
Fine-Grained Recurrent Neural Networks for
Automatic Prostate Segmentation in Ultrasound Images

Xin Yang,∗ Lequan Yu,∗ Lingyun Wu,§ Yi Wang,∗ Dong Ni,§ Jing Qin,† Pheng-Ann Heng∗,‡
∗Department of Computer Science and Engineering, The Chinese University of Hong Kong

§National-Regional Key Technology Engineering Laboratory for Medical Ultrasound,
School of Biomedical Engineering, Shenzhen University, China

†Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University
‡Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology,

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
{xinyang,lqyu,ywang,pheng}@cse.cuhk.edu.hk

Abstract

Boundary incompleteness raises great challenges to auto-
matic prostate segmentation in ultrasound images. Shape
prior can provide strong guidance in estimating the miss-
ing boundary, but traditional shape models often suffer from
hand-crafted descriptors and local information loss in the fit-
ting procedure. In this paper, we attempt to address those is-
sues with a novel framework. The proposed framework can
seamlessly integrate feature extraction and shape prior ex-
ploring, and estimate the complete boundary with a sequen-
tial manner. Our framework is composed of three key mod-
ules. Firstly, we serialize the static 2D prostate ultrasound im-
ages into dynamic sequences and then predict prostate shapes
by sequentially exploring shape priors. Intuitively, we pro-
pose to learn the shape prior with the biologically plausible
Recurrent Neural Networks (RNNs). This module is corrobo-
rated to be effective in dealing with the boundary incomplete-
ness. Secondly, to alleviate the bias caused by different seri-
alization manners, we propose a multi-view fusion strategy to
merge shape predictions obtained from different perspectives.
Thirdly, we further implant the RNN core into a multiscale
Auto-Context scheme to successively refine the details of the
shape prediction map. With extensive validation on challeng-
ing prostate ultrasound images, our framework bridges severe
boundary incompleteness and achieves the best performance
in prostate boundary delineation when compared with sev-
eral advanced methods. Additionally, our approach is gen-
eral and can be extended to other medical image segmenta-
tion tasks, where boundary incompleteness is one of the main
challenges.

Introduction
Prostate cancer is the one of the most common noncuta-
neous cancer in men around the world. The routine clini-
cal modality for imaging the prostate is medical ultrasound.
Segmenting prostate from ultrasound images is of essen-
tial importance for prostatic disease diagnoses and thera-
peutic choices, such as creating patient-specific anatomi-
cal models for surgical planning (Wang et al. 2016) and
image-guided biopsy, real-time guidance for the placement
of biopsy needles towards lesions (Hodge et al. 1989),
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Figure 1: Boundary incompleteness in prostate ultrasound
images. Green, yellow and blue arrows denote deficient
boundary, ambiguous boundary and severe heterogeneity,
respectively. Red curve denotes the segmentation ground
truth.

and volumetric measurement for prostate shape evaluation
(Terris and Stamey 1991). However, manual delineation of
prostate boundary is tedious, time-consuming and often ir-
reproducible, even for experienced physicians.

Automatic solutions for accurate and efficient prostate
segmentation in ultrasound image are highly desired. How-
ever, developing such automatic solutions remains very
challenging for several reasons, as illustrated in Figure 1.
Firstly, different ultrasound images present diverse intensity
distributions due to different imaging parameters, such as
focus depth, Time Gain Compensation (TGC) and scanning
orientation. Secondly, typical factors in ultrasound, includ-
ing signal dropout, speckle noise, acoustic shadow and low
contrast against surrounding tissues, cause the ambiguity,
poor visibility and long-span occlusion in prostate bound-
aries (Noble and Boukerroui 2006). Thirdly, large variances
in appearance, shape and size are often observed in prostates
from different patients. Even the tissues belonging to a same
prostate often present severe heterogeneity.

