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Abstract

Recent years have witnessed an extensive popularity of con-
volutional neural networks (CNNs) in various computer vi-
sion and artificial intelligence applications. However, the per-
formance gains have come at a cost of substantially inten-
sive computation complexity, which prohibits its usage in
resource-limited applications like mobile or embedded de-
vices. While increasing attention has been paid to the acceler-
ation of internal network structure, the redundancy of visual
input is rarely considered. In this paper, we make the first
attempt of reducing spatial and channel redundancy directly
from the visual input for CNNs acceleration. The proposed
method, termed ESPACE (Elimination of SPAtial and Chan-
nel rEdundancy), works by the following three steps: First,
the 3D channel redundancy of convolutional layers is reduced
by a set of low-rank approximation of convolutional filters.
Second, a novel mask based selective processing scheme is
proposed, which further speedups the convolution operations
via skipping unsalient spatial locations of the visual input.
Third, the accelerated network is fine-tuned using the train-
ing data via back-propagation. The proposed method is evalu-
ated on ImageNet 2012 with implementations on two widely-
adopted CNNs, i.e. AlexNet and GoogLeNet. In compari-
son to several recent methods of CNN acceleration, the pro-
posed scheme has demonstrated new state-of-the-art acceler-
ation performance by a factor of 5.48× and 4.12× speedup
on AlexNet and GoogLeNet, respectively, with a minimal de-
crease in classification accuracy.

Introduction

In recent years, convolutional neural networks (CNNs) have
demonstrated impressive performance in various computer
vision and artificial intelligence applications, such as object
recognition (Krizhevsky, Sutskever, and Hinton 2012)(Si-
monyan and Zisserman 2014)(Lecun et al. 1998)(Szegedy
et al. 2015)(He et al. 2015), object detection (Girshick et
al. 2014)(Girshick 2015)(Ren et al. 2015), and image re-
trieval (Gong et al. 2014b). The cutting-edge CNNs are
computationally intensive, in which the speed limitation
mainly resorts to the convolution operations in the convolu-
tional layers1. For example, an 8-layer AlexNet (Krizhevsky,

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In this paper, we focus on the acceleration of the convolutional
layers, as it takes up over 80% running time in most existing CNNs,

Sutskever, and Hinton 2012) with about 600,000 nodes costs
240MB storage (including 61M parameters) and requires
729M FLOP2 to classify one image with size 224 × 224.
Such cost is further intensified in deeper CNNs, e.g. a 16-
layer-VGGNet (Simonyan and Zisserman 2014) with 1.5M
nodes costs 528MB storage (including 144M parameters)
and requires about 15B FLOP to classify one image.

Under such circumstance, the existing CNNs cannot be
directly deployed to scenarios that require fast processing
and compact storage, such as streaming or real-time ap-
plications. On one hand, CNNs with million-scale param-
eters typically tend to be over parameterized and heavily
computed (Denil et al. 2013). Therefore, not all parame-
ters and operations (e.g. convolution or non-linear activa-
tion) are essentially necessary in producing a discrimina-
tive decision. On the other hand, it is quantitatively shown in
(Ba and Caruana 2014) that, neither shallow nor simplified
CNNs provide comparable performance to deep CNNs with
billion-scale online operations. Therefore, to accelerate on-
line CNNs predictions without significantly decreasing the
decision accuracy, a natural thought is to discover and dis-
card redundant parameters and operations in deep CNNs.

Accelerating CNNs has attracted a few research attention
very recently, most of which focus on accelerating the con-
volutional layer, which is the most time-consuming part of
CNNs. In the literature, the related works can be further cat-
egorized into four groups, i.e. designing compact convolu-
tional filters, parameters quantization, parameters pruning
and tensor decomposition.

Designing compact convolutional filters. Using a com-
pact filter for convolution can directly reduce the com-
putation cost. The key idea is to replace the loose and
over-parametric filters with compact blocks to improve the
speed, which significantly accelerate CNNs like GoogLeNet
(Szegedy et al. 2015), ResNet (He et al. 2015) on sev-
eral benchmarks. Decomposing 3× 3 convolution with two
1 × 1 convolutions was used in (Szegedy, Loffe, and Van-
houcke 2016), which achieved state-of-the-art acceleration
performance on object recognition. SqueezeNet (Iandola,
Moskewicz, and Ashraf 2016) was proposed to replace 3×3
convolution with 1 × 1 convolution, which created a com-

i.e. AlexNet, GoogLeNet and VGGNet.
2FLOP: The number of Floating-point operation to classify one

image with CNNs.
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Figure 1: The framework of the proposed ESPACE convolutional computation for CNNs acceleration.

pact neural network with about 50× fewer parameters and
comparable accuracy comparing with AlexNet. However,
the above compact filters are specifically designed for re-
spective models, which are less general for compressing and
accelerating other deep models.

