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Abstract

The cold-start problem involves recommendation of content
to new users of a system, for whom there is no historical pref-
erence information available. This proves a challenge for col-
laborative filtering algorithms that inherently rely on such in-
formation. Recent work has shown that social metadata, such
as users’ friend groups and page likes, can strongly mitigate
the problem. However, such approaches either lack an inter-
pretation as optimising some principled objective, involve it-
erative non-convex optimisation with limited scalability, or
require tuning several hyperparameters. In this paper, we first
show how three popular cold-start models are special cases
of a linear content-based model, with implicit constraints on
the weights. Leveraging this insight, we propose LoCo, a new
model for cold-start recommendation based on three ingredi-
ents: (a) linear regression to learn an optimal weighting of
social signals for preferences, (b) a low-rank parametrisa-
tion of the weights to overcome the high dimensionality com-
mon in social data, and (c) scalable learning of such low-rank
weights using randomised SVD. Experiments on four real-
world datasets show that LoCo yields significant improve-
ments over state-of-the-art cold-start recommenders that ex-
ploit high-dimensional social network metadata.

Introduction
Collaborative filtering has emerged as the gold-standard ap-
proach to personalised recommendation of content to users
(Leavitt 2013). The central idea of collaborative filtering
is to infer a user’s preferences based on their past interac-
tions with a system, as well as the preferences of other like-
minded users (Goldberg et al. 1992; Resnick et al. 1994).
While this approach has seen considerable success, it has an
obvious failure mode: how do we recommend content to new
users without any historical preference information? This is
known as the user cold-start problem (Schein et al. 2002),
and is pervasive in real-world recommendation applications.

Cold-start problems may be addressed by exploiting ex-
ogenous side-information about users, such as demographic
attributes. This can be done using content-based rather than
collaborative filtering, where the central idea of the former
is to infer a user’s preferences by explaining their past in-
teractions based on the side-information (Pazzani and Bill-
sus 2007). The cold-start problem does not plague such
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approaches, and has thus been addressed both by vanilla
content-based filtering recommenders (Billsus and Pazzani
1999; Mooney and Roy 2000) as well as hybrid collabora-
tive and content-based filtering recommenders (Schein et al.
2002; Gunawardana and Meek 2009).

The precise form of side-information available has an im-
pact on the accuracy of cold-start predictions (Gantner et al.
2010; Sedhain et al. 2014). Recent work has shown that so-
cial information, such as users’ friend groups and page likes,
is sufficiently rich to strongly mitigate the cold-start prob-
lem. Various means of incorporating this information into
neighbourhood (Zhang et al. 2010; Sahebi and Cohen 2011;
Sedhain et al. 2014; Rosli et al. 2014; Rohani et al. 2014)
and matrix factorisation (or latent feature) approaches (Ma
et al. 2008; Cao, Liu, and Yang 2010; Jamali and Ester 2010;
Noel et al. 2012; Krohn-Grimberghe et al. 2012) have been
studied, with encouraging results. However, both strands of
work have limitations. Neighbourhood methods lack an in-
terpretation as minimising some principled objective, poten-
tially resulting in sub-optimal solutions. Matrix factorisation
methods, on the other hand, involve time-consuming itera-
tive optimisation of a non-convex objective and require tun-
ing of a potentially large number of hyperparameters.

This paper proposes an efficient, accurate, learning-based
approach for the cold-start problem that leverages social
data. Our first contribution is to show how three popular
cold-start models (Sedhain et al. 2014; Gantner et al. 2010;
Krohn-Grimberghe et al. 2012) can be seen as a special case
of a linear content-based model, which explains some of
their drawbacks. Leveraging this insight, our second contri-
bution is a new model, LoCo, that overcomes these limita-
tions by employing three ingredients:
(a) multivariate linear regression to learn an optimal

weighting of social signals for preferences,
(b) a low-rank parametrisation of the regression weights to

address the high dimensionality common in social data,
(c) highly scalable learning of such low-rank weights via

randomised SVD (Halko, Martinsson, and Tropp 2011).
While each of these ideas is simple, using them in conjunc-
tion is powerful: experiments on four real-world datasets
demonstrate that LoCo yields substantial improvements over
state-of-the-art cold-start recommenders leveraging high-
dimensional side-information from a social network.
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Background and notation
Suppose we have a database of U users and I items. Let
R ∈ {0, 1}U×I denote a purchase1 matrix, where R[u, i] =
1 means that user u purchased item i. Let R[:, i] ∈ {0, 1}U
denote the vector of item purchases. In many applications,
we additionally have a side-information (or metadata) ma-
trix X ∈ RU×P . We will think of Xup being whether or not
user u “likes” a webpage p, though X could equally reflect
e.g. users’ group memberships, friend circles, et cetera.