In the last decade, two main methodological categories
have been studied as the solutions for automatic prostate seg-
mentation:

• Bottom-up fashion: Methods in this stream mainly re-
sort to classify each pixel as foreground (prostate tis-
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sue) or background with supervised classifiers. A set
of support vector machines (SVM) associated with Ga-
bor filters are utilized for prostate segmentation in ultra-
sound images (Zhan and Shen 2006). Ensemble classi-
fiers, such as Random Forests, have been explored to seg-
ment prostate in MRI and trans-rectal ultrasound (Maha-
patra and Buhmann 2015; Ghose et al. 2013). However,
it’s still hard for those methods to estimate the missing
boundary, since no constructive representations can be ef-
fectively collected in those ambiguous and long-span oc-
cluded regions. Based on considerably stable context in-
formation, regression based methods are established in
recent years. By building a direct mapping between im-
age appearance and its distance to boundary, Regression
Forests are utilized for prostate segmentation in MRI im-
ages (Gao et al. 2014). However, the assumption of sta-
ble context becomes less feasible in ultrasound images
(Fig. 1). Recently, deep neural networks (DNNs), espe-
cially the Convolutional Neural Networks with hierarchi-
cal feature extraction capability are relighted and have
achieved promising results in many vision tasks. DNNs
are exploited to extract features which are more represen-
tative and effective than hand-crafted feature for prostate
segmentation in MRI (Guo, Gao, and Shen 2016). The
Fully Convolutional Network (FCN) (Long, Shelhamer,
and Darrell 2015) characterized by an effective end-to-
end prediction manner proves to be tractable for fetal ul-
trasound image segmentation (Chen et al. 2016). Discrim-
inative as convolution based neural networks are, vanilla
DNNs are bottlenecked in reasoning arbitrary-sized blind
spots along object boundary (Li and Malik 2016), and
thus often output unexpected shape estimations.

• Top-down fashion: This stream mainly explores the po-
tential of global shape prior in guiding prostate segmen-
tation. As a pioneer work, Active Shape Model (ASM)
(Cootes et al. 1995) illustrates its capacity in captur-
ing both the shape and appearance variances for object
segmentation. ASM equipped with Gabor descriptors is
proposed for prostate segmentation in ultrasound images
(Shen, Zhan, and Davatzikos 2003). To enhance the ASM
with more representative features, statistical analysis is
performed on Gaussian derivatives of local histograms to
learn the most informative descriptors for each landmark
(Van Ginneken et al. 2002). To tune the shape model with
more precise displacements in fitting procedure, Robust
Active Shape Model (Rogers and Graham 2002) is pro-
posed to discard displacement outliers in the image, which
is subsequently developed for ultrasound image segmen-
tation (Santiago, Nascimento, and Marques 2015). Dis-
covering the low-rank property of similar shapes, an extra
consistency constraint is developed to make shape model
more robust to boundary deficiency in ultrasound images
(Zhou et al. 2013). Partial active shape model has been
used to estimate the missing boundaries of prostate in ul-
trasound shadow areas (Yan et al. 2010). Despite the dif-
ference between variations, the core components of most
shape models are two: 1) capturing the main mode of
shape variability by analyzing hand-crafted descriptors of

a series of landmarks, which proves to be less tractable
for prostate ultrasound image; 2) fitting the shape model
to unseen occasions by minimizing specific cost func-
tions, which is likely to be disturbed by local information
loss when faced with arbitrary sized boundary deficiency
(Zhou et al. 2013).

The bottom-up fashion provides detailed prediction for
each pixel in image, whereas suffers the lack of global
shape prior in tackling boundary information loss. In con-
trast, shape modeling in the top-down fashion can provide
strong shape guidance for segmentation. This kind of shape
guidance is crucial for bridging the gaps on boundary in ul-
trasound images, but previous methods tend to consider the
shape modeling in a static manner, and handle the landmark
descriptor design and shape prior extraction separately. In
this paper, we propose to consider prostate ultrasound im-
age segmentation as a dynamic and sequential procedure,
and complete the descriptor learning and shape inference si-
multaneously.

