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Abstract

With the emergence of online forums associated with major
diseases, such as diabetes mellitus, many patients are increas-
ingly dependent on such disease-specific social networks to
gain access to additional resources. Among these patients, it
is common for them to stick to one disease-specific social net-
work, although their desired resources might be spread over
multiple social networks, such as patients with similar ques-
tions and concerns. Motivated by this application, in this pa-
per, we focus on cross network link recommendation, which
aims to identify similar users across multiple heterogeneous
social networks. The problem setting is different from exist-
ing work on cross network link prediction, which either tries
to link accounts of the same user from different social net-
works, or aims to match users with complementary expertise
or interest.
To approach the problem of cross network link recommenda-
tion, we propose to jointly decompose the user-keyword ma-
trices from multiple social networks, while requiring them to
share the same topics and user group-topic association matri-
ces. This constraint comes from the fact that social networks
dedicated to the same disease tend to share the same topics as
well as the interests of users groups in certain topics. Based
on this intuition, we construct a generic optimization frame-
work, provide four instantiations and an iterative optimization
algorithm with performance analysis. In the experiments, we
demonstrate the superiority of the proposed algorithm over
state-of-the-art techniques on various real-world data sets.

1 Introduction

Nowadays, online social networks has become an impor-
tant portal for patients with major diseases, such as diabetes
mellitus, to connect with physicians as well as other pa-
tients. Compared with the generic social networks such as
Twitter and Facebook, the disease-specific social networks
(e.g., TuDiabetes (2016) and DiabetesSisters (2016)) have a
greater concentration of patients with similar conditions, and
the patients expect to obtain additional resources from these
social networks. However, when it comes to using these so-
cial networks, it is often the case that a patient would stick
to a single social network, and rarely look at the other social
networks, thus limiting their access to the online resources,
especially the patients with similar questions and concerns
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from the other social networks. Motivated by this applica-
tion, in this paper, we focus on cross network link recom-
mendation, which aims to identify similar actors across mul-
tiple heterogeneous social networks. In this way, we will be
able to form support groups consisting of patients from mul-
tiple disease-specific networks, all sharing the same ques-
tions and concerns.

The problem setting studied in this paper is similar and
yet significantly different from existing work on cross net-
work link prediction. In particular, existing work either links
different accounts belonging to the same user across multi-
ple social networks (Zhang et al. 2015), or links users with
complementary expertise or interest (Tang et al. 2012). In
contrast, we aim to find similar users using different social
networks, which enables them to exchange important infor-
mation regarding their shared questions or concerns.

Based on the observation that different disease-specific
social networks tend to share the same topics as well as
the interests of user groups in certain topics, we propose to
jointly decompose the user-keyword matrices from these so-
cial networks, while requiring them to share the same topics
and user group-topic association matrices. To be specific,
we form a generic optimization framework, and instantiate
it with variations of the constraints. Then we propose an it-
erative optimization algorithm and analyze its performance
from multiple perspectives. Finally, we test the performance
of this algorithm on various real-world data sets, which out-
performs state-of-the-art techniques.

The rest of the paper is organized as follows, Section 2
discusses the related work in the field of link prediction and
non-negative matrix factorization. Section 3 formalizes the
problem of cross network link prediction and describes the
proposed approach as well as the optimization algorithm. In
Section 4, we evaluate the performance of our proposed al-
gorithm and discuss the results on different data sets. Fi-
nally, we conclude the paper in Section 5.

2 Related Work

In this section, we briefly review the related work on link
prediction and non-negative matrix factorization.

Link prediction is a widely studied problem in the field
of Social Network Analysis (Liben-Nowell and Kleinberg
2007; Al Hasan and Zaki 2011; Wang et al. 2014). Link
prediction can be broadly classified into two types: (1)
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Classical link prediction which aims at predicting the miss-
ing links in a given social network (Al Hasan et al. 2006;
Fortunato 2010); (2) Cross network link prediction that rec-
ommends the links across two or more social networks.
Tang et al. (2012) modeled users as feature vector with in-
domain and cross-domain topic distributions, and used it to
learn associations between users across source and target
domains. Kong, Zhang, and Yu (2013) suggested a multi-
network anchoring algorithm to discover the correspondence
between accounts of the same user in multiple networks.
Zhang et al. (2015) proposed an energy-based framework
COSNET for cross network link prediction in heterogeneous
networks. Our problem differs with previous cross network
link prediction problems, as we recommend links between
similar actors across social networks.

