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Abstract

Maximum entropy inverse reinforcement learning (MaxEnt
IRL) is an effective approach for learning the underlying re-
wards of demonstrated human behavior, while it is intractable
in high-dimensional state space due to the exponential growth
of calculation cost. In recent years, a few works on approxi-
mating MaxEnt IRL in large state spaces by graphs provide
successful results, however, types of state space models are
quite limited. In this work, we extend them to more generic
large state space models with graphs where time interval con-
sistency of Markov decision processes are guaranteed. We
validate our proposed method in the context of driving be-
havior prediction. Experimental results using actual driving
data confirm the superiority of our algorithm in both predic-
tion performance and computational cost over other existing
IRL frameworks.

Inverse reinforcement learning (IRL), inverse optimal con-
trol, and imitation learning(Ng and Russell 2000; Abbeel
and Ng 2004) are modeling frameworks for acquiring re-
wards (or cost) of a certain environment by using the op-
timal path under a possibly different environment as train-
ing data. In particular, in human behavior modeling, it is
shown that human-centered rewards can be obtained with
maximum entropy inverse reinforcement learning (MaxEnt
IRL)(Ziebart and others 2008), which allows suboptimal
training data (Huang et al. 2015; Vernaza and Bagnell 2012;
Dragan and Srinivasa 2012; Walker, Gupta, and Hebert
2014). For instance, Ziebart et al. (Ziebart et al. 2008) mod-
eled the driving behavior of expert taxi drivers and enabled
driving behavior prediction based on the experts’ very own
experience or knowledge. MaxEnt IRL based driving be-
havior prediction, which balances safety, comfort, and eco-
nomic performance, is very promising.

Macroscale routing prediction, such as tens of kilometers
driving, was dealt with in (Ziebart et al. 2008). Microscale
(fine-grained) driving behavior prediction, e.g., acceleration,
deceleration, and steering for a few hundred meters, has be-
come increasingly important for further safety in driver as-
sistance or automated driving. Giving emphasis to this point,
research has been done on developing fine-grained driving
behavior prediction based on MaxEnt IRL (Levine, Popović,
and Koltun 2011; Levine and Koltun 2012; Shimosaka,
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Kaneko, and Nishi 2014). Though these works succeeded in
showing the value of MaxEnt IRL based fine-grained mod-
eling, there are still limitations in the general driving behav-
ior problem. (Levine, Popović, and Koltun 2011) and (Shi-
mosaka, Kaneko, and Nishi 2014), for example, modeled
two dimensional (position–velocity) state space; however,
the model cannot be applied directly to higher dimension-
ality, e.g., adding steering to state space. This stems from
the exponential growth of the computational cost of Max-
Ent IRL with respect to the dimensionality of state space,
so fine-grained prediction is hard to solve because its state
space is likely to become high-dimensional.

Our goal is to achieve fast fine-grained driving behavior
prediction. Continuous IRL (Levine and Koltun 2012), as an
example of the high-dimensional MaxEnt IRL problem, is
impractical in some cases due to its local optimality. In con-
trast, a discrete approach guarantees global optimality once
proper discrete state space is given, hence it is more suit-
able for driving behavior modeling. In a discrete approach,
the calculation cost of MaxEnt IRL is O(|S||A|), where |S|
is the number of states and |A| is the number of actions
(Ziebart and others 2008). That is, the key for fast predic-
tion is suppressing the increase of |S| depending on dimen-
sions and preparing a necessary and sufficient action set, A,
for representing driving behavior. As examples of existing
discretization schemes, there are mesh grid representation
(Shimosaka, Kaneko, and Nishi 2014) and random graph
based representation connected with neighbors (Byravan et
al. 2015). In these approaches, however, A for general dy-
namic systems is not trivial. This is because neighbors on
state space defined by Euclidean distance do not necessar-
ily correspond to the transition area of general dynamics
defined by its state equation xt = f(xt−1,ut) under the
constraint of control input ut. In other words, this approach
could not always hold the assumption that each edge in MDP
keeps the same time interval. This problem comes to the
surface when state space contains temporal representations,
e.g., position and velocity, and state space quantified with
conventional discretization approaches does not satisfy time
interval consistency in state transition, which is an essential
requirement in Markov decision processes (MDPs). Instead
of using Euclidean proximity in state space, we employ new
metric around “neighbors” with the basis of the state equa-
tion of dynamics xt = f(xt−1,ut). However, the calcula-
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tion cost increases if a fine graph is generated with the inten-
tion of guaranteeing interval consistency with a given time
interval; thereby, fast prediction is not accomplished.