Our framework has three key modules. Firstly, we pro-
pose to serialize static prostate ultrasound images into dy-
namic sequences and then infer prostate shapes by explor-
ing shape priors sequentially. This interpretation is natural
and can be formulated with the biologically plausible Recur-
rent Neural Networks (RNNs) (Hochreiter and Schmidhuber
1997). We denote the RNN for this simulation as Bound-
ary Completion RNN (BCRNN). Without hand-crafted fea-
ture design which is required in traditional shape modeling,
our BCRNN directly takes raw intensities as input at each
timestep. All descriptors for shape inference can be auto-
matically learned by BCRNN. Inherently, BCRNN is able
to access previous timesteps through hidden states and ex-
ploits them as shape knowledge to reason current missing
parts. Therefore, BCRNN can be utilized to infer the in-
completeness along prostate boundary in ultrasound image,
and thus boost the segmentation accuracy. Secondly, we ob-
served that serializing static ultrasound image with different
starting points causes bias in shape prediction. In this re-
gard, we adopt a multi-view fusion strategy to merge shape
predictions obtained from different perspectives into a com-
prehensive prediction. Thirdly, to combine hierarchical cues
of boundary predictions, we further implant our BCRNN
core into a multiscale Auto-Context scheme to gain incre-
mental refinement on details of prostate shape prediction. In
this scheme, BCRNN with fine scale can dramatically ben-
efit from the shape predictions provided by BCRNN with
coarse scale. In addition, different from the traditional clas-
sifiers used in Auto-Context scheme (Tu and Bai 2010), our
BCRNN can flexibly leverage contextual information in se-
quence without using empirically designed context struc-
ture.

Methodology
Our proposed framework is illustrated in Fig. 2. The core of
our framework is the BCRNN in each cascaded level. The
cropped prostate ultrasound image is the input of our frame-
work. At each level, BCRNN serializes the static ultrasound
image from several different perspectives and then con-
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Figure 2: Illustration of our proposed framework. The shape
predictions present to be gradually refined as the original
prostate ultrasound image flows through all context levels.

ducts shape prediction on these serializations independently.
Those shape predictions are then merged as a comprehensive
inference by a multi-view fusion strategy. This comprehen-
sive inference result is subsequently concatenated with the
original static ultrasound image, and fed into the next level
where more shape details are emphasized. The shape pre-
diction map is initially set as an uniform distribution. The
whole procedure iterates from levels with coarse scale to
levels with fine scale until convergence occurs on boundary
prediction map.

Shape Inference with BCRNN
The boundary incompleteness in prostate ultrasound image
remains to be the most difficult part for automatic prostate
segmentation. The work in this paper is mainly motivated by
previous studies about boundary completion.

Different from the completion methods which utilize ge-
ometric analysis of curvature (Kimia, Frankel, and Popescu
2003; Rueda et al. 2015) and visual cortex simulation (Ben-
Yosef and Ben-Shahar 2012), we propose to formulate the
completion problem as a memory guided inference proce-
dure, because we observed that boundary delineation is nat-
urally more like a sequential procedure. Human beings actu-
ally leverage indicative inducers from various ranges along

object boundary fragments to infer current boundary loca-
tion, especially when bridging blind spots. Also, this infer-
ence process is inherently guided by the shape prior which
is memorized by brain and dynamically rectified by current
boundary prediction. We find that this procedure has high
conformity with the biologically plausible Recurrent Neural
Network, which is featured by its memory-based power in
learning from sequences. Thus, to the best of our knowledge,
for the first time, the Recurrent Neural Network, especially
that equipped with the Long Short-Term Memory (Hochre-
iter and Schmidhuber 1997), is explored for automatic shape
inference (Fig. 3). We denote the RNN for this inference as
Boundary Completion RNN (BCRNN).

Serialization and Deserialization. Before we can uti-
lize BCRNN for shape inference, we need to transform
the static ultrasound image into an interpretable sequence.
Among all possible strategies, we choose the strategy which
transforms the ultrasound image from Cartesian into polar
coordinate system around image center to generate a se-
rialization (shown as Fig. 3). This strategy is straightfor-
ward and mainly motivated by the circle-wise manner of
manual delineation. The serialization result is still in im-
age form. Deserialization is the inverse process. The serial-
ization image is then evenly partitioned into T consecutive
bands which finally form the sequence x = (x1, ..., xT ) .
The flattened version of x is then sequentially input into a
BCRNN as timestep increases. Specifically, we transformed
all ultrasound images into serialization images with the size
400×400 pixels. In BCRNN training, we also serialized the
segmentation label images into sequence form. Note that our
segmentation algorithm is not that sensitive to object posi-
tion shift, which means slight offset caused by object local-
ization is allowed during the serialization process.