Non-negative matrix factorization (NMF) is widely used
for co-clustering problems. Li and Ding (2006) demon-
strated a NMF framework for document-word co-clustering.
Cai et al. (2011) improved Li and Ding (2006) framework
by adding a graph regularizer which captures geometric in-
formation embedded in the data. Gu, Ding, and Han (2011)
proposed an orthogonal framework to fix scaling prob-
lem in Cai et al. (2011). Wang, Nie, and Huang (2015)
proposed a NMF based Dual Knowledge Transfer ap-
proach for cross-language Web page classification. Our
approach differs from previous works as we jointly fac-
tor user-keyword matrices from multiple social networks
to learn latent features on the combined set of keywords
from all the social networks and users from each social
network. Chakraborty and Sycara (2015) proposed a con-
strained NMF framework for community detection in social
networks which is closely related to our work. Our problem
is different from the community detection problem, which
finds communities of closely related actors inside a single
social network, whereas we find closely related actors across
multiple social networks.

3 Cross Network Link Recommendation

In this section, we formally introduce the cross network
link recommendation problem, followed by the proposed
generic optimization framework and its instantiations. Then
we present the iterative optimization algorithm as well as its
performance analysis.

3.1 Notation and Problem Definition

Suppose that we have K disease-specific social networks:
Gk = 〈V U

k , EU
k 〉, k = 1, . . . ,K, where V U

k is the set of user
nodes |V U

k |= mk and EU
k ⊆ V U

k × V U
k is the set of edges

representing the connection between users in the same so-
cial network. Self-connections and multiple links between
two user nodes are not allowed. Let Ak ⊂ {0, 1}mk×mk

denote the user-user adjacency matrix for the kth social net-
work k = 1, . . . ,K, where the edge weight is set to 1
if there is a connection between two users. Notice that
we focus on the more challenging case where: (1) there
are no shared user nodes across the social networks, i.e.,
V U
i ∩V U

j = Ø, i �= j ∀ i, j = 1, . . . ,K, and (2) there are no
cross network links available between the users in different

Figure 1: Cross network link prediction problem: A) Two
social networks with user nodes represented by circles and
user-user associations represented by edges joining two
nodes. Different colors represent different user groups. B)
User-keyword bipartite graph, circles represent users from
different social networks, squares represent keywords from
vocabulary space for different social networks. Dotted lines
link the users to unique keywords in a social network and
solid lines link users to shared keywords. C) Dotted lines
represent the recommended links between similar actors
across social networks.

social networks. The goal of cross network link recommen-
dation is to identify similar actors across multiple social net-
works. This is different from existing work on cross network
link prediction which focuses on linking different accounts
of the same user, or finding users with complementary ex-
pertise or interest.

Let G′
k = 〈V U

k , V W
k , EUW

k 〉 denote the undirected user-
keyword bipartite graph for the kth social network, where
V W
k is the set of keyword nodes |V W

k |= nk and EUW
k ⊆

V U
k × V W

k is the set of edges connecting the user nodes and
the keyword nodes. Let Xk ⊂ R

mk×nk be the user-keyword
adjacency matrix constructed from the bipartite graph G′

k,
k = 1, . . . ,K. Let d be the size of the vocabulary for all the
social networks combined, i.e., |V W

1 ∪ V W
2 ∪ .. ∪ V W

K |= d.
Figure 1 illustrates the cross network link recommenda-

tion problem with two social networks K = 2. Figure 1(A)
shows the user-user connection graphs G1 and G2. Figure
1(B) represents the user-keyword bipartite graphs G′

1 and
G′
2. Figure 1(C) represents the problem of cross network

link recommendation that recommends links between user
nodes from different social networks G1 and G2.

Problem. Cross network link prediction across multiple so-
cial networks.