Collaborative and content-based filtering

The three high-level approaches to personalised recommen-
dation may be summarised as follows:
(1) Content-based filtering: exploit correlations between

user side-information X and item preferences R, e.g.
by deriving metadata-based user similarities (Billsus
and Pazzani 1999), or learning metadata-to-preference
classifiers (Mooney and Roy 2000);

(2) Collaborative filtering: exploit correlations amongst
the preferences R of all users, e.g. by k-nearest neigh-
bour recommendation (Herlocker et al. 1999) or matrix
factorisation (Koren, Bell, and Volinsky 2009);

(3) Hybrid filtering: exploit both forms of correlation
(Basu, Hirsh, and Cohen 1998; Melville, Mooney, and
Nagarajan 2002; Basilico and Hofmann 2004).

As k-nearest neighbour and matrix factorisation methods
feature heavily in the sequel, we briefly summarise them
here. In (user) k-nearest neighbour approaches, one models

R ≈ SRtr (1)
for some pre-defined similarity matrix S, typically based on
the cosine similarity of R with itself. In matrix factorisation
approaches, one models

R ≈ UV (2)
for some latent representations U ∈ RU×K ,V ∈ RK×I

with latent dimensionality K � min(U, I). The parameters
U,V are typically estimated by solving

min
U,V

||R−UV||2F +
λU

2
||U||2F +

λV

2
||V||2F . (3)

The user cold-start problem

The recommendation problem we consider is the cold-start
scenario, where a user has no prior purchases. We split the
set of users into the (training) Utr warm-start users with at
least one purchase, and the rest as the (test) Ute cold-start
users. We denote the corresponding slices of the purchase
matrix by Rtr ∈ RUtr×I ,Rte ∈ RUte×I , where by definition
Rte = 0. Our interest will be in producing R̂te ∈ RUte×I , a
recommendation matrix for the cold-start users.

Personalised recommendation for cold-start users is in-
tuitively impossible from R alone. But suppose we have a
metadata matrix X, with Xtr,Xte being the metadata for
the warm- and cold-start users respectively. Then, we might
hope to leverage correlations between Xtr and Rtr to make
meaningful predictions for the cold-start users.

1More generally, purchases can be substituted by any positive
interactions between users and items.

Approaches to (social) cold-start recommendation

We summarise the various approaches to exploiting (social)
side-information to ameliorate the cold-start problem.

Neighbourhood + metadata similarity In cold-start sce-
narios, one cannot use a neighbourhood model (Equation 1)
with a similarity S computed from Rte since, by definition,
Rte = 0. One can however compute new similarity metrics
based on metadata (Billsus and Pazzani 1999).

Recently, several works have designed S based on social
information (Zhang et al. 2010; Sahebi and Cohen 2011;
Sedhain et al. 2014; Rosli et al. 2014; Rohani et al. 2014).
For example, (Sedhain et al. 2014) proposed

R̂te = Xte �XT
tr �Rtr (4)

where �, � refer to generalised matrix operations. When � is
the standard inner product, this is a neighbourhood method
with metadata-derived similarity S = Xte �XT

tr.

Matrix factorisation with regularisation In cold-start
scenarios, one cannot use a matrix factorisation model
(Equation 2) with U estimated as per Equation 3 since it
is optimal for Ute = 0. One can however regularise the la-
tent features based on metadata similarity (Ma et al. 2008;
Agarwal and Chen 2009; Cao, Liu, and Yang 2010; Jamali
and Ester 2010; Yang et al. 2011; Noel et al. 2012; Krohn-
Grimberghe et al. 2012). For example, (Krohn-Grimberghe
et al. 2012) proposed an objective based on collective matrix
factorisation (CMF) (Singh and Gordon 2008):

min
U,V,Z

||R−UV||2F + μ||X−UZ||2F +Ω(U,V,Z),

Ω(U,V,Z) =
λU

2
||U||2F +

λV

2
||V||2F +

λZ

2
||Z||2F .