In this paper, we focus on the fact that the transition dis-
tance on state space varies depending on the time interval
in state transition, i.e., the sampling rate, and we propose a
novel discretization framework that can control |S| with the
sampling rate and |A| and guarantees interval consistency in
state transition. To the best of our knowledge, this is the first
work that achieves MaxEnt IRL for general state space rep-
resentation, that is, IRL when state space contains temporal
variables.

Our contributions are summarized as follows. First, we
propose a novel state space discretization framework to deal
with general state space representation. This guarantees in-
terval consistency in state transition while suppressing an
increase in calculation cost depending on state space dimen-
sions. Second, we construct fast and fine-grained driving be-
havior prediction based on MaxEnt IRL using a graph-based
state space generated with the above state space quantiza-
tion. Third, we demonstrate the superiority of the proposed
framework to conventional approaches through an experi-
mental evaluation with real driving data.

Related Works

Fast Approximate Solver of Markov Decision
Processes

“Prediction” in IRL based driving behavior modeling corre-
sponds to optimal path search with MDPs. MDP is com-
mon technique in the robot manipulation domain, whose
state space is often high-dimensional; therefore, approxi-
mate solvers of MDPs are well-studied.

There are continuous approaches that deal with con-
tinuous state space and approximate inner functions. For
instance, value function approximation (Taylor and Parr
2009; Konidaris, Osentoski, and Thomas 2011) approxi-
mates a value function as a linear combination of basis
functions such as RBF and solve the MDP with gradient
based approaches. EM-based policy iteration (Hoffman et
al. 2009) also calculates policy on the basis of expectation–
maximization algorithm. These approaches have the benefit
dealing with states as continuous; however, they depend on
the initial value due to their gradient method, so their so-
lutions are not stable. This does not matter when we have
only to learn a policy (we just have to try several times);
however, these approaches are not suitable for online appli-
cations including driving behavior prediction, which require
immediate path planning to a given reward.

On another front, there are discrete approaches that sup-
press calculation cost by quantizing state space coarsely.
Fitted value iteration(Munos and Szepesvári 2008; Ernst,
Geurts, and Wehenkel 2005) or fitted Q iteration (Farah-
mand et al. 2009) estimate the value function or action value
function (Q function) via regression algorithms with finite
samples of states, actions, and rewards on continuous state
space. Though they deal with continuous state space, they
are essentially equal to discrete approaches because they use
finite samples, which strongly affect the performance of ap-

proximation. Alternatively, hierarchical MDP (Barry, Kael-
bling, and Lozano-Pérez 2011) computes hierarchical poli-
cies by representing state space hierarchically with coarse
upper-level and fine lower-level states when MDPs have a
specific structure. This enables global optimum solution to
be obtained without searching all lower-level states; how-
ever, how to construct hierarchies for general MDPs is not
trivial.

