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Abstract

In this paper, we consider the problem of predicting demo-
graphics of geographic units given geotagged Tweets that are
composed within these units. Traditional survey methods that
offer demographics estimates are usually limited in terms of
geographic resolution, geographic boundaries, and time in-
tervals. Thus, it would be highly useful to develop computa-
tional methods that can complement traditional survey meth-
ods by offering demographics estimates at finer geographic
resolutions, with flexible geographic boundaries (i.e. not con-
fined to administrative boundaries), and at different time in-
tervals. While prior work has focused on predicting demo-
graphics and health statistics at relatively coarse geographic
resolutions such as the county-level or state-level, we intro-
duce an approach to predict demographics at finer geographic
resolutions such as the blockgroup-level. For the task of pre-
dicting gender and race/ethnicity counts at the blockgroup-
level, an approach adapted from prior work to our problem
achieves an average correlation of 0.389 (gender) and 0.569
(race) on a held-out test dataset. Our approach outperforms
this prior approach with an average correlation of 0.671 (gen-
der) and 0.692 (race).

1 Introduction

Social media data has become increasingly important with
applications to many fields such as health (Culotta 2014a)
and sociolinguistics (Eisenstein et al. 2014). Furthermore,
social media has been used to complement traditional sur-
vey methods as a faster and cheaper approach to collect in-
formation and make predictions (Benton et al. 2016).
Collecting demographics data is usually a long and costly
process which limits the rate and resolution at which this
collection may be performed. The U.S. Census Bureau
releases a population census every 10 years with demo-
graphics data on multiple geographic resolutions (U.S. Cen-
sus Bureau 2010). These geographic resolutions follow a hi-
erarchy: each state is divided into counties, then each county
is divided into tracts, then each tract is divided into block
groups, and each block group is divided into blocks. The
census contains demographics data at the block-level and
moving up to the state-level. Also, The American Commu-
nity Survey (ACS), which is a statistical survey of a sam-
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ple of people prepared by the U.S. Census Bureau, con-
tains 1-year, 3-year, and 5-year moving average estimates of
demographics but with lower resolutions (county-level and
blockgroup-level) and higher error. Another important is-
sue is that the administrative boundaries change every cen-
sus, for example, the 2000 block-level boundaries are differ-
ent from the 2010 block-level boundaries. This raises chal-
lenges for researchers who study populations over decades
because they need to crosswalk from one census to the next.
So, to compare 2000 demographics with 2010 demograph-
ics, they need to figure out how would the 2000 demograph-
ics look like using boundary definitions from 2010.

Using geotagged Tweets to predict demographics of ge-
ographic units can be a complementary method to survey
collection methods as long as their bias can be corrected.
This would be a cheaper and faster approach to estimate de-
mographics data at resolutions finer than what traditional
sources offer. In addition, this approach is not confined to
administrative geographic boundaries but can be adapted to
custom geographic boundaries. Also, it is more flexible by
permitting collecting demographics data at different time in-
tervals (e.g. 6 months).

We present a method to predict demographics of high-
resolution geographic units using geotagged Tweets. The
main idea is to learn to predict demographics of a region
based on characteristics of Tweets in that region. An impor-
tant aspect of our approach is that we do not require label-
ing of individual Tweets. To evaluate our method, we train
models to predict gender and race/ethnicity demographics
of Census predefined geographies at different resolutions
(block, blockgroup, tract, and county) using 2010 Census
demographics data as ground truth. At the block-level, we
achieve an average correlation of 0.585 (gender) and 0.487
(race) on a held-out test dataset. We find that our approach
significantly improves upon the results of a competing ap-
proach adapted from prior work. We also find that for 95%
of blocks, blockgroups, tracts, and counties with at least 100
Twitter users, the relative prediction error is at most 1.98,
1.15, 0.90, and 0.78 respectively.

We discuss related work in Section 2, we introduce neces-
sary definitions, notations, and formally define the problem
in Section 3, we describe our approach in Section 4, and we
present experiments in Section 5.



2 Related Work

The availability of large-scale geotagged Twitter data has
spurred a lot of interest in predicting demographics of ge-
ographic units. It is viewed as a cheaper and faster method
to draw inferences that can complement traditional survey
methods. There are two strategies in general. First is pre-
dicting demographics of geographic units directly. Second
is predicting demographics of Twitter users in those geo-
graphic units individually and then performing some form
of aggregation.