(5)

where U ∈ RU×K ,V ∈ RK×I , and Z ∈ RK×P for some
latent dimensionality K � min(U, I). Intuitively, we find a
latent subspace U for users that is jointly predictive of both
their preferences and social characteristics. We then predict

R̂te = UteV. (6)
While this prediction has the same form as Equation 2, the
estimation of Ute here will be non-trivial owing to the addi-
tional regularisation derived from requiring it to model Xte.

An alternate but less generic approach is the fLDA model
(Agarwal and Chen 2010), which combines matrix factorisa-
tion and LDA when the metadata comprises textual features.

Matrix factorisation with feature mapping Matrix fac-
torisation approaches may also be adapted to the cold-start
regime via a two-step model. Here, the first step is to model
the warm-start users by Rtr ≈ R̂tr = UtrV, with latent
features Utr,V as before. The second step is to learn a map-
ping between the side-information Xtr and latent features
Utr. This mapping is used to estimate Ute from Xte, with
predictions then made as per Equation 6.

A canonical example of this approach is BPR-LinMap
(Gantner et al. 2010), where in the second step the mapping
may be done via linear regression, so that one estimates

Ute = XteT (7)
where T ∈ RP×K is chosen so that Utr ≈ XtrT via

min
T

‖Utr −XtrT‖2F +
λT

2
‖T‖2F . (8)
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Method Weight W

Social neighbourhood XT
trRtr

CMF ZT
∗ (V∗VT

∗ + Z∗ZT
∗ )

−1V∗
BPR-LinMap (XT

trXtr)
−1XT

trR̂tr

Linear regression (XT
trXtr)

−1XT
trRtr

LoCo VK(VT
KXT

trXtrVK)−1VT
KXT

trRtr

Table 1: Summary of choice of weight matrix W in linear
model R̂te = XteW that yields various cold-start recom-
menders. See text for definitions of Z∗,V∗,VK .

Classification approaches Another approach to cold-start
recommendation is to learn a classifier from metadata to
preferences, with examples of classifier choices being rule
induction (Basu, Hirsh, and Cohen 1998), naı̈ve Bayes
(Mooney and Roy 2000) and bilinear regression (Park and
Chu 2009). Such approaches involve a prediction of the form

R̂te = f(Xte), (9)

for some learned function f : RP → R applied row-wise.

A unified view of existing methods

We now provide a unified view of popular examples of each
approach to cold-start recommendation discussed in the pre-
vious section. Specifically, we will relate them to perhaps
the most natural form of cold-start recommendation matrix,
the linear content-based model

R̂te = XteW (10)

where W ∈ RP×I . Evidently, this is a special case of the
classification approach of the previous section, with f : x �→
WTx. We now show that popular examples of each of the
other three cold-start approaches can be viewed as special
cases of Equation 10. We summarise our findings in Table 1.

Social neighbourhood model

Consider the social neighbourhood model of (Sedhain et al.
2014) (Equation 4). When �, � are standard inner product
operations, the prediction for cold-start users is

R̂te = Xte(X
T
trRtr), (11)

corresponding exactly to the linear model of Equation 10
with a weight matrix W = XTR. Recalling that Rte ≡ 0,
the predicted rating for cold-start user u and item i is thus

R̂[u, i] =
1

2
X[u, :] ·

⎛
⎝ ∑

R[u′,i]=1

X[u′, :]−
∑

R[u′,i]=0

X[u′, :] + 1TX

⎞
⎠

T

.

The third term above is independent of i, and thus plays
the role of a per-user bias that does not affect ranking. The
first two terms correspond to a nearest unnormalised cen-
troid classifier: we measure whether the social metadata
Xu: for the given user is more similar to that of the unnor-
malised metadata centroid of the users that like item i, or
those that dislike item i. The normalised centroid classifier is
also known as the Rocchio classifier in information retrieval
(Manning, Raghavan, and Schütze 2008), and is attained if
we normalise the columns of R to sum to 1.