Input: The input to the problem is a set of user-user
adjacency matrices {A1,A2, . . . ,AK} constructed from
user relationship graphs Gk, k = 1, . . . ,K and a set
of user-keyword adjacency matrices {X1,X2, . . . ,XK}
constructed from user-keyword bipartite graphs G′

k, k =
1, . . . ,K.
Output: A set of cross network links EU ⊆ V U

i × V U
j

connecting similar user nodes V U
i from the social network

Gi to user nodes V U
j from the social network Gj , where i �= j

and i, j = 1, . . . ,K.
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3.2 Matrix Factorization for Cross Network Link
Recommendation

In order to identify the similar actors across multiple
disease-specific social networks, we propose to perform co-
clustering on user-keyword graphs to learn the representa-
tion of users and keywords in a latent feature space, and
then recommend the links between similar actors across the
networks through the respective user latent features learned
from each network. To be specific, we propose a constrained
non-negative matrix tri-factorization (NMTF) approach with
a graph regularizer obtained from the user-user adjacency
matrices.

We begin by considering existing NMTF approaches
and later introduce our approach for link recommendation.
NMTF as shown in eq (1) involves decomposing a matrix
X ⊂ R

m×n, into three non-negative latent factor matrices
F ⊂ R

m×p
+ , S ⊂ R

p×o
+ and G ⊂ R

n×o
+ that can best ap-

proximate X. For example, in the context of social network
analysis, given the user-keyword matrix for a social network,
NMTF co-clusters users and keywords into p user groups
and o keyword groups.

X = FSGT (1)

Cai et al. (2011) proposed a co-clustering method called
Graph based non-negative matrix factorization (GNMF) that
adds a graph regularizer to NMF imposing manifold as-
sumptions. The factors for multiple social networks can be
computed individually through K subproblems as follows:

min
∥∥Xk − FkG

T
k

∥∥2
F
+ αktr

(
FT

k LkFk

)

s.t. Fk ≥ 0, Gk ≥ 0, k = 1, . . . ,K
(2)

where tr(.) is the trace of the matrix, Lk = Dk − Ak

is the graph Laplacian of user-user adjacency matrix Ak,
Dk =

∑
j A

ij
k is the degree matrix, αk is the regulariza-

tion parameter on the user groups and ||.||2F is the Frobenius
norm. The first term in the objective function minimizes the
reconstruction error and the second term is a manifold regu-
larizer on user-user relations which incorporates the geomet-
ric information of the data.If two users are closely connected
to each other, they belong to the same group.

Gu, Ding, and Han (2011) and Huang et al. (2014)
showed that when regularization parameter αk is set to a
large value GNMF ends up in a trivial solution, associating
all the users to one group. Also GNMF is prone to scale
transfer problems, when the parameters in the objective
function multiplied by any scalar (γ > 1) results in a
solution which is different from the optimal solution. To
fix these two issues, Gu, Ding, and Han (2011) proposed a
graph based NMTF approach (IGNMTF), with three factors
and orthogonal constraints to allow more degrees of free-
dom between user and keyword latent factors. Huang et al.
(2014) added orthogonal constraints to eq (2) to fix scale
transfer problems. Similar as before, we have the following
K subproblems:

min
∥∥Xk − FkSkG

T
k

∥∥2
F
− αktr

(
FT

kAkFk

)

−
(
GT

kA
′
kGk

)

s.t. Fk ≥ 0, Sk ≥ 0, Gk ≥ 0, k = 1, . . . ,K

FT
kDkFk = I,GT

kD
′
kGk = I

(3)

where A
′
k is the keyword-keyword adjacency matrix, D

′
k =∑

j A
′
k

ij
is the degree matrix, I is the identity matrix of the

appropriate size. The main difference between GNMF eq (2)
and IGNMTF eq (3) is the orthogonal constraints, which fix
both the scale transfer and trivial solution problems. Without
the constraints the optimization problem in eq (2) can be
seen as a special case of eq (3) by absorbing Sk into Fk.
Also, as shown in Nie et al. (2010) when orthonormal and
non-negative constraints of Fk and Gk are simultaneously
satisfied, then it can be proved that in each row of Fk and
Gk, only one element could be positive and others are zeros,
which can be directly used to assign cluster labels to data
points.

