
Predicting Soccer Highlights from
Spatio-Temporal Match Event Streams

Tom Decroos, Vladimir Dzyuba, Jan Van Haaren, Jesse Davis
KU Leuven, Department of Computer Science, 3001 Leuven, Belgium

{tom.decroos, vladimir.dzyuba, jan.vanhaaren, jesse.davis}@cs.kuleuven.be

Abstract

Sports broadcasters are continuously seeking to make their
live coverages of soccer matches more attractive. A recent
innovation is the “highlight channel,” which shows the most
interesting events from multiple matches played at the same
time. However, switching between matches at the right time
is challenging in fast-paced sports like soccer, where interest-
ing situations often evolve as quickly as they disappear again.
This paper presents the POGBA algorithm for automatically
predicting highlights in soccer matches, which is an impor-
tant task that has not yet been addressed. POGBA leverages
spatio-temporal event streams collected during matches to
predict the probability that a particular game state will lead to
a goal. An empirical evaluation on a real-world dataset shows
that POGBA outperforms the baseline algorithms in terms of
both precision and recall.

Introduction

Recent technological advances have enabled the large-scale
collection of soccer data. Companies like Prozone1 and
Opta2 rely on optical tracking systems and human annota-
tors to gather high volumes of data during matches in ma-
jor soccer competitions such as the Champions League. The
tracking systems automatically record the locations of the
players and the ball at a high frequency, while teams of an-
notators enrich the dataset by annotating the notable events
that happen on the pitch. The data are collected live allowing
broadcasters to show interesting statistics and visualizations.

With the increasing competition from mobile sports apps
and social media, sports broadcasters are continuously seek-
ing to improve their live coverages. A recent innovation is
the “highlight channel”, which shows live action from mul-
tiple matches played simultaneously. FOX Sports’ Multi-
Match 90-channel, for instance, switches from one Cham-
pions League match to another depending on which match
is currently the most interesting to watch.

The challenge for broadcasters is to switch between
matches at the right time. This task is especially challeng-
ing in fast-paced sports like soccer, where interesting game
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1http://prozonesports.stats.com
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Figure 1: Our proposed POGBA algorithm predicts high-
lights in soccer matches from spatio-temporal match data.

states often emerge and disappear extremely quickly. Typi-
cally, highlight channels only switch to a match after a goal
has been scored, but ideally they would switch several sec-
onds earlier. For that to happen, sports broadcasters need a
predictive model telling them when an interesting game sit-
uation is about to arise.

This paper addresses the novel but important task of pre-
dicting the probability that a game situation will lead to a
goal in the near future. Although this task could most nat-
urally be modeled as a conditional probability estimation
problem, several factors make this a challenging problem.
First, very few goals are scored in a soccer match. Second,
no two game states are identical as players can freely move
around the pitch. Third, a game can evolve into many differ-
ent ways depending on the actions of the players.

To address this task, we propose the POGBA (Prediction
of Goals by Assessing Phases) algorithm for automati-
cally predicting highlights in soccer matches from spatio-
temporal match data. More specifically, our algorithm pre-
dicts the probability that a given game state will lead to a
goal. Instead of directly modeling the conditional probabil-
ity, POGBA exploits the insight that goals are preceded by
goal attempts, which are much more frequent than goals.
Viewing the available spatio-temporal data as one long
stream of events, POGBA first estimates the probability that
a game state will lead to an attempt, and then estimates the
probability that the attempt will lead to a goal. An empirical
evaluation for predicting highlights on a real-world dataset
comprising 69 soccer matches shows that POGBA outper-
forms several baseline approaches in terms of F1 score.
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Preliminaries
We introduce the notation used in this paper and provide
background on soccer, the data, and dynamic time warping.

Notation

We use upper case to denote sets of objects, lower case to de-
note individual objects, e.g., x ∈ X , and boldface to denote
random variables and sets thereof, e.g., x ∈ X.

Let E = [. . . ei−1, ei, ei+1 . . .] denote a discrete stream
of events and ei denote an individual event. Each event is a
tuple (l, t, a), where l is the event’s type or label, t a time-
stamp, and a a tuple of event attributes. We use l(e) and t(e)
to refer to an event’s label and timestamp, respectively. The
set of possible attributes varies for different event types. Fur-
thermore, let L denote the finite set of possible event types
and l∗ ∈ L a special event type called critical. Events of this
type are of particular interest in a given application. We will
use e∗ to refer to an event e where l(e) = l∗.