CMF model

The parameters of the CMF model (Equation 5) can be
learned by iteratively optimising with respect to each in-
dividual parameter, keeping all others fixed. Each such in-
dividual optimisation is a regression problem, and thus ad-
mits a closed form solution. Suppose Z∗,V∗ are the optimal
choices of Z,V, which will depend in some non-trivial way
on R,X. Then, the unregularised optimal solution for U is

U = (RVT
∗ +XZT

∗ )(V∗VT
∗ + Z∗ZT

∗ )
−1 (12)

Thus, the cold-start recommendation matrix is

R̂te = UteV∗ = XteZ
T
∗ (V∗VT

∗ + Z∗ZT
∗ )

−1V∗,
recalling Rte = 0. This is a special case of Equation 10 for
low-rank weight matrix W = ZT

∗ (V∗VT
∗ + Z∗ZT

∗ )
−1V∗.

BPR-LinMap model

For the BPR-LinMap model (Equations 6, 7), for optimal
latent features V∗ and regression weights T∗, we have

R̂te = UteV∗ = XteT∗V∗,
which is a special case of Equation 10 for W = T∗V∗. One
can further explicitly compute the optimal (λT -regularised)
linear regression weights T∗ from Equation 8,

T∗ = (XT
trXtr + λT I)

−1XT
trUtr, (13)

from which we conclude the weight matrix is equivalently

W = (XT
trXtr + λT I)

−1XT
trR̂tr. (14)

Pros and cons of existing approaches

We now assess the pros and cons of each of the above ap-
proaches, using their interpretation as instances of a linear
content-based model to compare them on an equal footing.

The social neighbourhood model is simple to compute
and intuitive, and has been shown to perform well (Sedhain
et al. 2014). However, its choice of weights W is not ex-
plicitly based on optimising some principled objective. Fur-
ther, it does not account for correlations amongst features in
any way. The model thus risks underfitting, as correlations
amongst page likes are intuitively useful to exploit.

The BPR-LinMap model has the opposite problem: while
it accounts for feature correlations, it risks overfitting for
high-dimensional X, as the estimate of T (Equation 13)
from solving a high-dimensional regression problem might
be unreliable. This was indeed observed in the high-
dimensional experiments in (Gantner et al. 2010). As high
dimensional X is the expected scenario for social side-
information, this is an important limitation.

The CMF model implicitly seeks a low-rank factorisa-
tion of the metadata matrix X, and thus is suitable for
high-dimensional social side-information. However, CMF
has limited scalability by virtue of requiring tuning of at
least five hyperparameters (μ, λU , λV , λZ ,K).

To summarise, none of these existing methods simulta-
neously satisfies the desiderata of having an interpretation
as optimising some principled objective; accounting for fea-
ture correlations; being suitable for high-dimensional data;
and being highly scalable to train and tune. We seek to ad-
dress these issues in the next section.
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Our model: LoCo

We present a preliminary attempt at directly learning suit-
able weights W, which leads to our LoCo model.

Warm-up: multivariate linear regression

The previous section established the cold-start predictions of
existing methods as special cases of a linear content-based
model (Equation 10). This viewpoint suggests a natural al-
ternate approach to producing cold-start predictions: directly
optimising the weights W in this linear model to minimise
some principled objective. The most apparent approach to
learn W is by performing multivariate linear regression:

min
W

||Rtr −XtrW||2F +
λ

2
||W||2F , (15)

for which we have the closed form solution

W = (XT
trXtr + λI)−1XT

trRtr. (16)

This linear regression model satisfies several desiderata:
it has a principled training objective, it captures feature cor-
relations (through the weighting by the inverse of the covari-
ance matrix XT

trXtr), it has only a single hyperparameter (λ)
to tune, and it is efficient to train for modest P .

On the other hand, for high-dimensional metadata where
P 
 U , such a model may be prohibitive to train, and pos-
sibly unreliable to estimate (though the use of �2 regularisa-
tion mitigates this somewhat). We resolve these issues next.

LoCo: linear low-rank regression

We now propose our model for cold-start recommendation,
which rests upon three simple but effective insights.