3.3 Proposed Framework

As shown in the last subsection, existing work on NMTF
is designed for a single social network, and cannot be read-
ily applied to model multiple social networks and identify
similar actors. Notice that disease-specific social networks
often share the same set of topics. For example, for diabetes-
specific social networks, the set of topics usually include
Type I diabetes, Type II diabetes, gestational diabetes, diet
and exercise, etc. Furthermore, the users of these social net-
works tend to form the same groups with interest in certain
topics. For example, on both TuDiabetes and DiabetesSis-
ters, there are user groups associated with Type I diabetes,
Type II diabetes and gestational diabetes. Based on this ob-
servation, in this subsection, we present our proposed opti-
mization framework named CrossNet, which jointly decom-
poses the user-keyword matrices from multiple social net-
works, while requiring them to share the same topics as well
as user group-topic association matrices.

min

K∑
k=1

{∥∥Xk − FkSG
T
∥∥2
F
+ αktr

(
FT

kL
s
kFk

)}

s.t. NF (Fk), NG(G), NS(S)

OF (Fk), OG(G), k = 1, . . . ,K
(4)

where Ls
k = I − D

− 1
2

k AkD
− 1

2

k is the symmetric normal-
ized Laplacian of the user-user adjacency matrix Ak, NF (·),
NG(·), and NS(·) denote the non-negative constraint on a
certain matrix, OF (·) and OG(·) denote the orthogonal con-
straint on the input matrix. Notice that we use the symmetric
normalized Laplacian as it provides more robust results as
compared to the one used in eq (2).

Compared with eq (2) and eq (3), the major difference
is that we couple the K subproblems by requiring them to
share the same matrices S and G. This is because multiple
disease-specific social networks tend to share the same top-
ics (G) as well as the user group-topic matrix S. Depending
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on the specific form of the non-negative constraint N(·) and
the orthogonal constraint O(·), CrossNet can be instantiated
in four different ways as follows.
CrossNet-I:

Fk ≥ 0,G ≥ 0

FT
kFk = IF ,

∑
j

Gi,j = 1, k = 1, . . . ,K. (5)

CrossNet-II:
Fk ≥ 0,S ≥ 0,G ≥ 0

FT
kFk = IF ,

∑
j

Gi,j = 1, k = 1, . . . ,K. (6)

CrossNet-III:
Fk ≥ 0,G ≥ 0

FT
k DFFk = IF ,

∑
j

Gi,j = 1, k = 1, . . . ,K. (7)

CrossNet-IV:
Fk ≥ 0,S ≥ 0,G ≥ 0

FT
k DFFk = IF ,

∑
j

Gi,j = 1, k = 1, . . . ,K. (8)

Notice that in all four instantiations, the orthogonal con-
straint on G is designed in such a way that its row sums are
equal to 1. In this way, we allow the keywords to be part of
multiple keyword groups (topics) instead of a single one.

3.4 Optimization Algorithm

In this subsection we provide the optimization algorithm for
CrossNet with the constraint instantiation in eq (8). The al-
gorithm for the other instantiations can be designed in a sim-
ilar way. The objective function in eq (4) that we minimize
is the following sum of squared residuals:

f =

K∑
k=1

{
tr
(
XT

kXk − 2GTXT
kFkS+ FT

kFkSG
TGST

)

+ αktr
(
FT

kL
s
kFk

)}

Following the standard theory of constrained optimiza-
tion, we introduce the following Lagrangian function where
Lagrange multiplier Λk enforce the constraints FT

kDkFk =
I in eq (8).

L =

K∑
k=1

{
tr
(
XT

kXk − 2V TXT
kFkS + FT

kFkSG
TGST

)

+ αktr
(
FT

kL
s
kFk

)
+Λk

(
I− FT

kDkFk

)}

(9)

Computing Fk: Fixing S and G, the gradient ∇L(Fk) is

∇L(Fk) = 2(FkSG
TGST +αkL

s
kFk −XkGST −DkFkΛk)

By the KKT complementary slackness we have
∇L(Fk)

ijFij
k = 0, so

(FkSG
TGST +αkL

s
kFk−XkGST −DkFkΛk)

ijFij
k = 0

The Lagrangian multiplier Λk is calculated as given in the
(Ding et al. 2006) by summing up across i index. That gives