Recurrent Neural Networks. Given an input sequence
x, a basic RNN computes the hidden state vector h =
(h1, ..., hT ) and output vector y = (y1, ..., yT ) by iterating
the following equations from timestep t = 1 to T :

ht = H(Wxhxt +Whhht−1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote network weight matrices, the b
terms denote bias vectors and H is the hidden layer func-
tion. Since hidden state vector ht summarizes the informa-
tion from previous ht−1 and current input xt, it can be ex-
ploited to infer current prediction yt. For the prostate seg-
mentation problem, the hidden state vector ht can be con-
sidered as shape knowledge about prostate which is accu-
mulated from the segmentation in previous timesteps. The
RNN can use ht to infer the boundary location for current
timestep t by taking an extra input xt.

One problem with basic RNNs is that they are incapable
of accessing long-range context, because the information
stored in hidden layer tends to decay over time and therefore
gradually loses impact on future inference. The invention of
Long Short-Term Memory (LSTM) module addresses this
issue and enhances H by adding tunable gating units which
allow the network to control the flow of information in and
out of the network memory.
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Figure 3: Structure of a Bidirectional LSTM based BCRNN.

Boundary information from multiple directions are cru-
cial in estimating missing parts. However, a single LSTM
stream can only make use of contextual information from
one direction. Bidirectional LSTM (BiLSTM) addresses this
problem by leveraging historical and future information si-
multaneously. BiLSTM processes sequences from opposite
directions with two separate hidden layers, which are then
fed forward to the same output layer (Graves, Jaitly, and
Mohamed 2013). Eq. 3-5 present the core computation of
a BiLSTM at timestep t. As illustrated in Fig. 3, BiLSTM
computes forward hidden state

−→
h t and backward hidden

state
←−
h t by iterating the forward layer from t = 1 to t, the

backward layer from t = T to t, respectively.
−→
h t = H(W

x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h
) (3)

←−
h t = H(W

x
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h
xt +W←−

h
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←−
h t−1 + b←−

h
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yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by (5)

As shown in Eq. 5, interaction happens between forward
hidden state

−→
h t and backward hidden state

←−
h t in BiLSTM.

By combining serialization and deserialization with a BiL-
STM, we can build a BCRNN to properly blend boundary
clues from multiple directions. This memory based BCRNN
presents great advantages in estimating incomplete bound-
aries of prostate in ultrasound images.

Multiple Viewpoint Fusion
In practice, we find that serializing static ultrasound im-
age from different starting points will cause slightly dif-
ferent shape predictions. We interpret this phenomenon as
that serializing from different starting points may change the
relative distances between context-dependent sequence ele-
ments, and therefore brings about slight difference in predic-
tions. Shown as Fig. 4, suppose τc is the missing boundary
fragment and we mainly need clues from both τa−b and τd−e

fragments to recover it. The first serialization manner pre-
serves the relative spatial relationship between these three
fragments, while the second manner destroys the continuity
between τe and τd, and makes τe become far away from τc.
In the second case, information about τe needs to be kept
much longer by BiLSTM before it achieves τc, which is
more challenging under limited memory unit resources.

Figure 4: Serialization manners with different starting
points. Serialization (1) from τa preserves the contextual de-
pendency of τc, while serialization (2) from τe destroys the
dependency by pushing τe faraway from τd and τc.

To solve this problem efficiently, we choose to serial-
ize the original static ultrasound image from three different
viewpoints, and then democratically merge the three com-
plementary boundary predictions which are generated by the
same BCRNN into a comprehensive shape prediction. Be-
cause this fusion procedure is similar as human does in get-
ting the impression of an object by observing from multiple
viewpoints, we denote it as multiple viewpoint fusion.