Prior work that employs the first strategy spans several
applications. Eisenstein, Smith, and Xing (2011) predicted
demographics of Zip Code Tabulation Areas (ZCTA) us-
ing geotagged Tweets and Census data. Similarly, Mo-
hammady and Culotta (2014) predicted race composition
of the 100 most populous counties from geotagged Tweets
and then used that for individual-level labeling of Twitter
users. There is also prior work that focused on health statis-
tics. Schwartz et al. (2013b) predicted life-satisfaction of
counties using county demographics and Tweets. Culotta
(2014a) predicted several health statistics (such as obesity
rates) of the 100 most populous counties. FEichstaedt et
al. (2015) predicted atherosclerotic heart disease mortality
rates of counties from Tweets. Ireland et al. (2015) pre-
dicted HIV rates of counties from Tweets. Loff, Reis, and
Martins (2015) predicted well-being of states by estimating
the Gallup-Healthways index. Benton et al. (2016) used su-
pervised topic models to predict responses to miscellaneous
survey questions such as percentage of smokers at the state-
level.

As described, these prior approaches made predictions at
relatively coarse geographic resolutions such as the county-
level which may be due to limitations in ground truth data
availability at finer resolutions (e.g. health statistics). Our
approach predicts demographics at finer geographic resolu-
tions such as the block-level. Furthermore, we explore how
large a population needs to be (i.e. resolution) in order to get
accurate predictions.

Related to the second strategy, there is a rich body of
work on individual-level prediction tasks focusing on at-
tributes of social media users. These attributes include:
gender (Burger et al. 2011; Bergsma et al. 2013; Bam-
man, Eisenstein, and Schnoebelen 2014; Vicente, Batista,
and Carvalho 2015), age (Schwartz et al. 2013a; Moseley,
Alm, and Rege 2014), ethnicity (Chang et al. 2010; Chen
et al. 2015), income and socio-economic status (Preotiuc-
Pietro et al. 2015; Lampos et al. 2016). In addition, several
works predicted a wide-range of attributes including demo-
graphics and emotions (Culotta, Kumar, and Cutler 2015;
Volkova et al. 2015). Adapting these methods to solve our
problem poses several challenges. For example, it requires
supervised training and labeled demographics for large num-
bers of Twitter users. These labels have to be collected
yearly to account for concept drift associated with changing
generations. Also, once Twitter users are labeled, it is not
immediately obvious how to combine these observations to
arrive at the demographics of geographic units since Twit-
ter users with geotagged tweets are a highly biased sample
(Malik et al. 2015). To reduce the sampling bias, Culotta
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Notation | Definition
W; the set of tweeted words that appeared in g;.
Cuw,i # of times w appeared in g;.
C; # of total words that appeared in g;.
Uy 5 # of Twitter users who used w in g;.
U; # of Twitter users who tweeted at least
once from g;.
X Feature vector of g;.
i w Value of feature w in g; .
D Dimension of the feature space.

Table 1: Mathematical notation

(2014b) weighted the contributions of Twitter users based
on their demographics. Also, Almeida and Pappa (2015)
sampled a subset of Twitter users in an area according to
the distribution of the real population in that area. Both ap-
proaches require individual-level labelling of Twitter users.
Our method however directly trains to fix the bias. For ex-
ample, we know the characteristics of Twitter users in an
area (biased) and we know the population characteristics of
an area, and we learn a function (model) that maps one into
the other.

3 Preliminaries

In this section, we setup some necessary definitions, nota-
tions, and formally define the problem. Our dataset is a
set of Tweets {t1,%2,...,tm}. Each Tweet ¢; is a tuple of
the form (loc;, uid;, < wi, wh, wi,... >) where loc is the
GPS location, uid is the user id, and < wy, wo, w3, ... > i8
the sequence of tokens in the Tweet. We have a set of geo-
graphic units {g1, g2, ..., gn }. Each g; is a tuple of the form
(shape;,y;i) where shape is the boundary definition and y
is ground truth count data of a demographic variable (e.g.
gender) of the geographic unit. If we have a demographic
variable with k£ mutually exclusive categories, then y is a
k dimensional vector where y; is the count of category 7,
j € [1, k] (e.g. for gender, y; is the count of males and y, is
the count of females). For each Tweet ¢;, we map it to a geo-
graphic unit g; if shape; contains loc;. Thus, we group the
Tweets into disjoint bags that correspond to the geographic
units:

({t{ };‘V:lh y1)7 ({t%};\glv }’2)7 ) ({t%};v:nlv yn)
where geographic unit ¢ has a set of observed Tweets

{t{ }j\/:zl with a total of N; Tweets and a demographic vari-
able vector y;. Using such a dataset, our goal is to learn a

model f such that for an unseen geographic unit g with a

set of Tweets {tg};yg’l, f({tg};y:gl) = ¥g. Where yg is an
estimate of the true unknown demographics count y.