For representing driving behavior, which is of particu-
lar interest in this paper, predicted paths should satisfy two
points; the given reward is globally maximized on them, and
they are smooth enough to be used as control input. Even if
we obtain continuous and smooth paths with locally approx-
imate MDPs, it is difficult to correct them to be globally
optimal. In discrete approaches, in comparison, global opti-
mality is guaranteed in quantized space, but the predicted
path is rough, and discretization error remains. However,
there are a number of pieces of research on fast locally path
smoothing (Zucker et al. 2013; Kalakrishnan et al. 2011;
Ohtsuka 2004), so the discretization error can be corrected
by using these existing approaches with a given reward.
Therefore, discrete approaches that guarantee global opti-
mality under the proper state space are promising for driving
behavior prediction.

MaxEnt IRL for High-dimensional State Space

In the field of behavior modeling, maximum entropy in-
verse reinforcement learning (MaxEnt IRL) (Ziebart and
others 2008), which represents path likelihood as a stochas-
tic model, is an effective and commonly used approach. In
return for allowing suboptimal training data, MaxEnt IRL
requires the computation of a partition function whose cal-
culation cost increases exponentially depending on the num-
ber of dimensions of state space. To solve high-dimensional
MaxEnt IRL efficiently, it becomes a key factor how to bring
approximation techniques in MDPs into the field of MaxEnt
IRL. In this section, we discuss the pros and cons of existing
methods for high-dimensional MaxEnt IRL.

Linear dynamics quadratic reward IRL (Ziebart 2010;
Ziebart, Dey, and Bagnell 2012) is an efficient approach
only when the state equation is linear and the reward is
in a quadratic form of state; however, designing features,
which is basis of the reward, is strictly limited. Vernaza et
al. (Vernaza and Bagnell 2012) leveraged the symmetry of
the partition function, which comes from the low dimen-
sional structure of features, to compute the partition func-
tion efficiently. This approach guarantees global optimality
in continuous space; nonetheless, it also has a hard limitation
for feature representation. Levine et al. (Levine and Koltun
2012) addressed continuous state and action space by test-
ing local optimality near the initial action sequence with the
Laplace approximation of likelihood. Dragan et al. (Dragan
and Srinivasa 2012) reduced calculation cost by locally ap-
proximating the reward as a quadratic form. These approx-
imate continuous approaches have the advantage of being
able to use the control input of dynamics as actions; how-
ever, solutions are not stable due to their local optimality, so
these approaches are not suitable for driving behavior mod-
eling.
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In contrast, discrete approaches approximate solutions by
control quantization granularity or the sampling density of
state space. While the accuracy of approximation depends
on the granularity of state space, they guarantee global opti-
mality in the discrete set of states and need no limitation of
features; thereby, these approaches are suitable for driving
behavior modeling. In the field of human or vehicle behav-
ior modeling via computer vision, Huang et al. (Huang and
Kitani 2014) and Walker et al. (Walker, Gupta, and Hebert
2014) quantized image feature space by using clustering
methods. However, clustering based approaches are inade-
quate for driving behavior modeling because the proper ra-
dius or number of clusters is not trivial on physical state
space. The approximate MaxEnt IRL proposed in (Huang
et al. 2015) avoided the dimensional dependence of calcula-
tion cost by leveraging fitted Q iteration (Farahmand et al.
2009) in policy calculation and Monte Carlo sampling in the
computation of feature expectation and succeeded in dealing
with significant high-dimensional state space. However, its
approximation accuracy heavily depends on the number of
actions. A lot of (from tens to hundreds) actions are needed
for fine-grained driving behavior representation; therefore,
it is difficult to apply this approach to such a field. Byra-
van et al. (Byravan et al. 2015) controlled the number of
states not depending on the number of dimensions by rep-
resenting state space as a coarse graph. Coarse representa-
tion of state space with a graph is a promising approach in
the field of driving behavior modeling because this can be
solved within the existing MaxEnt IRL framework (Ziebart
and others 2008) and the dependency of the calculation cost
on states and actions is obvious. The existing graph gen-
eration algorithm proposed in (Byravan et al. 2015), which
connects a graph by using the nearest-neighbor method with
Euclidean distance on state space, is useful for the field of
robot manipulation; however, this is not applicable to the
general dynamics field including time differential variables.
In robot configuration space, state transition within a certain
Euclidean distance on state space is automatically guaran-
teed to have time interval consistency. Nonetheless, interval
consistency is not guaranteed when state space contains tem-
poral representations because neighbors based on Euclidean
proximity on state space do not necessarily correspond to
the transition area of general dynamics under the constraint
of control inputs.