Parameter quantization. Both Gong et al. (Gong et al.
2014a) and Wu et al. (Wu et al. 2016) employed vector
quantization over parameters to reduce the redundancy in
the parameter space. Chen et al. (Chen et al. 2015) pro-
posed a HashedNets model which used a low-cost hash func-
tion to group weights into hash buckets for parameter shar-
ing. Gupta et al. (Gupta et al. 2015) used 16-bit fixed-point
presentation to replace the full-precision point when using
stochastic rounding based CNN training, which significantly
reduced memory and point operations while only degenerat-
ing little accuracy in classification. Recently, direct training
with binarized weights in CNNs was proposed, for instance,
BinaryConnect (Courbariaux, Bengio, and David 2015),
BinaryNet (Courbariaux and Bengio 2016) and XNOR-
Networks (Rastegari et al. 2016). The main idea is to di-
rectly learn binary-value weights or activations during the
model training. However, the accuracy of such binary nets
are significantly degenerated when dealing with large CNNs
such as GoogLeNet.

Parameters pruning. The third group is to prune redun-
dant, non-informative weights in a pre-trained CNN model.
For example, Optimal Brain Damage (LeCun et al. 1989)
used Hessian based loss function to prune a network by re-
ducing the number of connections. Srinivas and Babu (Srini-
vas and Babu 2015) explored the redundancy among neu-
rons, and proposed a data-free pruning to remove redundant
neurons. Han et al. (Han et al. 2015) proposed to reduce the
total amount of parameters and operations in the entire net-
work. The deep compression (Han, Mao, and Dally 2015)
removed the redundant connections and quantized weights
(so that multiple connections share the same weight), and
then used Huffman coding to encode the quantized weights.
It is worthy to note that, the above pruning schemes typically
produce sparse CNNs with non-structured random connec-
tions, which typically causes irregular memory access, i.e. a

complex data storage structure that adversely impacts prac-
tical implementations of CNNs in hardware platforms.

Tensor decomposition. Several recent works have been
proposed to decompose generalized convolution into a se-
quence of tensor-based convolutions with fewer parameters
(Denton et al. 2014)(Lebedev et al. 2014)(Kim et al. 2016).
Such approaches typically adopt inexact low-rank factoriza-
tions, which can considerably reduce computations by se-
lecting a lower rank to approximate the original convolution.
However, these methods are potentially problematic due
to the vanishing/exploding gradients in back-propagation,
which is difficult to fine-tune the deeper CNN that was
formed by decomposing a single convolutional layer into
four layers, especially for GoogLeNet and ResNet.

However, all above methods still focus on reducing the
redundancy of internal structure inside CNNs, which fully
accepts all external visual input. In such a case, the redun-
dancy outside CNNs is typically ignored. However, such vi-
sual input is by nature redundant, in which less discrimina-
tive and unsalient information widely exist either spatially
or spectrally. The former refers to spatial redundancy, while
the latter refers to channel redundancy. Therefore, it would
be highly beneficial to remove such kinds of redundancy di-
rectly from the visual input.

In this paper, we make the first attempt towards eliminat-
ing redundancy of visual input for CNN acceleration. To
this end, we propose a novel CNN acceleration approach
to jointly eliminate spatial and channel redundancy in the
convolutional layers, termed ESPACE (elimination of spa-
tial and channel redundancy), which is shown in Fig. 1(b).
In this model, the channel redundancy is firstly eliminated
by a low rank basis of filters to approximate the convolu-
tional filters. Subsequently, the spatial redundancy is elim-
inated by masking and removing unsalient spatial regions.
Several convolutional masks are proposed to select salient
responses in the convolutional layers to be sent layer-by-
layer in a bottom-up manner. Finally, the CNN model with
ESPACE layers is fine-tuned via stochastic gradient descent
with back-propagation.