Mathematical notation is defined in table 1.

4 Method

In this section, we describe our approach to learn the model

J. Our approach relies on computing a feature vector x; €
RP given {t/}:,, for each geographic unit i € [1,n].
Then, we fit a model to predict y;j given x;. Below, we dis-
cuss possible feature engineering and modeling choices.



4.1 Feature Engineering

In accordance with prior work, we focus on features that are
based on lexical content. This is motivated by exploring the
most predictive linguistic patterns of demographics. First
we discuss possible lexical features, then we discuss possi-
ble normalization and transformation schemes that can be
applied to these features.

Features There are several possible lexical features that
can be used to represent geographic units. These include but
are not limited to: lexicons, latent topics, words and phrases
(bag-of-words), and embeddings. These features are not mu-
tually exclusive and can be combined together.

Lexicons are predefined word-to-category mappings that
can be used to represent each geographic unit by the fre-
quency of each category (Schwartz et al. 2013b; Culotta
2014a). Lexicons usually have stronger domain assumptions
(compared to bag-of-words) (OConnor, Bamman, and Smith
2011) and are limited to specific applications such as health
and personality (Culotta 2014a). So, we do not explore us-
ing lexicons as features.

Each geographic unit can also be represented by its dis-
tribution over a set of latent topics, most commonly learned
using latent Dirichlet allocation (Blei, Ng, and Jordan 2003).
Schwartz et al. (2013b) report that this is better than using
lexicons for their task of predicting well-being. Benton et
al. (2016) explored variants of topic models that are guided
by supervision to generate feature representations. Inter-
estingly, they found that the bag-of-words representation is
competitive with the best supervised topic models.

We explored using embeddings as features by learning
representations of geographic units using Paragraph Vec-
tor (Le and Mikolov 2014). This is a similar technique to
Word2Vec (Mikolov and Dean 2013), but rather than learn-
ing representations of words, it learns representations of
paragraphs or documents. We model each g; as a document
consisting of sentences which are the Tweets {t };V: - We
found that bag-of-words is competitive with this approach.

Bag-of-words uses words and/or phrases as features in-
stead of using categories or topics. We use this representa-
tion because it is simpler and has weaker domain assump-
tions (OConnor, Bamman, and Smith 2011).

Normalizations We discuss different ways of counting
and normalizing occurrences of words. Our discussion is
based on using a bag-of-words representation but these tech-
niques can also be applied to lexicons. We start with com-
puting raw counts of tweeted words, c,, ; and w,, ;, for each
word w and region g; where i € [1,n]. ¢, ; is the number of
times a word w is tweeted in region g;. It is oblivious to the
number of Twitter users that used w. So, it is possible for the
feature vector to be skewed by Twitter users that use a word
w many times, either in one or many Tweets. To account for
that, u,,; counts the number of distinct Twitter users that
used w in g;. Since the distribution of geotagged Tweets and
geotag Twitter users is not uniform across regions (Malik et
al. 2015), using raw counts such as ¢, ; and u,, ; as feature
values will result in highly imbalanced feature vectors for
geographic units. To balance these differences between geo-
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graphic units, we normalize c,, ; by dividing by the number
of total tweeted words in region g;, C;; and u,, ; by divid-
ing by the number of Twitter users that tweeted at least once
in region g;, U;. Normalizations help differentiate between
geographic units as they take into account the size of total
observations.

Using these mutually exclusive schemes, we compute fea-
ture values v; ,, for each geographic unit g; and each word w
in the set of tweeted words in g;, W; (for w ¢ W, v; 4, = 0):

e Raw Word: v; ., = ¢y -

Cuw,i

e Normalized Word: v; ,, =

C: -
o Raw User: v; o, = Uy ;.
e Normalized User: v; ,, = “3%*

In our experiments our feature set includes only words
that appear in the training split. This is to ensure that we
account for the effect of out-of-vocabulary words.