Thus, MaxEnt IRL via graph-based coarse representation
of state space is a promising approach for fast and fine-
grained driving behavior prediction; however, there is also
a challenge in the graph generation algorithm and a new
framework is needed that guarantees time interval consis-
tency in state transition.

Graph-based MaxEnt IRL

In this section, we explain graph-based MaxEnt IRL (Byra-
van et al. 2015), which is the base of our approach, and dis-
cuss a possible design for a new IRL framework that is ade-
quate for general state space representation.

Discrete Maximum Entropy Inverse Reinforcement
Learning

For states s ∈ S and actions a ∈ A, a state sequence
ζ is defined as ζ = {(s0, a0), (s1, a1), . . . }. With feature
vector f(s, a), given a sequence ζ, we denote f (ζ) =∑

(st,at)∈ζ f(st, at) as a feature vector for a whole se-
quence. The overall reward of a sequence is defined as a lin-
ear form of f(ζ) like θ�f(ζ), where θ is a weight vector. In
MaxEnt IRL, a likelihood of a state sequence is represented
as the maximum entropy model like equation 1.

P (ζ|θ) ∝ exp
(
θ�f (ζ)

)
(1)

Given a training dataset D = {ζ̃i|i = 1, ...,M}, the op-
timal weight θ∗ is calculated by minimizing the objective,
which is the sum of the negative log likelihood L(D|θ) =

−∑
i lnP (ζ̃i|θ) and regularization term Ω(θ) as follows.

θ∗ = argmin
θ

(L(D|θ) + Ω(θ)) (2)

Here, the gradient of L(D|θ) is

∂L(D|θ)
∂θ

=
∑
ζ

P (ζ|θ)f(ζ)− E
i
[f(ζ̃i)]

=
∑

s∈S,a∈A
D(s)πθ(a|s)f(s, a)− E

i
[f(ζ̃i)],

(3)

where D(s) is the expected state visitation frequencies of
state s. In discrete MaxEnt IRL, D(s) can be computed with
a dynamic programming based algorithm, and its cost is
O(|S||A|) (Ziebart and others 2008), where |S| is the num-
ber of states and |A| is the number of actions. |S| ∝ R

d for
d dimensional state space with naive discretization scheme
such as grid representation; thereby, the calculation cost in-
creases exponentially depending of the number of dimen-
sions.

Discrete Representation of State Space with Graph

In a graph G consisting of a finite set of nodes V ⊂ R
d and

edges E , we denote discrete states s ∈ V and actions a ∈ E .
E(s) ⊂ V is a set of nodes that can be transited from state s.
Thereby, |S| = |V| and |A| = |E(s)|. To learn with discrete
MaxEnt IRL, continuous training demonstrations in R

d are
projected on the discrete graph G (Byravan et al. 2015).

Challenges Associated with Coarse Graphs

Considering the discussion above, what is important for high
dimensional IRL is to suppress the increase of |S| for the
number of dimensions d. As discussed in section , coarse
representation of state space with a graph is a promising ap-
proach for driving behavior prediction to suppress the in-
crease of |S|; however, the existing graph generation algo-
rithm proposed in (Byravan et al. 2015) is not applicable for
driving behavior prediction. Only when the units of variables
in state space are equal and there are no dependencies among
them can state transition be done in a uniform time interval
among nodes that are within a certain definite distance on
state space. That is, interval consistency of state transition
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is automatically guaranteed as long as “neighbors” are con-
nected with edges. Nonetheless, including driving behav-
ior prediction, when state space contains temporal variables
such as position and velocity, time interval consistency is
not guaranteed only by connecting neighbor nodes in terms
of Euclidean proximity because state transition depends on
control inputs.