The proposed ESPACE acceleration scheme is evaluated
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on the large-scale ImageNet dataset (Deng et al. 2009)
and implemented on the widely-used AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) and GoogLeNet (Szegedy et
al. 2015). Comparing to the most recent CNN accelera-
tion models, the proposed ESPACE model has the state-of-
the-art rate-distortion3 by a factor of 5.48× and 4.12× on
AlexNet and GoogLeNet, respectively, with a minimal de-
crease in the classification accuracy.

Eliminating Spatial and Channel Redundancy

Preliminaries

Convolution is the most time-consuming operation in CNNs.
From the perspective of tensor product, it transforms an in-
put tensor I of size H ×W × C into an output tensor O of
size H ′ ×W ′ ×N using the following linear mapping:

Oh′,w′,n =

d∑
i=1

d∑
j=1

C∑
c=1

Ki,j,c,nIhi,wj ,c, (1)

where the set of convolutional kernels K is given by a tensor
of size d× d× C ×N . Here, d× d corresponds to the spa-
tial dimensions, while C and N are the number of input and
output channels, respectively. The height and width of the
input are denoted as hi = h′ + i− 1 and wj = w′ + j − 1.
For simplicity, we assume a unit stride with no zero-padding
and skip biases. This computation process is illustrated in
Fig. 1(a). The cost for the convolutional layer with N filters
of size d×d acting on C input channels is O(NCd2H ′W ′).
In order to describe the channel redundancy discussed sub-
sequently, Eq. 1 is rewritten as:

On = Kn ∗ I =

C∑
c=1

Kc
n ∗ Ic, n = 1, 2, · · · , N, (2)

where Kc
n ∈ R

d×d, c ∈ [1, 2, · · · , C], n ∈ [1, 2, · · · , N ].
Additionally, we define the set of all spatial positions of the
output as Ω = {1, · · · , H ′} × {1, · · · ,W ′} and the set of
indices of ESPACE mask as I ⊂ Ω, in which the outputs are
calculated exactly. We further denote m = |I| as the number
of positions that needs to be computed exactly, and r = m

|Ω|
as the spatial convolutional rate.

In practice, many deep learning frameworks (e.g. caffe
(Jia et al. 2014) and MatConvNet (Vedaldi and Lenc 2015))
compute tensor-based convolutional operator by relying on
highly optimized matrix-by-matrix multiplication of the ba-
sic linear algebra packages, such as ATLAS, Interl MKL
and OpenBLAS. For example, we can transform an input
tensor of size H × W × C into an input matrix M of size
H ′W ′× (d×d×C) using im2row operator. The rows of M
are elements of patches of input tensor with size d× d×C.
At the same time, we can transform convolutional filters into
a filter matrix of size (d× d×C)×N using reshaped oper-
ator. Then, we can obtain the output tensor by reshaping the
result matrix by multiplying data and filter matrices. In the

3Rate-distortion evaluates the acceleration performance in
which the rate and distortion represent the model speedup and clas-
sification precision, respectively.

latter case, we only consider specific spatial points decided
by ESPACE mask, which would be introduced in depth in
the following section.

ESPACE Layers

The ESPACE layer is an accelerated convolutional layer by
reducing spatial and channel redundancy, which contains
three steps to accelerate convolution. Fig. 1(b) illustrates the
overall framework. First, channel redundancy is reduced by
a low rank decomposition of 3D convolutional filters. Sec-
ond, masks are introduced to skip convolution operation in
certain spatial locations. Third, the network is fine-tuned
to further eliminate the approximation errors accumulated
layer-by-layer.

Removing channel redundancy. We reduce the chan-
nel redundancy by factorizing each convolutional layer as
a sequence of two regular convolutional layers with rect-
angular filters. The first convolutional layer has K filters
of spatial size d × 1, resulting in a filter bank {Vk ∈
R

d×1×C : k ∈ [1, 2, · · · ,K]} to produce output feature
maps S ∈ R

H′×W×K . The second convolutional layer has
N filters of spatial size 1 × d, resulting in a filter bank
{Tn ∈ R

1×d×K : n ∈ [1, 2, · · · , N ]} to produce output fea-
ture maps O ∈ R

H′×W ′×N with the same size of the con-
volutional output. Therefore, the convolution by the original

filters On =
C∑

c=1
Kc

n ∗ Ic in Eq. 2 is approximated by:

On ≈ Tn ∗ S =
K∑

k=1

Tk
n ∗ (

C∑
c=1

Vc
k ∗ Ic)

=
C∑

c=1

( K∑
k=1

Tk
n ∗Vc

k

)
∗ Ic,

(3)

where one of the original filters can be approximated by the
sum of separable filters Tk

n ∗ Vc
k. By far, we reduce the

computation complexity from the original O(NCd2H ′W ′)
to O

(
K(CW + NW ′)dH ′). Assuming the image width

W � d and the same value of K,N,C, ESPACE speedups
about d times compared with the original convolution.