Transformations After computing a bag-of-words repre-
sentation using Raw Word, Raw User, Normalized Word,
or Normalized User, we perform feature transformations on
the representation. We explore different transformations:
Term Frequency-Inverse Document Frequency (TFIDF),
Anscombe, Logistic, and Gaussian. Not every transforma-
tion is applied to every representation, for example, TFIDF
is applied to Raw Word and Raw User, and the rest are ap-
plied to Normalized Word and Normalized User.

If we have a feature vector v; for a geographic unit g;
(computed using Raw Word, Raw User, Normalized Word,
or Normalized User), we transform it to x; by applying an
element-wise transformation on each v; ,,. We apply the
transformation only on v;,, # 0 to preserve the sparsity
of our feature vectors.

TFIDF': The word distribution across all geographic units
has a long-tail shape, with few words appearing in all geo-
graphic units and less-frequent words appearing in few geo-
graphic units. The motivation behind using TFIDF is to help
the model take that into account, and re-weight the word
counts inversely. Each geographic unit represents a docu-
ment, we learn the inverse document frequency in the fol-
lowing manner:

idf (w) = log n

1+ {iel,n]:weW}

We use this transformation with Raw Word or Raw User,
SO Uy = Cupi OF U gy = Uyy 4. Then, ;4 = v; 4 (1df (w) +
1). Note that we add a 1 to idf (w) because we do not want to
completely ignore words that appear in all geographic units.
In our experiments, we learn idf (-) based only on the train-
ing split.

Anscombe: We applied this transformation to stabilize
the variance of word frequencies. The distribution of a word
may be right-skewed (i.e. appears a lot in a few geographic
units and appears little elsewhere), the Anscombe transform
helps adjust this skewness and make the distribution roughly
symmetric. It helps turn a random variable distribution to be
more Gaussian (Anscombe 1948). Schwartz et al. (2013a)
applied this transformation in predicting select demograph-
ics of Facebook users. We use this transformation with




_ Cw,i

Normalized Word or Normalized User, so v; ., = 5= or

'“U“ Then, z; 4, = 24/ Vi 0 + %.

Viw =

Logistic and Gaussian: Inspired by the use of activa-
tion functions in neural networks, we explored applying a
non-linear activation function ¢(-) on our word frequen-
cies (computed with Normalized Word or Normalized User).
Our intuition is that the non-linearity of ¢(-) would help
increase the capacity of the model. We separately used

o(x) = H% (Logistic) and ¢(x) = e (Gaussian). We
set Zi. = P(Viw), Where v;, = E- o1 v, = . We
also explored other activation functions such as TanH, Arc-
Tan, and Softsign but they did not show promising results.

4.2 Modeling

We explore two variants of the problem: predicting demo-
graphics of geographic units when population size is un-
known and when population size is known.

Population Size is Unknown In this setting we would like
to predict demographic counts (e.g. gender) y; ; of a region
g; for each category (e.g. male and female) j € [1, k] with-
out access to the population size of g;. We choose a linear re-
gression model for scalability. For each category j € [1, k],
we optimize the following objective function:

n

D (wy-xi = yig)? + Alw;l[3
i=1

1
Wj = arg min 27
w; 2n

where w; is the weight vector learned for category 7, and
A is an [2 regularization parameter to prevent overfitting. We
also explored /1 and ElasticNet regularizations, but they
yielded similar results.

For a region g,, with an unknown demographic category
count y,, j, we map the bag of Tweets {t{t};v:l in region g,
to a transformed feature vector x,, (we use the same con-
figuration that is used in optimizing the objective function,
e.g. Raw Word with TFIDF) and then estimate ¥, ;, where
Yuj = Wj " Xu.

Population Size is Known In this setting we assume that

we have access to the true population count p; in region g;.

We fit a linear regression model to predict log z—’ which
-

is log of the ratio of a demographic category count y; ; to
another demographic category count y; .. We choose one
demographic category as the denominator (e.g. ¢ = 1) and
then learn w; for j € [2, k] by optimizing the following
objective function:

n

o1
w; = arg rrvbljn o E(Wj -x; — log
=

22 4 Al 13
Yiq

To estimate a demographic category count y; ; for region
g; using p;, we compute:

| e
Yij =

Wik )

e AR
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5 Experiments

We evaluate our approach and competing approaches (base-
lines) on both variants of the problem using Census pre-
defined geographies at different resolutions: block, block
group, tract, and county. Among the four, block-level is the
highest resolution, and county-level is the lowest resolution.
In the following subsections we provide details about our
experiments: baselines, data, preprocessing, training, and
results.