Multiscale Auto-Context for Refinement
To enhance spatial consistency and boundary details within
the shape prediction map generated by BCRNN, we pro-
pose to further implant the BCRNN into a multiscale Auto-
Context scheme (Tu and Bai 2010), which can gain suc-
cessive refinement on the preliminary prediction result by
exploring prediction information from neighbors. Specifi-
cally, we directly concatenate the prediction map generated
by BCRNN in level k−1 with the original ultrasound image,
and take them as the input for BCRNN in level k. Also, the
BCRNN model in level k is only trained after the training
of BCRNN in level k−1 has finished. Traditional classifiers
implanted into Auto-Context scheme often rely on some em-
pirically designed structures to collect contextual informa-
tion (Tu and Bai 2010; Gao et al. 2014), while our BCRNN
has the inbuilt ability to flexibly leverage context informa-
tion from near or far ranges. This ability benefits from the
memory which is retained dynamically by BiLSTM.

In practice, it’s difficult to decide the optimal scale of
xt when splitting the serialization image into a sequence
x. Large scale xt suppresses the boundary details as one
timestep, while small scale xt becomes less informative and
makes the sequence tediously long. Motivated by the fact
that detailed boundary delineations are often conducted af-
ter a coarse sketch is obtained, we configure our BCRNN
embedded Auto-Context scheme with a multi-scale mech-
anism. In this mechanism, BCRNNs in early levels with
large scales can only produce coarse shape prediction maps,
but those informative maps can provide strong guidance for
BCRNNs in levels with fine scales. Eq. 6 formulates the iter-
ative process of our multiscale Auto-Context scheme, where
F is the BCRNN model function; yk is the shape prediction
map from level k; sk is the scale used by BCRNN in level
k to generate sequence xk (i.e., the height of the band xk

t in
Fig. 3). ykt has the same size with xk

t . Three context levels
are adopted in this paper, with s0 = 16, s1 = 10 and s2 = 8
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respectively.

yk = F((xk; yk−1), sk) (6)

Although the cascaded multiscale BCRNNs are robust
in recovering missing boundary, currently there is no the-
oretical guarantee that they can recover all missing bound-
aries with an absolutely close form. So, after the last
BCRNN level, we propose to apply an auxiliary ASM model
(Van Ginneken et al. 2002) on the shape prediction map to
generate the final segmentation. This auxiliary ASM model
is built on 300 annotated prostate shape maps. These maps
are obtained by running our BCRNNs on 300 prostate ul-
trasound images in training dataset, and each map is evenly
annotated with 12 main and 60 secondary landmarks. Al-
though only intensity information of the map is used to de-
scribe each landmark, this ASM model has very little chance
to be corrupted by local boundary uncertainty, because it be-
comes much easier for the model to fit prostate shape in the
prediction map than that in original ultrasound image. Also,
since most ambiguous and long-span occluded boundaries
are recovered by our cascaded BCRNNs, only a few small
gaps are left for ASM model to bridge (Fig. 6).

Experimental Results
Materials and Preprocessing
We collected 17 trans-rectal ultrasound (TRUS) volumes
which were acquired from 17 patients. These 3D TRUS vol-
umes were obtained by a Mindray DC-8 ultrasound system
with an integrated 3D TRUS probe. The size of 3D TRUS
volume is 214×125×44 with a voxel size of 0.5×0.5×0.5
mm. We totally extracted all 530 slices which contain
prostate from those volumes, and augmented 400 slices of
10 patients to 2400 images as training set, the rest 130 slices
from 7 patients were taken as testing set. An experienced
radiologist provided segmentation labels for all images. Be-
cause the basic assumption of our method is that, the ob-
ject to be segmented is located around the center of field of
view, so the input of our method is the cropped image re-
gion of prostate, and the automatic prostate localization in
ultrasound image is out of the scope of this paper.

Implementation Details
Our proposed framework was implemented with the popu-
lar library Theano (Al-Rfou et al. 2016). We trained each
BCRNN with a many-to-many manner, so that a direct map-
ping was built between the input raw intensity sequence
and the boundary label sequence. The forward and back-
ward LSTM streams in BCRNN contain 500 hidden mem-
ory units, respectively. There was no pre-training for our
network and all weights were randomly initialized from a
Gaussian distribution. We trained each BCRNN by mini-
mizing an Euclidean distance based objective function and
iteratively updated the network parameters with RMSProp
optimizer (Tieleman and Hinton 2012) using the backprop-
agation through time algorithm (BPTT). The learning rate
was set as 0.001 for all context levels and about 2 hours were
needed to train each level. All computations were conducted
on a computer equipped with dual Intel Xeon(R) processors

Figure 5: Comparison of the learning curves from successive
BCRNNs.