Λk = FT
kXkGST − SGTGST − αkF

T
kL

s
kFk

As Λk has negative components, it can be expressed as a
difference of two non-negative components Λk = Λ+

k −Λ−
k ,

where Λ+
k = |Λk|+Λk

2 and Λ−
k = |Λk|−Λk

2 . Substituting the
non-negative components in the equation (3.4) we get

(FkSG
TGST + αkL

s
kFk −XkGST −DkFkΛ

+
k

+DkFkΛ
−
k )

ijFij
k = 0

As the constraint, I − FT
kDkFk is symmetric, As sug-

gested in (Gu, Ding, and Han 2011) we have tr(Λk(I −
FT

kDkFk)) = tr((I−FT
kDkFk)Λ

T
k ). Therefore only sym-

metric part of Λk contributes to L. So Λk should be sym-
metric, we use Λ

′
k =

Λk+ΛT
k

2 instead of Λk. This leads to
the following update rule for calculating Fk:

Fij
k ⇐ Fij

k

√√√√√√

{
XkGST +DkFkΛ

′+
k

}ij

{
FkSGTGST + αkLs

kFk +DkFkΛ
′−
k

}ij

(10)
Computing G: Fixing S and Fk, setting ∇L(G) = 0 and
following the similar steps in computing Fk we get the fol-
lowing update rule for G:

Gij ⇐ Gij

√√√√√√

{∑T
t=1 X

T
kFkS

}ij

{∑T
t=1 S

TFT
kFkSG

}ij
(11)

The orthogonal constraint
∑

j Gi,j = 1 on G is enforced by
row normalizing the G factor after every iteration.
Computing S: Fixing G and Fk, setting ∇L(S) = 0 and
following the similar steps in computing Fk we get the fol-
lowing update rule for S:

Sij ⇐ Sij

√√√√√√
∑K

k=1

{
FT

kXkG
}ij

∑K
k=1

{
FT

kFkSGTG
}ij

(12)

Theorem 1. The objective function in eq (5) is lower-
bounded, and monotonically decreasing (non-increasing)
with the update rules eq (10), eq (11) and eq (12). Hence
CrossNet converges.

Proof Sketch. First of all, it is easy to see that the objective
function in eq (5) is lower-bounded. Second, it consists of
two terms, and it suffices to show that each of these terms is
monotonically decreasing. As the second term depends on
U only, the update functions are similar between CrossNet
and general NMTF. Following the steps in (Ding et al. 2006;
Gu, Ding, and Han 2011), it can be shown that the first term
is monotonically decreasing under the update rules. For the
second term, by introducing an auxiliary function as in (Cai
et al. 2011), it can be shown that the second term is also
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Algorithm 1: CrossNet Algorithm
Input: A set of user-user adjacency matrices

{A1,A2, . . . ,AK} constructed from user
relationship graphs Gk, k = 1, . . . ,K and a set
of user-keyword adjacency matrices
{X1,X2, . . . ,XK} constructed from
user-keyword bipartite graphs
G′
k, k = 1, . . . ,K. The regularization parameter

αk. Number of iterations t.
Output: The user latent factors Fk for all the

disease-specific social networks
k = 1, . . . ,K.

1 Initialize the factor matrices Fk and G using k-means.
2 for i ← 1 to t do
3 Update S using eq (12)
4 Update G using eq (11)
5 Update Fk using eq (10) ∀ k = 1, . . . ,K
6 end
7 Return user latent factors Fk.

monotonically decreasing. Putting everything together, the
update rules converge to the local optimal solution. Hence
CrossNet converges. Details omitted due to space limit.�

With the update rules eq (10), eq (11) and eq (12) the opti-
mization algorithm for link prediction problem is presented
in the Algorithm 1.

3.5 Link Recommendation

Using NMTF we represent the users in a latent feature space
shared across all the networks. For link prediction we lever-
age the learned shared user space along with user associa-
tions in each social network. We combine user-user associ-
ations and user-user latent features space as a graph. We use
neighborhood formation using random walk with restarts
(RWR) (Sun et al. 2005) to learn the cross network user-
user relations. As the social networks are dynamic in nature
(users join and leave over time), our approach is more ro-
bust and works for new users as we can leverage user-user
associations to predict links between cross network users.