The first insight is that to make the linear regression model
suitable for high-dimensional metadata, we can enforce the
weight matrix W to be low rank, so that spurious correla-
tions are avoided. We thus modify Equation 15 to be:

min
W : rank(W)≤K

||Rtr −XtrW||2F +
λ

2
||W||2F (17)

with K � min(U, I) some latent dimensionality.
Employing a rank constraint comes at a price: the objec-

tive of Equation 17 is now non-convex. Our second insight is
that we can efficiently optimise over a parametrised subset
of low-rank matrices. Let Xtr ≈ UKSKVT

K be the rank-K
SVD approximation of Xtr. Now suppose that we optimise
over W of the form W = VKZ, so that rank(W) ≤ K
automatically. This may be understood as a type of princi-
pal component regression (Hastie, Tibshirani, and Friedman
2009). Since VK is orthonormal, the resulting objective is

min
Z

||Rtr −XtrVKZ||2F +
λ

2
||Z||2F .

Importantly, this has explicit closed form solution

Z = (VT
KXT

trXtrVK + λI)−1VT
KXT

trRtr. (18)

While we have a closed form solution for the weights
W, this relies on being able to compute the truncated SVD
of Xtr efficiently. Naı̈vely, this requires a superlinear de-
pendence on U,P . Our final insight is that an approximate

computation of the SVD can be found efficiently using ran-
domised SVD algorithms (Halko, Martinsson, and Tropp
2011) which have a linear dependence on U,P .

To summarise, we propose:
(a) a low-rank parameterisation of linear model weights;
(b) randomised SVD to project the metadata;
(c) multivariate linear regression to learn the weights.

We call our resulting model of Equation 18 with VK com-
puted by randomised SVD LoCo, for LOw-rank COld-start
recommendation. This model has all the desiderata of lin-
ear regression, while additionally being suitable for high di-
mensional X. Thus, it meets all the desiderata we listed as
lacking in previous methods.

We mention that one could make LoCo nonlinear by pass-
ing XtrVK through some nonlinear activation function f(·),
mimicking a single layer neural network.

Comparison to existing methods

Compared to the social neighbourhood method, the LoCo
weights W explicitly account for correlations among the so-
cial page likes by virtue of using the (projected) covariance
matrix VT

KXT
trXtrVK to scale the weights in Equation 18.

Interestingly, BPR-LinMap (Equation 14) is identical to
the linear regression model of Equation 16, with one cru-
cial difference: in the former, one uses R̂tr in place of Rtr

i.e. one replaces the regression target matrix by a low-rank
approximation. Compared to BPR-LinMap, then, LoCo per-
forms a low-rank approximation on X, rather than R. This
is sensible because X is high dimensional for most social
metadata, and we expect this X to have low-rank structure.

Compared to CMF, LoCo is highly scalable, since com-
puting the randomised SVD of Xtr is much more efficient
than iterative optimisation of Equation 5. Further, LoCo re-
quires tuning of only two hyperparameters (K,λ).

More broadly, while BPR-LinMap and CMF also implic-
itly consider low-rank W, this is a side-effect of the par-
ticular objective considered by these methods. We however
enforce the low-rank contraint explicitly, and obtain our W
through the optimisation of an objective explicitly targetted
to cold-start users. By virtue of directly focussing on pre-
dicting preferences from the metadata, we expect LoCo to
have superior performance to these methods. (This reason-
ing holds even if we were to provide BPR-LinMap with a
low-dimensional projection of Xtr as input.)

Computational complexity of LoCo

The training complexity of LoCo is determined by that of
computing the randomised SVD of Xtr, and computing Z.
The former requires O(K2 · (U + P )) operations (Halko,
Martinsson, and Tropp 2011). For the latter, suppose Rtr

(Xtr) has r (x) nonzeros on average per column (row). Then,
we can compute XtrVK in time O(KUtrx), the term in the
inverse in time O(K2Utr), the inverse itself in time O(K3),
and the remaining matrix multiplication in time O(K2Utr+
KIr). This gives a total complexity of O(K3+K · (Utrx+
Ir) +K2 · (U + P )). Since K � max(Utr, I) in practice,
the first term will typically not be prohibitive.