As an alternative to connecting neighbors based on Eu-
clidean distance, we propose an interval consistent graph,
which guarantees time interval consistency in state transi-
tion. Under constraint of control inputs, our graph genera-
tion algorithm can balance the trade-off between the node
density of the graph and the approximation performance
of path discretization. It is not able to directly control |S|,
which calculation cost depends on; however, |S| can be de-
termined by adjusting the sampling rate and the number of
connected edges (which corresponds to the number of ac-
tions) as parameters.

Generating Interval Consistent Graphs

In this section, we introduce an interval consistent graph
generation algorithm as a general discretization approach of
state space.

Definition

Assume a general dynamic system whose state equation is
xt = f(xt−1,ut), where xt ∈ R

d denotes a continuous
state at time t and ut ∈ R

d′
denotes a control input, so that

γi,min < ut,i < γi,max, i = 1, . . . , d′. A graph, G, consists
of a finite set of nodes V ⊂ R

d and edges E .

Guarantee of Interval Consistency in State
Transition for Arbitrary Time Interval

It is not trivial to guarantee the interval consistency of state
transition under the constraint of control inputs with the con-
ventional approach in (Byravan et al. 2015), which is based
on Euclidean proximity on state space, so we focus on the
fact that state transition should be based on the state equation
of the system.

For notational compactness, define U ⊂ R
d′

as U = {u ∈
R

d′ | γi,min < ui < γi,max, i = 1, . . . , d′}, and let Δt de-
note a constant time interval between time τ and τ + 1 for
arbitrary τ . Given xτ and xτ+1, we define the transition
possibility in Δt (also called the “one-step transition pos-
sibility”) between them as the existence of a set R ⊂ U
defined in equation 4, i.e., R �= ∅.

R(xτ ,xτ+1) = {uτ+1 ∈ U | ‖xτ+1 − f(xτ ,uτ+1)‖22 < ε},
where ε > 0. With this definition, the transition possibil-
ity in 2Δt (two-step transition possibility) between xτ and
xτ+2 is defined as below.

∃xτ+1 ∈ R
d, R(xτ ,xτ+1) �= ∅ and R(xτ+1,xτ+2) �= ∅

As a generalization, the κ-step transition possibility between
xτ and xτ+κ is defined as follows.
∃xτ+1, . . . ,

∃ xτ+κ−1,
∀k = 1, . . . , κ, R(xτ+k−1,xτ+k) �= ∅

uτ−1

uτ

xτ−2

xτ
uτ

xτ

...
xτ−1

uκ

u1

u2

x0

xκ

...

Figure 1: Definition of one, two, and κ-step state transition.

Figure 1 shows images of transition possibility in one step,
two steps and κ steps.

To verify the existence of R above, given xτ and xτ+κ,
we solve a minimization problem as below.

min
uτ+1,...,uτ+κ∈U

∥∥∥xτ+κ − f̃(xτ ,uτ+1, . . . ,uτ+κ)
∥∥∥2

2
(4)

, where f̃(xτ ,uτ+1, . . . ,uτ+κ) denotes a state after κ steps
from xτ with κ inputs uτ+1, . . . ,uτ+κ. We solve this prob-
lem with sequential Gauss-Newton optimization. In partic-
ular, we applied an iterative linear least-square technique to
be able to deal with a non-linear state equation. Define ex-
tended Jacobian matrix J recursively as a lower triangular
matrix like

J =

⎡
⎢⎢⎣
Jτ+1,τ+1 O · · · O
Jτ+2,τ+1 Jτ+2,τ+2 · · · O

...
...

. . .
...