5.1 Baselines

We compare our approach with an approach adapted from
(Mohammady and Culotta 2014), where they used Tweets
to predict race/ethnicity composition of counties. In their
approach, they used a bag-of-words representation normal-
ized by Twitter users with tweeted words and words from
description fields of Twitter users as features. We adapt their
approach by using the same types of features. We compute a
bag-of-words representation using User Normalization, and
then we train a model with this representation and evaluate it
on both variants of the problem. Note that in our competing
configurations we do not use features from the description
field of Twitter users.

In the setting where population size is known, we also
compare our models with a baseline that always uses gen-
der and race/ethnicity proportions at the national level to
predict category counts of blocks, blockgroups, tracts, and
counties. The 2015 national level estimates of proportions
are: Male (49.2%), Female (50.8%), White (61.6%), Black
or African American (12.4%), Asian (5.4%), Hispanic or
Latino (17.6%), Other (3%) (U.S. Census Bureau 2016).

5.2 Data

We collected a large dataset of geotagged Tweets using Twit-
ter’s Streaming API from June 12, 2013 to January 31, 2014.
We only included Tweets composed in the contiguous U.S.
which consists of the 48 adjoining states and Washington
D.C. and does not include Alaska and Hawaii for exam-
ple. We used a bounding box of [125.0011, 66.9326]WW x
[24.9493,49.5904]| N .

Based on a Tweet’s GPS coordinates, we annotate it with
the geographic identifier (GEOID) of the block that it ap-
peared in. The U.S. Census Bureau provides geographic
boundary files (shapefiles) for each state, where each shape-
file contains the boundary definitions for all the blocks in
that state. This enables us to map each Tweet to its respec-
tive block. We used 2010 shapefile definitions to match
with 2010 Census demographics data. Overall, we had
565,350,007 Tweets annotated with block-level GEOIDs.

Demographics Data We used data from the 2010 Cen-
sus. The U.S. Census Bureau provides aggregate count
data on different demographics such as gender, age, and
race at multiple geographic levels (including block-level to
county-level). We specifically used data from the Summary
File 1 tables P12 and PS5, for gender and race/ethnicity, re-
spectively. We used the Data Finder tool provided by the
National Historical Geographic Information System (Min-
nesota Population Center 2011) to collect this data. We



collected gender and race/ethnicity data at the block-level
up to the county-level. For gender we used two categories:
Male and Female. For race/ethnicity we used five categories:
White, African American or Black, Asian, Hispanic, and
Other. In each case, the categories are mutually exclusive.
Note that there is a time difference of two and a half years
between the demographics data and Twitter data. This can
bias results and is a direction for future work.

5.3 Preprocessing

Twitter is filled with spam and organizational accounts that
post content we deem irrelevant to our application, as we
are interested in content produced by personal accounts. To
reduce the likelihood of including content from organiza-
tional/spam accounts, we removed Tweets from accounts
with more than 1000 followers or 1000 friends (Lee, Eoff,
and Caverlee 2011; McCorriston, Jurgens, and Ruths 2015)
and Tweets containing URLs (Guo and Chen 2014). We
also removed Retweets by checking for the existence of
retweeted_status field or the RT token in Tweet text
itself. Consequently, our dataset got narrowed down to
423,622,202 Tweets with 4,027,594 unique Twitter users.

To build a bag-of-words representation, we split the text
of the Tweets into unigram tokens. There are several things
to consider when tokenizing Tweets such as: hashtags, user-
name mentions, emails, html entities, emoticons, etc. For
this task, we used Twokenize (Ott 2013), a tokenizer de-
signed for Tweets which treats hashtags, emoticons, blocks
of punctuation marks, and other symbols as tokens. After
tokenizing, we removed username mentions, emails, single
punctuation marks, and English stopwords. We converted
all tokens to lower case. We also chose to keep emoticons as
OConnor et al. (2010) showed in their analysis that groups
with certain demographics (high percentage of Hispanics)
use emoticons a lot.