We can obtain the approximated low-rank filter basis
Tn,Vk by reconstructing the outputs of the original convo-
lutional layer. This is done by optimizing two separable ba-
sises given the training data, which amounts to:

min
{Tk

n,Vc
k
}

|X|∑
i=1

N∑
n=1

∥∥∥Kn∗fl−1(Xi)−
C∑

c=1

K∑
k=1

Tk
n∗Vc

k∗fl−1(X
c
i )
∥∥∥2

2
,

(4)

where fl(Xi) is the input of the l-th layer (or the output of
the (l − 1)-th layer), Xi ∈ X is one example in the training
dataset. This problem can be solved by an alternative op-
timization layer-by-layer in a bottom-to-up manner (Jader-
berg, Vedaldi, and Zisserman 2014). Moreover, we use rank
selection (Zhang et al. 2015) to select a desired rank K
of convolutional filters in each layer, which determines the
speedup ratio.

Removing spatial redundancy. In order to reduce the
spatial redundancy of convolutions, only outputs at a small
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fraction of spatial positions are computed, while the remain-
ings are interpolated using nearest neighbors from the afore-
mentioned set of positions.

Specifically, we define a mask I ⊂ Ω, which determines
spatial output that needs to be calculated exactly. The func-
tion q : Ω → I, (h,w) �→ q(h,w) returns the index of the
nearest neighbor in I according to the Euclidean distance as
below:

q(h,w) = argmin
(h′,w′)∈I

√
(h− h′)2 + (w − w′)2. (5)

Note that the function q(h,w) may be calculated in advance.
We can approximate the original O using Ô as follows:

Ô = O(q(h,w), n). (6)

Therefore, we only need to calculate the values O(h,w, n)
for spatial index (h,w) ∈ I and it is further approximated
efficiently by matrix multiplication which is described in
Preliminaries. In this case, the input matrix M contains
m = |I| rows instead of the original H ′W ′ = |Ω| rows
(i.e. spatial convolutional rate r = m

|Ω| ). Therefore, the value
of m is much smaller, the speedup ratio is higher, and the
memory size required to store is lower.

Collaborative Removal of Spatial & Channel Redun-
dancy. We further jointly remove both spatial and channel
redundancy. Specifically, by using the low-rank separable
filters, the original convolution is splitted into two separa-
ble (and computational light) convolutions. Subsequently,
the spatial redundancy in each two separable convolution is
further reduced by only computing output at a small fraction
of spatial positions. In order to restore the network accuracy,
we perform fine-tuning on the whole approximated network.

To that effect, we obtain the derivatives of the ESPACE
layer by the chain rule, which calculates the derivatives
∂Ô(q(h,w),n)
∂O(h,w,n) as follows:

∂Ô(h′, w′, n′)
∂O(h,w, n)

=

{
1, q(h,w) = (h′, w′) and n = n′,
0, otherwise.

(7)

It means the derivatives are summed over spatial regions that
share the same interpolated values during back-propagation.

By far, we reduce the computation complexity from the
original O

(
NCd2H ′W ′) to O

(
Kd(Cm1+Nm2)

)
, where

m1 = H ′W,m2 = H ′W ′. In particular, assume H �
d,W � d,m1 = m2 = 0.5 ·H ′W ′ and the same value of
K,N,C, we can further speedup the ESPACE layer about
2d times comparing to the original convolution.

ESPACE Masks

Random ESPACE-Conv Mask: The m = |I| spatial
points are chosen randomly with probability p = m

|Ω| which
is shown in Fig. 2(a). However, it is hard to estimate the spa-
tial position of these points, and it is undesirable if the points
tend to cluster for m 	 |Ω|, since it leads to high interpo-
lated error with the randomness.