Jτ+κ,τ+1 Jτ+κ,τ+2 · · · Jτ+κ,τ+κ

⎤
⎥⎥⎦ (5)

Jt1,t2
=

∂f(xt1−1,ut1
)

∂ut2

T

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂f(xt1−1,ut1
)T

∂ut1
if t1 = t2

∂f(xt1−1,ut1
)T

∂xt1−1
Jt1,t1−1 if t1 > t2

O otherwise.

Let uτ+1:τ+κ = [uτ+1
T . . . uτ+κ

T]T ∈ R
κd′

. Given
a difference between two points δx = xτ+κ −
f̃(xτ ,uτ+1, . . . ,uτ+κ), we obtain δuτ+1:τ+κ ∈ R

κd′

subject to δx = Jτ+κδuτ+1:τ+κ, where Jτ+κ =
[Jτ+κ,τ+1 . . . Jτ+κ,τ+κ]. Then, the κ–step transition possi-
bility is validated with uτ+1:τ+κ estimated by iterative cal-
culation. This δuτ+1:τ+κ is calculated like δuτ+1:τ+κ =

J†τ+κδx, where J†τ+κ denotes the pseudo inverse of Jτ+κ.

Interval Consistent Graph Generation Algorithm

An interval consistent graph is generated automatically
given time interval parameter κ and the number of actions
|A|. First, initial coarse node set Vinitial ⊂ R

d is sam-
pled randomly. Then, sequentially search κ–step transitable
nodes E(s) from state s from V with the approach mentioned
above.If |E(s)| < |A|, generate nodes with sampled control
inputs uτ+1, . . . ,uτ+κ ∼ U and add them to V and E(s).
The termination condition of graph generation is ∀s ∈ V ,
|E(s)| = |A| or ∀s such that |E(s)| < |A|, and there exists
no transitable area in bounded state space. Thereby, κ-step
interval consistency in state transition is guaranteed.

As mentioned above, the number of states |S| can be con-
trolled with κ and |A|. With a larger κ, the graph becomes
coarser, and the calculation cost decreases; however, predic-
tion performance gets worse. With a larger |A|, in compar-
ison, a fine graph is generated, and prediction performance
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STOP 

x

Ego vehicle Parked car

Figure 2: Road segment as modeling target for residential
roads.

improves, but the calculation cost increases. with κ and |A|
varied.

Experiment

Driving Behavior Prediction on Residential Roads

In this paper, we evaluate our proposed method with real
driving behavior data on residential roads, where there exist
both vehicles and pedestrians. Fatal accidents of pedestrians
or cyclists are mainly caused by their sudden appearing in
front of cars from behind a parked car or an intersection on
residential roads; therefore, not only the deceleration around
blind areas but also obstacle avoidance by steering in the
right direction are important for preventing such accidents.
Since we want to model the speed and steering of cars, state
space is defined as x = [x ẋ α]T ∈ R

3, where x is the po-
sition of a car and α is the degree of steering. The modeling
target is driving behavior in linear road segments as shown
in Figure 2. The state equation is regarded as linear because
the displacement of the rudder angle is considerably smaller
than that of position or steering like

xt =

[
1 Δt 0
0 1 0
0 0 1

]
xt−1 +

[
0 0
Δt 0
0 Δt

]
ut (6)

, where u = [ẍ α̇]T is the control input and Δt is the time
interval per one step.

With the existing discretization framework, the number
of states |S| increases tens of times that of (Shimosaka,
Kaneko, and Nishi 2014), which dealt with position–
velocity state space, by adding steering to state space. Three
dimensional state space is never low dimensional in the
field of MaxEnt IRL; therefore, promoting computation ef-
ficiency should be needed even in three dimensional state
space. Moreover, the efficiency becomes more and more ob-
vious at a higher dimensionality.