Given a timestamp t and a user-defined time window
length ω (e.g., 10 seconds), we use E−ω to denote the subse-
quence of events in the previous window, i.e., [et−ω, . . . , et].
Similarly, E+ω denotes the subsequence of events in the fol-
lowing window, i.e., [et+1, . . . , et+ω]. Note that the number
of events in a window varies depending on the properties
of the stream. The problem addressed in this paper requires
making inferences about E+ω given E−ω .

Soccer

Soccer is a ball sport played between two teams of eleven
players each on a grass pitch. The objective in soccer is to
score goals by getting the ball into the opponent’s goal. A
match is won by the team that scores the most goals. Each
team consists of ten outfield players and one goalkeeper.
Outfield players mostly use their feet and head to move the
ball from one place on the pitch to another, while goalkeep-
ers are the only players that are allowed to touch the ball
with their hands and arms in a designated area of the pitch.

Dataset

The dataset consists of play-by-play data for 69 soccer
matches from a Belgian professional soccer club. The data
for each match consist of a match sheet with details on the
players and managers, an event stream, and tracking infor-
mation for the players as well as the ball. However, the track-
ing information is only available for thirteen matches.

For each match, the event stream contains around 2,600
events of over 40 different types. Besides passes between
players, the most frequent events include players running
with the ball, receiving the ball, shooting towards goal, foul-
ing other players, crossing the ball, and clearing the ball.

For each event, the type, the players involved, a time-
stamp, and the start and end location are known. Depending
on the type, additional information can be available such as
the body part and the type of play (i.e., open or set play).

Dynamic Time Warping

Dynamic time warping (DTW) is a state-of-the-art distance
measure for time-dependent sequences (Müller 2007). Un-
like basic Euclidean distance, DTW does not require that

sequences have the same length and is insensitive to minor
mismatches between sequences, such as delays or shifts. In-
tuitively, the sequences are “warped” in a nonlinear fash-
ion to match each other. Given two univariate numeric se-
quences E = [e1, . . . , eM ] and F = [f1, . . . , fN ], DTW
typically employs a dynamic programming approach to eval-
uate the cost of all possible alignments. The DTW distance
is then the cost associated with the best (i.e., lowest cost)
alignment. Often, constraints are incorporated into the cal-
culation to limit how much warping can occur.

POGBA Algorithm

We address the following problem:
Given: A subsequence of an event stream E−ω , where ω

is a user-defined window length.
Predict: The probability that a critical event e∗ occurs in

the next ω seconds.
We focus on predicting goals. This problem presents several
challenges. First, this problem can naturally be viewed as es-
timating the conditional probability P (∃e∗ ∈ E+ω | E−ω).
However, goals occur very infrequently in soccer and a huge
number of game situations can lead to a goal. Hence, there
may be insufficient data to learn an accurate conditional dis-
tribution. Consequently, we will model this conditional dis-
tribution indirectly by using a generative model. Second, the
problem requires projecting how an event stream will evolve
over multiple time steps. We model the evolution of a se-
quence by using a nearest-neighbor-based scheme.

The remainder of this section is organized as follows.
First, we explain POGBA’s four key elements: (i) defining
the generative model, (ii) preprocessing the event stream,
(iii) estimating the probabilities, and (iv) making predic-
tions. Next, we discuss its efficiency. Finally, we explain
how to predict highlights in soccer matches using POGBA.

Generative Probabilistic Model

We first identify a set of (application-specific) event types
LC ⊂ L called preconditions, which satisfy two criteria.
One, these events should occur much more frequently than
a critical event. Two, the probability that a critical event is
preceded by a precondition is arbitrarily close to 1.

P (∃eC ∈ E | e∗ ∈ E, t(e∗) > t(eC)) ≈ 1

where eC denotes an event such that l(eC) ∈ LC . Essen-
tially, if we observe a critical event, it was almost cer-
tainly preceded by a preconditional event. In soccer, goal
attempts (e.g., headers, shots, penalties, etc.) are precondi-
tional events. Attempts occur much more frequently than
goals and a goal is almost always preceded by an attempt.