3.6 Complexity Analysis

The user-keyword matrix X ⊂ R
m×n is typically very

sparse . Using NMTF, X is factorized into three latent fac-
tors as shown in eq (1). Updating Fk, S and G using a
multiplicative update algorithm takes O(k2(m+n)) in each
iteration for computation. And other O(zk) cost for com-
ponent wise addition where z << mn is the number of
non-zero elements in X. Using the multiplicative algorithms
for sparse computation, the efficiency of our algorithm can
be improved tremendously. As the value of k is very small
(usually < 100), we can consider that the algorithm is lin-
ear per computation. Empirically we found that number of
iterations it takes to converge is t < 100. So the total cost of
complexity is O(tk2(m+ n) + tkz) which is still linear. So
computationally, CrossNet scales to large data sets.

arXiv # papers # nodes # edges

Artificial Intelligence (cs.AI) 6972 10272 31266
Computer Vision (cs.CV) 5321 10156 19284
Databases (cs.DB) 2070 4297 6492
Machine Learning (cs.LG) 7321 11103 39349
Software (cs.SE) 2753 5514 18462

diabetes # posts # nodes # edges

Diabetes Sisters 2643 750 4118
TuDiabetes 3742 1032 6323

Table 1: Statistics of arXiv and diabetes-specific social net-
work data sets.

4 Experimental Results

In this section we compare CrossNet with other state-of-the-
art approaches on an academic publications data set. We
also demonstrate the effectiveness of CrossNet through a
case study on a diabetes-specific social network data set.

4.1 Data Sets

The first data set is from the online repository of elec-
tronic preprints arXiv (2016), which contains scientific pa-
pers related to artificial intelligence (cs.AI), computer vision
(cs.CV), databases (cs.DB), machine learning (cs.LG) and
software (cs.SE) categories in the field of computer science.
Each category represents a social network with user-user
associations based on the co-authorship information. Key-
words are extracted from the abstract of each scientific pa-
per. For each author (user), we combine all the abstracts
from the papers authored or co-authored by the author. The
ground truth for this data set is computed from the existing
cross network links (authors common to different networks).
The neighborhood formation algorithm based on RWR is
used to estimate the cross network link associations.

We also demonstrate the applicability of CrossNet to a
real world setting through a case study on diabetes-specific
social networks. The user posts from two diabetes-specific
social networks – TuDiabetes (2016) and DiabetesSisters
(2016) are crawled. The user-user associations in the forums
are missing, so we considered the users who post in any
given thread as related, i.e., there exists an edge between the
users responding to the same thread. Keywords are extracted
from the posts. Several pre-processing steps were taken
before the experiments, including stemming, stop word re-
moval, etc. Each user is represented as a binary feature vec-
tor with bag of words with n-grams n = {1, 2, 3}. Table 1
shows the data set statistics.

4.2 Experiment Setup

We compare the proposed CrossNet approaches with other
state-of-the-art approaches including: (1) GNMF (Cai et al.
2011); (2) IGNMTF (Gu, Ding, and Han 2011); (3) Cou-
pledLP (Dong et al. 2015) modified for cross network links;
and (4) COSNET (Zhang et al. 2015).

We have used Precision at K (P@K) as an evaluation met-
ric to compare the performance of different algorithms. It
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DB - SE DB - LG LG - SE AI - LG AI - CV CV - LG
P@10 P@20 P@10 P@20 P@10 P@20 P@10 P@20 P@10 P@20 P@10 P@20