Designing Feature Descriptors

To generate feature descriptors f , we leveraged seven envi-
ronmental factors in addition to the four used in (Shimosaka,
Kaneko, and Nishi 2014), concretely, intersections, the cor-
ners of intersections, and the start and goal positions. We
prepared three new factors, namely, road width near parked
cars and both the endpoints and center point of the parked
cars. Given the environmental factors, we represent eight
kinds of activities as potentials in position–velocity–steering
space. In addition to the five used in (Shimosaka, Kaneko,
and Nishi 2014), we used three new activities, namely, sup-
pression of steering far from parked cars, steering degrees,

and deceleration around the cars. We generated multiple po-
tential fields with them by varying the means and covariance
matrix of Gaussian kernels.

Experimental Data

We collected experimental data on residential roads with an
experimental vehicle we set up and recruited a single expert
driver from a taxi company as a test subject. The experi-
mental data was obtained by driving on residential roads in
(Shimosaka, Kaneko, and Nishi 2014). The number of trials
was 22 (in each trial, the vehicle drove on a segment from
the start position to stop line like in Figure 2), and the total
travel distance of the dataset was about 6 km.

Comparative Approaches

Graph Generation Parameters for Interval Consistent
Graph We set κ = 7 and |A| = 64 as graph parame-
ters in the proposed method. The number of automatically
generated nodes, i.e. the number of states |S| in MDPs, was
13,500.

IRL with Mesh Grid State Space (MG-IRL) In MG-
IRL, state space is represented as a fine-grained mesh grid.
We used 0.1 m for x, 0.5 m/s for ẋ, and 20 deg. for α
as minimum units in the mesh grid. We applied the same
bounds of state space to all approaches: x ∈ [0m, 100m],
ẋ ∈ [0m/s, 8.5m/s], and α ∈ [−200 deg., 200 deg.]. As a
result, the number of states |S| was 100/0.1 × 8.5/0.5 ×
400/20 = 340, 000. Actions were defined as a minimum set
so as to represent dataset adequately in this discretization:
positive transition for x, three levels (0,±1 steps) for ẋ, and
five levels (0,±1,±2 steps) for α. That is, |A| = 15.

Locally Optimal Continuous IRL (C-IRL) In C-IRL
(Levine and Koltun 2012), a fixed-length control input se-
quence is locally optimized in continuous space. C-IRL en-
ables us to compute the gradient of a log partition function
with Laplace approximation of the likelihood. C-IRL de-
pends a great deal on the initial control input sequence be-
cause it guarantees only local optimality. In this experiment,
we used zero vector as the initial control sequence, which
means linear uniform motion, and set the length of sequence
to 200 empirically.

Graph-based IRL with Naively Connected Graph (GB-
IRL) In GB-IRL (Byravan et al. 2015), state space is rep-
resented as a coarse graph. Node set V is sampled randomly,
and then, edge set E is generated with the k-Nearest Neigh-
bor algorithm. This method, therefore, does not guarantee
interval consistency in state transition on the graph. Since it
is trivial that state transition is made only in a positive sense
for x under this experimental settings, we focus on the nodes
whose x value is larger than that of the target node in a k-
Nearest Neighbor search. We set the number of states |S|
and the number of actions |A| equal to those of the graph
generated with our proposed method, that is, |S| = 13, 500
and |A| = 64.

Approximate IRL with Fitted Q Iteration (FQI-IRL)
FQI-IRL, proposed in (Huang et al. 2015), is an approxi-
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Table 1: Experimental results.
Method MHD50 MHD90 Time[s]
MG-IRL 0.058 ± 0.013 0.135 ± 0.037 786.6 ± 48.7
C-IRL 0.156 ± 0.055 0.306 ± 0.090 17.4 ± 10.7

GB-IRL 0.113 ± 0.018 0.206 ± 0.036 39.3 ± 2.1
FQI-IRL 0.149 ± 0.041 0.315 ± 0.069 10.0 ± 0.7
Proposed 0.032 ± 0.014 0.105 ± 0.063 32.1 ± 2.6
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Figure 3: Scatter plot of
MHD50 vs. computation
time for four approaches.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7100