Based on the above insight, we approximate the desired
conditional distribution with the following joint distribution:

P (e∗, eC , E−ω) =

P (e∗ | eC)× P (eC ∈ E+ω | E−ω)× P (E−ω) (1)

where P (e∗ | eC) captures the probability that an attempt
results in a goal, P (eC ∈ E+ω | E−ω) is the probability

1303



of observing a goal attempt in the next ω seconds given the
observed event stream E−ω , and P (E−ω) is the probability
of observing the input sequence.

Stream Preprocessing

The training data are subsequences of events, which we ob-
tain as follows. For each match, we divide the event stream
into subsequences of length ω seconds. We allow an overlap
of τ seconds and thus let a new window start every ω − τ
seconds. While this is a straightforward procedure, we need
to account for the following two domain-specific issues.

The first issue is that the time between two consecutive
events greatly differs from one match to another due to a
difference in intensity and the unreliability of human an-
notators. We account for this by generating a virtual event
every half a second. We set the features of these virtual
events based on the features of the preceding and succeeding
events. Real-valued features (e.g., spatial location) are set
via linear interpolation. Categorical features take the value
of the preceding event. Intuitively, the previous event (e.g.,
a pass, shot or dribble) can be viewed as being “in progress”
if no new event has been recorded.

The second issue is that the attacking team is not always
playing in the same direction. More specifically, the attack-
ing team plays from left to right in some of the subsequences
and from right to left in others. We account for this by
normalizing the subsequences such that the dominant team,
which is the team possessing the ball in the majority of the
events, is always playing in the same direction.

Estimating Parameters

The prediction by Equation 6 is agnostic to which team may
score. Since we want to measure how good or bad the cur-
rent game situation is for each team, we have to compute the
probability that each team will score at any given time point.

Estimating P (e∗ | eC). For our soccer task, estimating
this probability requires predicting P (goal | attempt), which
we do by training a probabilistic classifier. We evaluate a
variety of different classifiers in the empirical evaluation.

We construct one example for each occurrence of a pre-
conditional event in the training set. There are three pos-
sible labels for each example: the dominating team has an
attempt and scores, the non-dominating team has an attempt
and scores, and either team has an attempt but there is no
goal. Each example is described by features such as the dis-
tance to goal, shot angle, number of passes in the last ω
seconds, average ball speed in the last ω seconds, and av-
erage ball angle in the last ω seconds. These features are
commonly used for this task (Ijtsma 2015; Eastwood 2015;
Caley 2015; Lucey et al. 2014).

Estimating P (eC ∈ E+ω | E−ω). Estimating this prob-
ability requires projecting how the current event sequence
will evolve over the next ω seconds, as this will influence
whether a goal attempt is likely or not. Given the cur-
rent subsequence E−ω , we employ a weighted k-nearest-
neighbor approach and search the training set to find similar
sequences to E−ω . Then, for each retrieved neighbor E′, we
use E′+ω (i.e., the events that occur in the next ω seconds
after E′) as a projection of how E−ω will evolve.

To measure similarity between E−ω and a training event
subsequence E′, we use a multivariate variant of DTW:

d(E−ω, E
′) =

√√√√
n∑

i=1

DTWi(E−ω, E′)2 (2)

where DTWi is the DTW-based similarity of E−ω and E′
in the ith dimension. We consider n = 2 dimensions: the x
and y coordinates of the event’s location.

After identifying the k nearest neighbors, the probability
is computed as

P (eC | E−ω) =

∑
E′∈NN(E−ω)

1
d(E−ω,E′)2�dom(E′)

Z
(3)

where �dom(E′) is an indicator function that is 1 if a pre-
conditional event for the dominating team occurred in the ω
seconds following E′ and 0 otherwise, and Z is a normal-
ization constant defined as:

Z =
∑

E′∈NN(E−ω)

1

d(E−ω, E′)2
. (4)

The probability of a preconditional event for the non-
dominating team can be computed in an analogous manner
by changing the indicator function in the appropriate way.