The prediction complexity of LoCo is that of computing
XteVKZ, which is simply O(KUte(x+ I)).
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Experimental setup

We use four real-world datasets for cold-start evaluation:
(a) Ebook, a private anonymised dataset from a major on-

line ebook retailer with more than 20 million readers. It
contains ebook purchases and Facebook friends and page
likes for a random subset of 30,000 users; these users pur-
chased >80,000 books, and liked ∼6 million pages.

(b) Flickr (Tang and Liu 2009), which consists of 80,513
users, 195 groups joined by the users, and a social net-
work with 5,899,882 friendship relationships.

(c) Blogcatalog (Tang and Liu 2009), which consists of
10,312 users, 39 groups joined by the users, and a social
network with 333,983 friendship relationships.

(d) Hetrec11-LastFM (Cantador, Brusilovsky, and Kuflik
2011), which consists of 1,892 users, 17,632 artists the
users listened to, and the tag assignments the user made
to various artists out of a total 186,479 possibilities.
We create 10 temporal train-test splits for the Ebook

dataset. We create 10 train-test folds on the other datasets
by including random 10% of the users in the test set and
remaining 90% users in the training set.

We compared LoCo to a number of baselines:
• CBF-KNN-Low, a neighborhood recommender where

user-user similarites are computed from the low dimen-
sional projection of user-attributes, viz. Equation 4 with
� as cosine similarity and � as inner product operators,
as used in (Gantner et al. 2010). (We found using the full,
unprojected X to yield significantly worse results.)

• Cos-Cos, viz. Equation 4 with �, � as cosine similarity
operators, which was found to be the best choice on the
Ebook dataset in (Sedhain et al. 2014).

• BPR-LinMap-Low of (Gantner et al. 2010), as in
Equation 7, using the low dimensional projection of
user-attributes. (We also experimented with k-nearest-
neighbor rather than linear regression, but found this ap-
proach to be inferior. See Supplementary material.)

• CMF, as in Equation 5.
We used cosine similarity for the methods relying on sim-

ilarity. As this implicitly normalises the entries of R, we
similarly normalised R as a pre-processing step for LoCo.

We report precision@k, recall@k and mean average pre-
cision (mAP@100) (KDD Cup 2012), and provide standard
error bars corresponding to 95% confidence intervals. We
used cross-validation with grid-search to tune all hyperpa-
rameters. For the latent factor methods, we tuned the la-
tent dimension K from {5, 10, 50, 100, 500, 1000}. For the
methods relying on �2 regularisation, we tuned all regulari-
sation strengths from {10−3, 10−2, . . . , 103}.

Results and analysis

Main results. From Tables 2 – 5, we observe that:
• LoCo is always the best performer on mAP@100, with

improvements over the next best method ranging from
∼5% (Hetrec11-LastFM) to ∼25% (Ebook). A Friedman-
Iman-Davenport test (Demšar 2006) confirms the differ-
ences in average ranks is significant (p = 0.05). A post-
hoc Holm test confirms the difference between LoCo
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Figure 1: LoCo retrieval performance versus number of di-
mensions on the Ebook dataset.
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Figure 2: LoCo retrieval performance versus number of page
likes on the Ebook dataset.

and both CMF and BPR-LinMap-Low to be significant
(p = 0.05), though we cannot reject the null hypothesis
with CBF-KNN-Low or Cos-Cos.

• LoCo is always the best performer on Precision and Re-
call scores with thresholds up to 5, implying accurate rec-
ommendations at the head. At the threshold K = 20,
LoCo is sometimes outperformed by a small margin.

• Among existing methods, the neighbourhood methods
(CBF-KNN-Low and Cos-Cos) had the best overall per-
formance. Surprisingly, they outperform the learning
based BPR-LinMap-Low and CMF approaches, indicat-
ing that the objectives of the latter are perhaps not suffi-
ciently attuned to cold-start recommendation.

• The high variances for all methods on the Ebook
datasetindicate that with temporal splits, there is a poten-
tially strong concept drift in the data that affects all meth-
ods since they do not leverage temporal information.