E5-2650 2.6 GHz and a GPU of NVIDIA GeForce GTX TI-
TAN X.

Learning Process Analysis
It is observed from Fig. 5 that the training error of BCRNN
at context level 0 with coarse scale decreases sluggishly af-
ter 50 epochs, while the training errors of BCRNNs at con-
text level 1 and 2 with fine scales decrease steeply from
very early epochs. This demonstrates that the training of
BCRNNs at lower levels facilitates the training of BCRNNs
at higher levels. This is because the prediction maps gener-
ated by lower levels provide strong guidance for following
levels and consequently accelerate the optimization of net-
work parameters.

Qualitative Evaluation
In Fig. 6, we illustrate the prostate segmentation results of
our method along with the shape prediction maps produced
by BCRNN at level 2. By simultaneously learning boundary
descriptors and exploring sequential information for infer-
ence, our method can not only successfully infer ambiguous
and deficient boundaries in low contrast prostate ultrasound
images, but also conquer the large inter-variance of prostate
shape and size. Importantly, our method is robust in distin-
guishing the inhomogeneous prostate tissues, and recogniz-
ing them as a whole part. The auxiliary ASM model proves
to work well under the strong guidance provided by shape
prediction map.

Quantitative Evaluation
Metrics evaluating area and shape similarities are both
adopted, such as Dice Similarity Coefficient (Dice), Aver-
age Distance of Boundaries (Adb [pixel unit]), Conformity
(Conform), Jaccard Index (Jaccard), Precision and Recall.
We extensively compared our method with several advanced
methods, including Convolutional Neural Network (CNN)
(Krizhevsky, Sutskever, and Hinton 2012) and Fully Con-
volutional Network (FCN) (Long, Shelhamer, and Darrell
2015). It should be noted that, our BCRNNs were trained
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Table 1: Quantitative evaluation of different methods

Method Dice Adb Conform Jaccard Precision Recall
T-CNN 0.9206 12.7312 0.8251 0.8541 0.8966 0.9495
T-FCN 0.9188 12.6720 0.8207 0.8513 0.9334 0.9080

BCRNN-Level0 0.9091 14.0688 0.7975 0.8348 0.9286 0.8921
BCRNN-Level1 0.9239 11.5903 0.8322 0.8602 0.9446 0.9051
BCRNN-Level2 0.9233 11.4456 0.8306 0.8595 0.9519 0.8976

Figure 6: Our results on prostate segmentation in trans-rectal ultrasound images. From top to bottom: prostate ultrasound image,
shape prediction and segmentation result. Green and red curves denote automatic segmentation and ground truth, respectively.

from scratch, while the compared CNN was pre-trained
on other ultrasound images and FCN was transferred from
VGG16 model (Simonyan and Zisserman 2014) which was
trained on Imagenet dataset (Deng et al. 2009). The pre-
trained CNN and FCN are denoted as T-CNN and T-FCN.

Table 1 illustrates the detailed comparison between dif-
ferent methods, as well as the comparison between differ-
ent BCRNN levels. We can observe that, benefiting from
the prediction result from BCRNN-Level0, BCRNN-Level1
gains considerable improvement on all evaluation metrics.
Although the BCRNN-Level0 at coarse level performs worse
than T-CNN and T-FCN, BCRNN-Level1 and BCRNN-
Level2 present very competitive and even better results than
T-CNN and T-FCN in key metrics. Generally, the refinement
contributed by Auto-Context scheme diminishes exponen-
tially as context level increases, and stacking too many con-
text levels may lead to overfitting and performance drop. So
in our case, we only adopt three BCRNN levels, because we
can observe that the improvement from BCRNN-Level1 to
BCRNN-Level2 already presents to be marginal.