GNMF 15.48 12.84 12.88 12.77 8.64 8.77 18.72 17.47 15.03 14.9 11.73 11.9
IGNMTF 26.28 18.36 18.92 16.3 24.25 18.96 33.23 30.26 22.08 19.02 32.9 25.73
CoupledLP 23.4 20.28 31.58 21.77 24.64 24.12 37.86 40.87 36.84 25.4 33.43 32.73
COSNET 31.68 29.88 35.8 26.56 31.99 28.64 47.58 45.86 41.76 30.99 43.4 38.85
CrossNet - I 35.28 30.48 36.71 32.95 33.8 31.48 44.62 42.73 42.83 38.44 45.85 42.7
CrossNet - II 36.12 30.59 36.94 33.29 34.06 31.61 44.77 42.32 43.09 38.84 46.2 42.88
CrossNet - III 35.28 30.36 36.59 33.17 33.93 31.48 44.77 42.54 42.69 38.7 46.03 42.7
CrossNet - IV 35.41 30.63 37.05 33.63 34.19 31.73 45.08 42.81 43.23 39.24 46.38 43.05

Table 2: arXiv results

topic-1 topic-2 topic-3 topic-4 topic-5 topic-6 topic-7
healthy eating insurance exercise products diet diagnosis research

food12 medical insurance12 running12 pump12 insulin12 diagnosed12 patients study1

healthy eating12 cost information12 ginger2 cgm12 dose12 diabetes12 levels12

carbs12 money12 training1 minimed12 carbs12 family doctor12 doctor12

protein2 insulin supplies12 yoga12 infusion pumps1 low carb12 hospital12 ADA 1

veggies1 strips2 gym12 insulin use12 high day2 symptoms12 people12

bread12 companies12 workout12 omnipod12 bg12 months12 clinical treatment1

diet12 doctors12 muscle2 pumping set12 basal hours12 told diabetic12 disease research2

Table 3: Diabetes keyword groups (top 7). 1 represents keywords from Diabetes Sisters, 2 from TuDiabetes and 12 from both.

computes the percentage of the relevant links among the top-
K links predicted by the algorithm. For evaluation we com-
pute P@10 and P@20 for all the algorithms and data set
combinations. Here relevant links refer to the links between
similar actors across the networks.

Regarding the parameters, we use grid-search to set reg-
ularization parameters α1 = α2 = 0.01 for CrossNet, the
number of user groups and keyword groups o = p = 40 and
iterations t = 100. From the results in Table 2 CrossNet out-
performs all other approaches. Jointly factorizing keywords
across all the networks through G resulted in significant im-
provement over GNMF and IGNMF approaches. CrossNet
outperformed modified CoupledLP as it uses both the user-
user associations and user-keyword bipartite graphs unlike
CoupledLP that relies on user-user network structure only.
COSNET performs closely as it leverages both the user-user
and user-keyword graphs, but it identifies the distinct user-
user links across networks to the similar ones. Among the
four constraint instantiations, setting S ≥ 0 and orthogonal
constraint with degree matrix led to a better performance.

4.3 Case Study

We also conduct a case study on diabetes-specific social net-
works. Notice that CrossNet has two steps: (1) jointly de-
composing the user-keyword matrices from each network
into respective user factors and a combined keyword latent
factor matrix; (2) using RWR on user-user associations and
user factor matrices for each network to recommend links
between similar actors across different networks. Table 3
shows the keyword latent factors from all the networks com-
bined (K = 2, p = 7). It can be observed that our joint

factorization approach clustered similar keywords from dif-
ferent networks into one group. The following is an exam-
ple of two posts generated by two users from different social
networks, between whom CrossNet recommends a link.

User A: I have been diagnosed with Type 1 for about 5 years.
I had my blood glucose with an A1C over 9. I am worried!
User B: I am a 22 year old female recently diagnosed type 1
diabetic. I found out that my blood glucose was over 400. I
came here looking for support.

As we can see, both users are concerned about their blood
glucose level and have been diagnosed with Type I diabetes.

5 Conclusion

In this paper, motivated by the use of disease-specific so-
cial networks, we studied the problem of cross network link
recommendation, where we aim to identify similar patients
across multiple heterogeneous networks, such that they can
form support groups to exchange information and resources.
This is different from existing work on cross network link
prediction where the goal is to link accounts belonging to
the same user from different social networks or to find users
with complementary expertise or interests. To address this
problem, we propose an optimization framework named
CrossNet with four instantiations, which can be solved us-
ing an iterative algorithm. The performance of the proposed
algorithm is evaluated both analytically in terms of con-
vergence and computational complexity, and empirically on
various real data sets.
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