Uniform ESPACE Mask: In such a way, a set of uniform
scatter points is chosen, which is defined as follows:

I =
{
H ′

h ·1, · · · , H ′
h ·�

√
m�}×{

W ′
w ·1, · · · ,W ′

w ·�√m�}, (8)

(a) Random (b) Uniform

(c) ImageNet image
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) E(h′0, w
′
0) (e) Impact

Figure 2: ESPACE masks in the second convolutional layer
in AlexNet with r = 0.25. the black pixels in positions require
to be calculated exactly. Best view in color.

where H ′
h = 
 H′√

m
�,W ′

w = 
 W ′√
m
�. An example of the uni-

form mask is shown in Fig. 2(b). This mask is more scatter
to produce richer feature representation than random ones.
However, it is not robust when facing changed objects.

Impact ESPACE Mask: We propose an impact ESPACE
mask to estimate the impact of each output position on the
loss function of CNNs, from which we choose the most im-
portant positions to be computed. Recall that by removing
the channel redundancy, two respective convolutional filters
are obtained. Correspondingly, the first impact mask is de-
ployed over the first convolutional computation, while the
second mask is deployed over the second computation.

Let L(O) be the loss function of CNN (e.g. negative pos-
terior log-likelihood), which is a function of the convolu-
tional layer outputs O. Suppose Ô is obtained from O by re-
placing one element (h′

0, w
′
0, n0) with zero element. There-

fore, we can estimate the impact of the position (h′
0, w

′
0, n0)

by using the first-order Taylor expansion:

|L(O)− L(Ô)| ≈
∣∣∣∣

∂L(O)

∂O(h′
0, w

′
0, n0)

O(h′
0, w

′
0, n0)

∣∣∣∣, (9)

where the value ∂L(O)
∂O(h′

0,w
′
0,n0)

is obtained via back-
propagation. In order to calculate the total impact at a spatial
position (h′

0, w
′
0) ∈ Ω, we sum over all the channels and av-

erage this estimation over the training dataset as below:

G(h′
0, w

′
0;O) =

N∑
n=1

∣∣∣∣
∂L(O)

∂O(h′
0, w

′
0, n)

O(h′
0, w

′
0, n)

∣∣∣∣. (10)

E(h′
0, w

′
0) = EO∼P (X )G(h′

0, w
′
0;O). (11)

We take the top-m positions with the highest values of
E(h′

0, w
′
0) to form the impact ESPACE mask. An example

of impact ESPACE mask is shown in Fig. 2(e). The value
E(h′

0, w
′
0) tends to be higher in the center, which is due to

the fact that objects typically appear in centroid positions in
the ImageNet dataset.
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Table 1: The evaluations of computational time on CPU
(ms), GPU (ms), and classification error rates (Top-1/5 Err.)
of AlexNet and GoogLeNet with batch size 50. Values are
averaged over 5 runs in all Figures and Tables of this paper.

Model CPU
(ms)

GPU
(ms) Top-1 Err. Top-5 Err.

AlexNet 1,445 74 42.27% 19.11%
GoogLeNet 3,697 263 31.07% 10.86%

Experiments

Experimental Settings

Datasets. We evaluate on the ImageNet 2012 dataset (Deng
et al. 2009), which contains more than 1 million training im-
ages from 1,000 object classes, and a validation set of 50,000
images. Each image is associated with one ground truth cat-
egory. We train the proposed ESPACE model on the training
set of ImageNet 2012, and test it on the validation set using
single-view testing (central patch only).
The original convolutional neural networks. The
GoogLeNet is a deeper and wider Inception network with
21 convolutional layers with filter sizes alternating among
1×1, 3×3 and 5×5. The AlexNet contains 5 convolutional
layers with larger filter sizes among 3×3, 5×5 and 11×11.
More details of their architectures are given in (Szegedy
et al. 2015)(Krizhevsky, Sutskever, and Hinton 2012). The
networks are obtained from Caffe Model Zoo4.
Baselines. We compare the proposed CNNs using the ES-
PACE layer to two groups and 4 state-of-the-art approaches,
including: 1. tensor decomposition based acceleration (LRD
(Jaderberg, Vedaldi, and Zisserman 2014): low rank decom-
position, CPD (Lebedev et al. 2014): CP-Decomposition),
and 2. parameter quantization (BC (Courbariaux, Bengio,
and David 2015): BinaryConnect, Q-CNN (Wu et al. 2016):
Quantized CNN). For all baselines, we use their reported
results under the same setting for fair comparison. The pro-
posed ESPACE model is trained (or fine-tuned) using Caffe
and run on a 24-core Intel E5-2620 CPU, NVIDIA GTX TI-
TAN X graphics card with 12GB and 32G RAM. The learn-
ing rate starts at 0.0001 and is halved every 10,000 iterations
with batch size 100 for AlexNet and 32 for GoogLeNet. The
weight decay is set to be 0.0005 and the momentum is set to
be 0.95.
Evaluation Protocol. The classification error on the valida-
tion set is employed as the evaluation protocol. We use the
top-5 classification error to evaluate the accuracy degener-
ation of different acceleration methods. Then we measure
the acceleration performance in term of the rate-distortion,
which reflects the balance between acceleration ratio and the
increase of classification error. In our ESPACE method, rate-
distortion is controlled by K (the number of output chan-
nels) and r1 = m1