Sensitivity to latent dimension. In Figure 1, we evalu-
ate the performance (mAP@100) with the latent dimension
K on the Ebook dataset. We observe that performance in-
creases sharply with the number of dimensions, but with
diminishing returns beyond 100 dimensions. Thus, one can
use a modest value of K to efficiently obtain accurate rec-
ommendations.

Sensitivity to page likes. To better understand how social
information helps overcome the cold-start problem, in Fig-
ure 2, we analyse the performance of LoCo with the number
of page likes on the Ebook dataset. We divide the test users
into five categories based on the number of the pages they
have liked. We observe that the performance increases with
the number of page likes, but with diminishing return be-
yond 50 page likes. The high variance for few page likes
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BPR-LinMap-Low CMF CBF-KNN-Low Cos-Cos LoCo

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

@1 0.0088±0.0053 0.0088±0.0053 0.0492±0.0285 0.0492±0.0285 0.0376±0.0222 0.0376±0.0222 0.0380±0.0150 0.0380±0.0150 0.0654±0.0305 0.0654±0.0305

@3 0.0082±0.0038 0.0245±0.0113 0.0333±0.0187 0.1008±0.0560 0.0231±0.0102 0.0692±0.0305 0.0250±0.0100 0.0760±0.0290 0.0433±0.0155 0.1300±0.0466

@5 0.0118±0.0059 0.0588±0.0295 0.0272±0.0134 0.1400±0.0668 0.0215±0.0080 0.1077±0.0398 0.0230±0.0090 0.1170±0.0440 0.0375±0.0114 0.1874±0.0572

@10 0.0120±0.0065 0.1199±0.0647 0.0187±0.0079 0.1874±0.0796 0.0191±0.0059 0.1907±0.0592 0.0170±0.0060 0.1730±0.0590 0.0259±0.0072 0.2589±0.0717

@20 0.0100±0.0048 0.1991±0.0967 0.0108±0.0040 0.2206±0.0792 0.0135±0.0036 0.2696±0.0721 0.0100±0.0030 0.2050±0.0630 0.0151±0.0038 0.3020±0.0752

mAP 0.0409±0.0144 0.0926±0.0439 0.0790±0.0273 0.0750±0.0250 0.1210±0.0406

Table 2: Comparison of cold-start recommenders on Ebook dataset.

BPR-LinMap-Low CMF CBF-KNN-Low Cos-Cos LoCo

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

@1 0.1699±0.0035 0.1350±0.0032 0.1591±0.0029 0.1234±0.0029 0.2060±0.0024 0.1576±0.0019 0.2233±0.0046 0.1757±0.0045 0.2864±0.0044 0.2252±0.0041

@3 0.0961±0.0016 0.2224±0.0046 0.0987±0.0009 0.2170±0.0028 0.1319±0.0017 0.2924±0.0042 0.1363±0.0019 0.3042±0.0048 0.1661±0.0014 0.3696±0.0040

@5 0.0729±0.0011 0.2812±0.0054 0.0755±0.0006 0.2724±0.0036 0.1010±0.0011 0.3669±0.0044 0.1034±0.0013 0.3756±0.0052 0.1199±0.0009 0.4347±0.0047

@10 0.0485±0.0007 0.3718±0.0060 0.0512±0.0005 0.3657±0.0049 0.0658±0.0006 0.4713±0.0049 0.0671±0.0006 0.4784±0.0045 0.0725±0.0006 0.5162±0.0050

@20 0.0328±0.0003 0.5021±0.0052 0.0328±0.0003 0.4667±0.0049 0.0401±0.0002 0.5717±0.0041 0.0412±0.0003 0.5824±0.0039 0.0412±0.0003 0.5831±0.0040

mAP 0.2227±0.0029 0.2152±0.0025 0.2775±0.0023 0.2944±0.0042 0.3453 ± 0.0040

Table 3: Comparison of cold-start recommenders on Flickr dataset.