101

102

103

MHD90

 

 

Figure 4: Scatter plot of
MHD90 vs. computation
time for four approaches.

mate approach for high-dimensional IRL that estimates pol-
icy with fitted Q iteration and calculates the gradient of a
log partition function with Monte Carlo sampling. Though
FQI-IRL treats continuous state space, action space must be
quantized, so it was quantized in the same way as MG-IRL,
i.e. |A| = 15. In fitted Q iteration, we use Gaussian ker-
nels similar to (Huang et al. 2015) and set the deviation to
0.01 for normalized state space. The number of Monte Carlo
sampling was 100.

Evaluation Metric

As the evaluation metric for prediction performance, we
used the modified Hausdorff distance (MHD) (Atev and oth-
ers 2006), which is a generalized distance metric between
point sequences. MHD50 and MHD90 represent the median
and 90 percentile of MHD, respectively. We also used time
spent on optimal path prediction as an indicator for compu-
tational cost. In MG-IRL, GB-IRL, and FQI-IRL, we mea-
sured the time spent on policy calculation in MDPs. In addi-
tion, we measured that on the optimization of control input
in C-IRL because C-IRL does not calculate policy and opti-
mized control input directly.

Results and Discussions

Table 1 shows the means and standard deviations of MHD50,
MHD90, and computational time for each approach. We also
show the relationships MHD between computational time in
Figure 3 and Figure 4. The horizontal axes indicate MHD50

and MHD90, and the vertical axes indicate computational
time. Each point on these figures corresponds to each trial.
The result implies that our approach achieves high perfor-
mance with low computational cost.

For C-IRL, prediction finished faster than MG-IRL on av-
erage; however, the mean of prediction performance was
worst for all approaches, and both performance and com-
putational time were unstable due to its local optimality.
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Figure 5: Example of prediction result when car is parked on
the road.

GB-IRL achieved faster prediction than did MG-IRL and
were more stable than C-IRL thanks to the coarse graph
representation and its global optimality guaranty. Nonethe-
less, prediction performance was inferior to MG-IRL due to
the lack of interval consistency guarantee in state transition.
The computational time for FQI-IRL was steady and much
faster than MG-IRL; however, the prediction performance
was worse than MG-IRL and GB-IRL, which were homoge-
neously trained on the whole state space, due to its sampling
based policy calculation. Here, the proposed approach pre-
dicted over 20 times faster than did MG-IRL with no drop
in prediction performance. The difference in computational
time was about 20 times in three dimensional state space,
and the effectiveness of the proposed method will become
more and more obvious when applied in higher dimensional
state spaces.

Figure 5 shows a prediction result of driving behavior in
the presence of a parked car on a road. On the left side of
Figure 5, the horizontal axis and vertical axis indicate posi-
tion and velocity, respectively, and on the right side, they in-
dicate position and steering, respectively. The red line shows
the demonstrated driving behavior of the expert driver, and
the blue one shows the average of 100 sampled paths under
the policy calculated with a learned reward function. The
black chain line indicates the positions of intersections, and
the green dashed line shows the tail and head points of the
parked car. It is clear that our model predicted the steering
behavior of the expert driver around a parked car from Fig-
ure 5.

Conclusion

In this paper, we aimed for a fine-grained, fast driving be-
havior prediction framework based on IRL for high dimen-
sional problems. To deal with an exponential increase in cal-
culation cost depending on the number of dimensions, we
proposed a novel inverse reinforcement learning that relies
on coarse graphs nodes guaranteeing interval consistency in
state transition. We conducted an experiment in three dimen-
sional state space with actual driving data including avoid-
ance behavior with steering. The results confirmed the ef-
fectiveness of the proposed framework when compared with
the results obtained with conventional state-of-the-art IRL
based approaches. Our future work includes online imple-
mentation with palatalization using GPGPUs.
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