent superiority to the com-
peting baselines.

Acknowledgments
We thank Dr. Zi Huang and Dr. Hongzhi Yin for their
suggestions and also the anonymous reviewers for their
feedback. This work is supported by grants from the Na-
tional Natural Science Foundation of China (61272175,
61572109, 61502077, 61631005), the 863 High Technol-
ogy Plan (2015AA01A707) and the Fundamental Research
Funds for the Central Universities (ZYGX2014Z012).

Appendix
Fast calculation of b̂uk in B-subproblem
b̂uk can be rewritten as

b̂uk =
(
−bT

ud
−
u + bukd

−
uk

)
d+uk −

(
bT
ud

+
u − bukd

+
uk

)
d−uk

+
(
bT
u (dkd)

+
u − 2rd+uk − buk

)
+
(
bT
u (dkd)

−
u + 2rd−uk − buk

)

− αnxuk. (16)

Fast calculation of d̂ik in D-subproblem
d̂ik can be rewritten as

d̂ik =
∑
u

z−u (1− rui)
(
bT
u buk

) (
di − d+

u

)
+

∑
u

z+u rui
(
bT
u buk

) (
di − d−u

)
−
(
z−i + z+i

)
dik

+ 2rb−ik − 2rb+ik − βnyik. (17)

Table 1: Sub-formulation
d+
u =

∑
i

ruidiz
+
u d−u =

∑
j

(1− ruj)djz
−
u

(dkd)
+
u =

∑
i

ruidikdiz
+
u (dkd)

−
u =

∑
j

(1− ruj) djkdjz
−
u

b+ik =
∑
u
z+u ruibuk b−ik =

∑
u
z−u (1− rui) buk

z+i =
∑
u
z+u rui z−i =

∑
u
z−u (1− rui)

References
Das, A. S.; Datar, M.; Garg, A.; and Rajaram, S. 2007.
Google news personalization: scalable online collaborative
filtering. In Proc. of WWW, 271–280. ACM.
Gao, W.; Jin, R.; Zhu, S.; and Zhou, Z.-H. 2013. One-pass
auc optimization. In ICML (3), 906–914.
Håstad, J. 2001. Some optimal inapproximability results.
Journal of the ACM 48(4):798–859.
Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative
filtering for implicit feedback datasets. In ICDE, 263–272.
IEEE.

Karatzoglou, A.; Smola, A. J.; and Weimer, M. 2010. Col-
laborative filtering on a budget. In AISTATS, 389–396.
Liu, W.; Mu, C.; Kumar, S.; and Chang, S.-F. 2014a. Dis-
crete graph hashing. In Advances in Neural Information Pro-
cessing Systems, 3419–3427.
Liu, X.; He, J.; Deng, C.; and Lang, B. 2014b. Collaborative
hashing. In Proc. of CVPR, 2139–2146.
Muja, M., and Lowe, D. G. 2009. Fast approximate nearest
neighbors with automatic algorithm configuration. In Proc.
International Conference on Computer Vision Theory and
Applications, 2009, 331–340.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. Bpr: Bayesian personalized ranking from
implicit feedback. In Proceedings of the twenty-fifth on-
ference on uncertainty in artificial intelligence, 452–461.
AUAI Press.
Shen, F.; Shen, C.; Liu, W.; and Tao Shen, H. 2015. Super-
vised discrete hashing. In CVPR, 37–45.
Shi, Y.; Larson, M.; and Hanjalic, A. 2010. List-wise learn-
ing to rank with matrix factorization for collaborative filter-
ing. In Proceedings of the fourth ACM conference on Rec-
ommender systems, 269–272. ACM.
Wang, J.; Liu, W.; Kumar, S.; and Chang, S.-F. 2016. Learn-
ing to hash for indexing big dataa survey. Proc. of the IEEE
104(1):34–57.
Wang, J.; Kumar, S.; and Chang, S.-F. 2012. Semi-
supervised hashing for large-scale search. IEEE TPAMI
34(12):2393–2406.
Weimer, M.; Karatzoglou, A.; Le, Q. V.; and Smola, A.
2007. Maximum margin matrix factorization for collabo-
rative ranking. Advances in neural information processing
systems 1–8.
Weiss, Y.; Torralba, A.; and Fergus, R. 2009. Spectral hash-
ing. In Koller, D.; Schuurmans, D.; Bengio, Y.; and Bottou,
L., eds., Advances in Neural Information Processing Sys-
tems 21. Curran Associates, Inc. 1753–1760.
Yin, H.; Cui, B.; Chen, L.; Hu, Z.; and Zhang, C. 2015.
Modeling location-based user rating profiles for personal-
ized recommendation. ACM TKDD 9(3):19.
Zhang, Z.; Wang, Q.; Ruan, L.; and Si, L. 2014. Preference
preserving hashing for efficient recommendation. In Proc.
of SIGIR, 183–192. ACM.
Zhang, H.; Shen, F.; Liu, W.; He, X.; Luan, H.; and Chua, T.-
S. 2016. Discrete collaborative filtering. In Proc. of SIGIR,
volume 325–334.
Zhou, K., and Zha, H. 2012. Learning binary codes for
collaborative filtering. In Proc. of ACM SIGKDD, 498–506.
ACM.

1675