BPR-LinMap-Low CMF CBF-KNN-Low Cos-Cos LoCo

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

@1 0.1501±0.0210 0.1167±0.0178 0.1859±0.0086 0.1505±0.0078 0.2014±0.0120 0.1600±0.0095 0.3176±0.0094 0.2564±0.0078 0.3765±0.0091 0.3035±0.0081

@3 0.1106±0.0074 0.2548±0.0169 0.1085±0.0036 0.2557±0.0069 0.1463±0.0051 0.3373±0.0111 0.1768±0.0038 0.4099±0.0077 0.2000±0.0041 0.4566±0.0088

@5 0.1013±0.0014 0.3839±0.0077 0.0862±0.0020 0.3332±0.0079 0.1138±0.0019 0.4314±0.0081 0.1326±0.0019 0.4978±0.0074 0.1426±0.0021 0.5324±0.0078

@10 0.0777±0.0013 0.5763±0.0137 0.0656±0.0012 0.4915±0.0089 0.0841±0.0011 0.6047±0.0067 0.0886±0.0013 0.6474±0.0085 0.0890±0.0013 0.6508±0.0071

@20 0.0562±0.0009 0.8100±0.0107 0.0478±0.0007 0.6965±0.0051 0.0588±0.0005 0.8394±0.0046 0.0588±0.0006 0.8427±0.0041 0.0562±0.0007 0.8023±0.0100

mAP 0.2706±0.0142 0.2725±0.0051 0.3265±0.0083 0.4056±0.0064 0.4470±0.0063

Table 4: Comparison of cold-start recommenders on Blogcatalog dataset.

BPR-LinMap-Low CMF CBF-KNN-Low Cos-Cos LoCo

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

@1 0.3253±0.0261 0.0077±0.0012 0.3754±0.0139 0.0094±0.0009 0.5339±0.0294 0.0135±0.0021 0.3654±0.0284 0.0090±0.0012 0.5811±0.0290 0.0142±0.0015

@3 0.2809±0.0217 0.0191±0.0012 0.3302±0.0134 0.0232±0.0012 0.4925±0.0248 0.0344±0.0028 0.3367±0.0233 0.0255±0.0036 0.5176±0.0242 0.0362±0.0026

@5 0.2683±0.0181 0.0300±0.0017 0.3071±0.0093 0.0354±0.0014 0.4508±0.0218 0.0514±0.0031 0.3197±0.0200 0.0387±0.0043 0.4809±0.0222 0.0551±0.0031

@10 0.2399±0.0163 0.0531±0.0028 0.2564±0.0123 0.0595±0.0038 0.3965±0.0126 0.0890±0.0032 0.2807±0.0169 0.0656±0.0052 0.4187±0.0172 0.0958±0.0060

@20 0.2048±0.0133 0.0904±0.0050 0.2097±0.0110 0.0967±0.0062 0.3232±0.0113 0.1439±0.0049 0.2295±0.0142 0.1050±0.0076 0.3398±0.0135 0.1542±0.0070

mAP 0.0871±0.0054 0.0793±0.0047 0.1677±0.0079 0.1218±0.0098 0.1780±0.0095

Table 5: Comparison of cold-start recommenders on Hetrec11-LastFM dataset.

Method BPR-LinMap-Low CMF CBF-KNN-Low Cos-Cos LoCo
Validation time 20 hour 30 mins 2 hour 2 mins 5 mins 10 secs 2 secs 5 mins 3 secs

Table 6: Comparison of validation times on Ebook dataset.

indicate a lack of sufficient information, whereas the high
variance for many page likes indicate a lack of selectiveness
with page likes. Importantly, LoCo makes good item recom-
mendations to users with moderate numbers of page likes.

Runtime comparison. Table 6 compares the hyperparam-
eter validation time needed for all methods on Ebook. LoCo
is seen to be orders of magnitude faster to tune than the
learning-based methods CMF and BPR-KNN-Low. While
the CBF and Cos-Cos methods are faster to tune than LoCo,
the latter is more accurate. Hence, LoCo attains a suitable
balance between accuracy and runtime.

Conclusion

We showed how three popular social cold-start models can
be seen as special cases of a linear content-based model,
with different constraints on the learned weights. We pro-
posed a new model, LoCo, that directly learns a low-rank
linear model efficiently via randomised SVD, and demon-
strated substantial empirical improvements over state-of-
the-art cold-start recommenders.

In future work we aim to explore nonlinear and streaming
variants of our model, as well as means of further driving the
runtime of LoCo down to that of Cos-Cos.
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