H′W , r2 = m2

H′W ′ (the spatial convolutional
rate). We fix K using rank selection (Zhang et al. 2015) and
set the same values of r1, r2 varying among 2

3 ,
1
2 ,

1
4 ,

1
5 and 1

8
in order to better analyze the acceleration performance. We

4http://dl.caffe.berkeleyvision.org/
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Figure 3: Results of different masks in Conv2 of AlexNet.
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Figure 4: Results of single layer in Conv2 of AlexNet and
inception 3b (3× 3).

compare the computation time of AlexNet and GoogLeNet
in Tab. 1, together with their classification error on the Ima-
geNet 2012.

Single Layer Results

We explore the best rate-distortion of the proposed ES-
PACE on the bottleneck convolutional layers of AlexNet
(i.e. Conv2 which consumes 23.6% of the evaluation time.)
and the most operational Inception layer 3b with 3 × 3 of
GoogLeNet (i.e. Inception 3b with 304M operations). In or-
der to select a best ESPACE mask, We first analyze the re-
sults of different ESPACE masks with several (K, r1, r2) pa-
rameter settings in the single convolutional layer (i.e. Conv2
in AlexNet), which is presented in Fig. 3. We can see that
the impact ESPACE mask works best both with and without
fine-tuning, while classification error is dropping substan-
tially with high speedup rate.

We compare our results to 4 state-of-the-art approaches on
acceleration in Conv2 of AlexNet and Inception 3b (3×3) of
GoogLeNet. As for parameter setting in Conv2 of AlexNet,
the parameter (i.e. rank) in LRD is set among 16, 24, 32,
48, 64 and 128, which is the same with CPD parameters
(i.e. rank). The hyper-parameters (i.e. quantized parame-
ters) of Q-CNN is set among 4 pairs (4,64), (6,128), (6,128)
and (8,128). For BC, which has no parameter to tune, the
speedup rate is fixed as 12.02. Based on the setting of spa-
tial convolutional rate in the Evaluation Protocol, we only
set the parameters of ESPACE (i.e. K) as 71 in Conv2 of
AlexNet with ESPACE impact mask, and 59 in Inception
3b (3 × 3) of GoogLeNet with ESPACE uniform mask, re-
spectively. As for parameters setting in Inception 3b (3× 3)
of GoogLeNet, we only change the parameters of LRD and
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Table 2: Speeding-up all conv. layers of AlexNet.

Model Method Para. Speed-up
(CPU)

Top-5
Err. ↑

A
le

xN
et

LRD ∼

1.33× 0.00%
2.39× 0.00%
3.13× 0.57%
4.15× 1.37%
4.67× 2.41%

CPD ∼

1.67× 0.00%
2.87× 0.31%
3.87× 1.12%
4.83× 3.73%
5.44× 7.12%

BC ∼ 11.23× 10.23%

Q-CNN

4/64 3.32× 0.94%
6/64 4.32× 1.90%

6/128 3.71× 0.36%
8/128 4.27× 0.60%

ESPACE

∼/0.667/0.667 1.89× 0.00%
∼/0.5/0.5 2.27× 0.00%
∼/0.25/0.25 4.15× 0.01%
∼/0.2/0.2 5.48× 0.97%

∼/0.125/0.125 8.12× 8.89%

CPD with the same value among 1, 4, 8, 16, 32 and 64, while
keeping the remaining parameters of other methods with the
same setting above.