5.4 Training

For a given geographic resolution, we randomly split the ge-
ographic units that have Tweets into 90% training and 10%
testing (e.g. we train on 90% of blocks, and predict de-
mographics of the remaining 10%). 10% of the geographic
units in the training split were chosen randomly as a valida-
tion set. Note that this splitting is done separately for each
geographic resolution. We have nyyqin - Ntest €Xamples:
5,188,608 - 576,513 (block); 194,610 - 21,624 (blockgroup);
65,239 - 7,249 (tract); 2,798 - 311 (county). Then we com-
pute a configuration (e.g. Raw User with TFIDF) and use all
the words that appear in the training split as features (more
than 22 million features). Since this is a large-scale learning
problem we utilize stochastic gradient descent (SGD) to fit
our models. To use SGD, we have to choose a learning rate
update policy. We used inverse scaling:

n = o
TP

Where 7 is the initial learning rate, 7 is the time step

(indexed by epoch and training example), and p is a hyper-

parameter that affects the decrease rate of the learning rate.

There are several hyper-parameters that need to be selected
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before training. We performed a grid search on the following
hyper-parameters:

e \c{107%,107°,107%,0.001,0.01,0.1}
e 1o € {107%,107°,1074,0.001,0.01,0.1, 1.0, 10.0}

The hyper-parameter combination that scored the highest
R? (coefficient of determination) score on the validation set
was used for training on the entire training split (training
and validation). We shuffled the training dataset after each
epoch of SGD training. We fixed the number of epochs to
10 and p = 0.25. Early experiments showed that training for
more epochs (e.g. 100) does not improve the performance
significantly, and likewise changing the value of p.

5.5 Results

We evaluate the baselines and our models (with different
feature engineering configurations) on both variants of the
problem (population count is unknown vs. known). In
both variants we predict demographic category counts (y;
for j € [1, k]) and evaluate the performance on the test split
using Pearson correlation r and the coefficient of determi-
nation R2. Note that R? compares the performance of a
model relative to the baseline of always predicting the aver-
age value of the test set. Table 2 summarizes the results of
our experiments (due to limited space we include only re-
sults of our best configurations). For Pearson correlations,
all of them are statistically significant using a two-tailed test
with p-value < 1074

Population Size is Unknown In this setting, we find that
our models outperform the baseline adapted from (Moham-
mady and Culotta 2014), where correlation r (averaged
across gender and race) improves by a factor of 2.84 (block),
1.41 (blockgroup), 1.31 (tract), and 1.21 (county) using our
User Normalization with Gaussian configuration.

We find that our feature transformations (e.g. Anscombe)
improve upon the results of plain bag-of-words representa-
tions significantly. Compared with plain User Normalization
(which is better than plain Word Normalization), correlation
r improves by a factor of 1.88 averaged across gender and
race and then across resolutions using User Normalization
with Gaussian. This tells us that such transformations help
predict demographics better.

Population Size is Known In this setting, we find that
predictions improve overall and are better than predictions
in the other variant (this is expected because we know total
population size). For the task of predicting gender counts
(in this case g corresponds to female), the baselines and our
models perform comparably to each other. This is the case
because there is little variation in gender proportions across
geographies, so if total population is known, even a baseline
that predicts half of that for both categories will do well.
For the task of predicting race counts (in this case ¢ cor-
responds to white), we find that our models outperform the
baseline of predicting counts based on national-level pro-
portions. Correlation r improves by a factor of 1.15 (block),
2.05 (blockgroup), 2.42 (tract), and 1.12 (county) using our
Raw User with TFIDF configuration. Compared to the base-
line adapted from (Mohammady and Culotta 2014), corre-



Population Size Unkown

Population Size Known

Res Demo | Metric - WL | UA UG C B WA | WL | UG | RUT
Gonder 1T 0.183 | 0576 | 0.554 | 0.585 | 0.957 | 0.958 | 0.960 | 0.960 | 0.959 | 0.959

Block R? 0.033 | 0.333 | 0.308 | 0.344 | 0.922 | 0.914 | 0.916 | 0.917 | 0.916 | 0.915
Race LT 0.195 | 0480 | 0.462 | 0.487 | 0.620 | 0.708 | 0.701 | 0.700 | 0.704 | 0.714