Conclusion
In this paper, we propose a biologically plausible method
to combat the boundary incompleteness challenge for auto-
matic prostate segmentation in ultrasound image. We cre-

atively formulate the boundary completion as a sequential
problem. Originating from RNNs, our intuitive method dy-
namically explores sequential clues about past and future
to learn the shape knowledge. Combining with a multiscale
Auto-Context scheme further offers us opportunities to en-
hance shape prediction details. Our method presents intrigu-
ing abilities in recovering severe incompleteness, as demon-
strated in the challenging prostate ultrasound images.
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enet, J.; Sidibé, D.; Vilanova, J. C.; Comet, J.; and Meri-
audeau, F. 2013. A supervised learning framework of sta-
tistical shape and probability priors for automatic prostate
segmentation in ultrasound images. Medical image analysis
17(6):587–600.
Graves, A.; Jaitly, N.; and Mohamed, A.-r. 2013. Hybrid
speech recognition with deep bidirectional lstm. In Auto-
matic Speech Recognition and Understanding (ASRU), 2013
IEEE Workshop on, 273–278. IEEE.
Guo, Y.; Gao, Y.; and Shen, D. 2016. Deformable mr
prostate segmentation via deep feature learning and sparse
patch matching. IEEE transactions on medical imaging
35(4):1077–1089.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Hodge, K.; McNeal, J.; Terris, M. K.; and Stamey, T. 1989.
Random systematic versus directed ultrasound guided tran-
srectal core biopsies of the prostate. The Journal of urology
142(1):71–4.
Kimia, B. B.; Frankel, I.; and Popescu, A.-M. 2003. Euler
spiral for shape completion. International journal of com-
puter vision 54(1-3):159–182.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Li, K., and Malik, J. 2016. Amodal instance segmentation.
arXiv preprint arXiv:1604.08202.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully con-
volutional networks for semantic segmentation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 3431–3440.
Mahapatra, D., and Buhmann, J. M. 2015. Visual saliency
based active learning for prostate mri segmentation. In Inter-

national Workshop on Machine Learning in Medical Imag-
ing, 9–16. Springer.
Noble, J. A., and Boukerroui, D. 2006. Ultrasound im-
age segmentation: a survey. IEEE Transactions on medical
imaging 25(8):987–1010.
Rogers, M., and Graham, J. 2002. Robust active shape
model search. In European conference on computer vision,
517–530. Springer.
Rueda, S.; Knight, C. L.; Papageorghiou, A. T.; and Noble,
J. A. 2015. Feature-based fuzzy connectedness segmenta-
tion of ultrasound images with an object completion step.
Medical image analysis 26(1):30–46.
Santiago, C.; Nascimento, J. C.; and Marques, J. S. 2015.
2d segmentation using a robust active shape model with
the em algorithm. IEEE Transactions on Image Processing
24(8):2592–2601.
Shen, D.; Zhan, Y.; and Davatzikos, C. 2003. Segmentation
of prostate boundaries from ultrasound images using statis-
tical shape model. IEEE transactions on medical imaging
22(4):539–551.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Terris, M. K., and Stamey, T. 1991. Determination of
prostate volume by transrectal ultrasound. The Journal of
urology 145(5):984–987.
Tieleman, T., and Hinton, G. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning
4(2).
Tu, Z., and Bai, X. 2010. Auto-context and its application
to high-level vision tasks and 3d brain image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 32(10):1744–1757.
Van Ginneken, B.; Frangi, A. F.; Staal, J. J.; ter
Haar Romeny, B. M.; and Viergever, M. A. 2002. Ac-
tive shape model segmentation with optimal features. IEEE
transactions on medical imaging 21(8):924–933.
Wang, Y.; Cheng, J.-Z.; Ni, D.; Lin, M.; Qin, J.; Luo, X.; Xu,
M.; Xie, X.; and Heng, P. A. 2016. Towards personalized
statistical deformable model and hybrid point matching for
robust mr-trus registration. IEEE transactions on medical
imaging 35(2):589–604.
Yan, P.; Xu, S.; Turkbey, B.; and Kruecker, J. 2010. Discrete
deformable model guided by partial active shape model for
trus image segmentation. IEEE Transactions on Biomedical
Engineering 57(5):1158.
Zhan, Y., and Shen, D. 2006. Deformable segmentation
of 3-d ultrasound prostate images using statistical texture
matching method. IEEE Transactions on Medical Imaging
25(3):256–272.
Zhou, X.; Huang, X.; Duncan, J. S.; and Yu, W. 2013. Active
contours with group similarity. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2969–2976.

1639