Fig. 4 shows a consistent trend in rate-distortion except
Q-CNN, which is due to the influence of codebook. To ana-
lyze the quantitative results on Conv2 of AlexNet, for tensor
decomposition, CPD achieves a better classification error to
LRD when the speedup rate is high. Instead, by adding spa-
tial redundancy of external visual input, ESPACE greatly im-
proves the rate-distortion comparing to CPD. ESPACE also
performs much better than BC and Q-CNN (4.72× with no
loss and 6.11× with minor accuracy drop by 0.1%). To ex-
plain, BC can speedup the convolutional layer by a high
factor (e.g. 12.02 for AlexNet), but the binarization of pa-
rameters leads to higher quantization error, which is hard
to be adaptive when we want to control the speedup rate.
Q-CNN achieves comparatively better performance (6.06×
with 0.33% dropping in classification accuracy) comparing
to those of LRD and CPD. However, Q-CNN is also hard to
achieve high speedup rate, which might be due to the lim-
ited codebook size. In contrast, ESPACE achieves the best
rate-distortion by comparing to other baselines. Second, for
Inception 3b (3 × 3) with higher speedup rate, it is limited
to increase the top-5 error instead. Especially, for tensor de-
composition, it is noted that the speedup rate is very limited
for LRD and CPD (1.93× and 1.78×, respectively), even if
the rank is set to 1. It is interesting to find that LRD can
achieve a better rate-distortion than CPD. As an explana-
tion, the spatial size of filter and internal structure of in-
ception leads to higher difficulty in fine-tuning multiple lay-
ers based on CP decomposition. By fixing the rank K by
rank selection (i.e. 59), we remove the spatial redundancy
of internal visual information, which leads to the best rate-
distortion (3.11× with 0.15% dropping in classification ac-
curacy) comparing to the baselines.

Table 3: Speeding-up all conv. layers of GoogLeNet.

Model Method Para. Speed-up
(CPU)

Top-5
Err. ↑

G
oo

gL
eN

et

LRD ∼

1.21× 0.00%
2.31× 0.00%
2.89× 0.51%
3.57× 1.03%
4.02× 5.16%

CPD ∼

1.34× 0.00%
2.42× 0.14%
3.25× 1.37%
3.97× 3.43%
4.68× 5.57%

BC ∼ 8.35× 13.59%

Q-CNN ∼
3.43× 0.63%
3.96× 1.38%
4.23× 1.97%
4.56× 1.76%

ESPACE

∼/0.667/0.667 2.05× 0.00%
∼/0.5/0.5 2.78× 0.00%
∼/0.25/0.25 3.76× 0.04%
∼/0.2/0.2 4.12× 0.68%

∼/0.125/0.125 4.63× 2.89%

Whole Network Results

We further speedup all convolutional layers in AlexNet and
GoogLeNet with ESPACE. The rank K of ESPACE in each
layer is computed by rank selection, and the spatial convo-
lutional rate r1, r2 in each layer is fixed among 2

3 ,
1
2 ,

1
4 ,

1
5

and 1
8 . We evaluate the quantitative results of the whole net-

work by taking several layers with high computation com-
plexity (i.e. the middle three convolutional layers of AlexNet
and “Conv1”, “Conv2”, “Inception 3b” and “Inception 4e”
of GoogLeNet) into account, since the acceleration rate is
less significant for the remaining layers in these CNNs. The
quantitative results of all methods are shown in Tab. 2 and
Tab. 3. For AlexNet, ESPACE accelerates the computation
of all the convolutional layers by a factor of 5.48× with
a dropping of 0.97% top-5 error, which is the best rate-
distortion comparing to other methods. For GoogLeNet, ES-
PACE also achieves much better results by a factor of 4.12×
with a dropping of 0.68% top-5 error than other methods.
We can see that it is hard to fine-tune the network using CPD
due to the vanishing gradients in back-propagation.

Conclusion

In this paper, we present a novel ESPACE model for CNN
acceleration. Differing from previous approaches that re-
side in reducing the internal redundancy of CNNs, ESPACE
accelerates convolutional computations greatly by directly
eliminating both spatial and channel redundancy from the
visual input. First, the 3D channel redundancy of convolu-
tional layers is reduced by a set of low rank approxima-
tion of filters. Second, the spatial redundancy is reduced
by skipping unsalient spatial locations of the visual input,
which is achieved via a novel mask based selective process-
ing scheme. Finally, the entire ESPACAE network is fur-
ther fine-tuned to improve classification accuracy. We have
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demonstrated that ESPACE can lead to state-of-the-art rate-
distortion by a factor of 5.48× and 4.12×, with less than
1% accuracy drop comparing to several recent acceleration
methods on AlexNet and GoogLeNet, respectively.
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