R? 0.039 | 0.235 | 0.218 | 0.243 | 0.377 | 0.216 | 0.320 | 0.376 | 0.391 | 0.449

Gonder 1T 0389 | 0.671 | 0.670 | 0.667 | 0.980 | 0.982 | 0.982 | 0.982 | 0.979 | 0.982

BG R? 0.150 | 0.449 | 0.448 | 0.444 | 0.959 | 0.963 | 0.964 | 0.964 | 0.958 | 0.964
Race LT 0.569 | 0.692 | 0.690 | 0.683 | 0.407 | 0.780 | 0.783 | 0.788 | 0.783 | 0.835

R? 0311 | 0.491 | 0.480 | 0.480 | 0.184 | 0.613 | 0.632 | 0.632 | 0.617 | 0.676

Gonder 1T 0458 | 0.723 | 0.726 | 0.723 | 0.985 | 0.986 | 0.987 | 0.987 | 0.982 | 0.988

Tract R? 0.204 | 0.523 | 0.523 | 0.522 | 0.965 | 0.972 | 0.973 | 0.972 | 0.965 | 0.974
Race LT 0.669 | 0.756 | 0.757 | 0.752 | 0365 | 0.796 | 0.833 | 0.838 | 0.825 | 0.884

R? 0.457 | 0.585 | 0.587 | 0.578 | 0.151 | 0.640 | 0.705 | 0.709 | 0.696 | 0.761

Gonder 1T 0.809 | 0.986 | 0.985 | 0.988 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999

County R? 0.513 | 0.969 | 0.968 | 0.973 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999
Race LT 0.745 | 0.879 | 0.868 | 0.898 | 0.850 | 0.963 | 0.834 | 0.945 | 0.962 | 0.956

R? 0.491 | 0.740 | 0.726 | 0.775 | 0.694 | 0.826 | 0.551 | 0.837 | 0.886 | 0.796

A - Anscombe, B - (Mohammady and Culotta 2014), BG - Blockgroup, C - National Proportions, Demo - Demographic
G - Gaussian, L - Logistic, Res - Resolution, RU - Raw User, T - TFIDF, U - Normalized User, W - Normalized Word

Table 2: Performance results on multiple resolutions across gender and race/ethnicity prediction tasks. In each problem variant,
bold results in a row represent configurations that are statistically indistinguishable using a paired t-test with p-value > 0.05.
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Figure 1: Relative error for 95% of geographic regions with
at least 100 Twitter users. These results are obtained using
our Raw User with TFIDF configuration when population
size is known.

lation r improves by a factor of 1.01 (block), 1.07 (block
group), 1.11 (tract), and 1.05 (county).

We have shown that when we are interested in learning
proportions of demographics, our approach outperforms ex-
isting baselines. Interestingly, we find that our best configu-
ration is Raw User with TFIDF (which is not the case with
the other variant). This may in part be due to the fact that
User Normalization reduces the skewness of feature vectors
and the fact that the TFIDF transformation increases the im-
portance of less-frequent words and dampen the importance
of more frequent words.
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Prediction Accuracy vs. Number of Twitter Users We
explore the finest geographic resolution that we can predict
demographics at, with reasonable accuracy. We plot the av-
erage relative error across gender and race versus number of
Twitter users (those with geotagged Tweets) in Figure 1. We
find that 95% of geographic regions with at least 100 Twitter
users, have low relative errors. In these regions, the relative
error is at most 1.98 (block), 1.15 (blockgroup), 0.90 (tract),
and 0.78 (county).

6 Conclusion

In this paper, we have shown that geotagged Tweets can be
used to estimate demographics of high-resolution geogra-
phies. Our method can be used as an alternative or a com-
plement to survey methods. We have shown that certain
feature transformations such as Anscombe, TFIDF, Logistic,
and Gaussian significantly improve prediction performance
relative to competing baselines. We have also shown that the
our method is able to learn proportions of demographic cat-
egories and can provide accurate predictions at regions with
at least 100 Twitter users.

For future work, it is worth bringing attention to the effect
of data sampling rate on prediction. According to Eisen-
stein et al. (2014), word frequencies normalized by users
(Normalized User) are not invariant to the sampling rate of
the data. If we remove half the tweets, then these frequen-
cies will decrease because the number of users will decrease
more slowly than raw word counts. So, it would be interest-
ing to investigate methods that can minimize the variance of
such normalizations to the sampling rate.
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