Making Predictions

Finding potential game situations of interest requires per-
forming marginal inference in the generative model defined
by Equation 1 to estimate the probability of the critical event
occurring in the near future given the current game situation.
Given the previous window, we marginalize over all possible
preconditions as follows:

P (e∗ ∈ E+ω | E−ω) =∑
eC

(
P (eC ∈ E+ω | E−ω)× P (e∗ | eC)

)
(5)

The first term P (eC ∈ E+ω | E−ω) represents the prob-
ability of observing a preconditional event in the next ω
seconds. Computing the second term requires constructing
features based on the next ω seconds of the event stream.
Clearly, we do not know how the current event stream will
evolve. Hence, the nearest-neighbors mechanism for com-
puting P (eC ∈ E+ω) occurs during inference to project pos-
sible evolutions of the current stream. Thus, the marginaliza-
tion can be written as:

P (e∗ ∈ E+ω | E−ω) =

∑
E′∈NN(E−ω)

1
d(E−ω,E′)2�dom(E′)

Z
× P (e∗ | eC) (6)

where �dom(E′) and Z are defined in the Estimating Param-
eters subsection. The features used to make the prediction
P (e∗ | eC) are constructed based on E′+ω (i.e., the observed
ω second window following E′ in the training data). Algo-
rithm 1 provides pseudocode for the full prediction pipeline.
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Algorithm 1 Making predictions
Parameters: Set of event sequences {Ei}, window length

ω, window overlap τ , number of neighbors k

Subsequences S =
⋃

SPLIT(Ei, ω, τ )
P ∗ = CRITICALEVENTMODEL(

{
s ∈ S | eC ∈ s

}
)

function PREDICT(E−ω)
NN = NEARESTSEQUENCES(E−ω , k, S)
Z =

∑
E′∈NN d(E−ω, E

′)−2

p = 0
for E′ ∈ NN do

if eC ∈ E′ then
p ← p+ P ∗(eC)×d(E−ω, s)

−2/Z

return p

Efficiency

The prediction time for a subsequence is dominated by iden-
tifying its nearest neighbors (i.e., the NEARESTSEQUENCES
method in Algorithm 1). As DTW has a relatively high com-
putational cost, performing an exhaustive search to identify
the nearest neighbors is undesirable. Unfortunately, tradi-
tional index trees are unsuitable for multivariate streaming
data. Consequently, we use a vantage-point (VP) tree (Yian-
ilos 1993), which achieves efficient ordering using an
application-specific distance metric. Using a VP tree, identi-
fying nearest neighbors scales logarithmically in the number
of training examples. VP trees do not require a metric based
on a coordinate form, but do require a distance metric, and
DTW does not satisfy the triangle inequality (Müller 2007).
However, empirical evidence strongly suggests that DTW
almost always satisfies the triangle inequality on real-world
data (Vidal et al. 1988). Thus, we feel that the run-time im-
provements of using a VP tree outweigh the small risk of
potentially missing a nearest neighbor.

Predicting Highlights Using POGBA

For a given match, we identify highlights in three steps.
First, we construct a time series by building one ω-second
window starting at each second of the match. For each win-
dow, we compute Equation 6, which yields a time series
P = [p1, ..., pn], where pi is the predicted probability at
time step i and n is the number of windows in the match.

Second, we smooth the predicted probabilities using ex-
ponential smoothing. For each probability pi, the smoothed
probability si = α · pi + (1− α) · si−1, where α is a
user-specified parameter and s0 = p0. Hence, we obtain a
smoothed time series S = [s1, ..., sn]. Figure 1 shows the
smoothed probabilities for 15 minutes of gameplay.

Third, we detect peaks in the time series S. We consider
a smoothed probability si to be a peak if the following three
conditions hold:

1. si is larger than its immediate neighbors si−1 and si+1;
2. si is larger than the mean of all smoothed probabilities;
3. si is the largest peak within the interval [i − w, i + w]

where w is a user-defined window size.
We predict each peak to be a highlight.

Experiments
First, we evaluate POGBA’s performance on the core high-
light prediction task and then present several auxiliary ex-
periments that provide additional information about its com-
ponents. All experiments use the dataset from the Prelimi-
naries section, which is described in more detail below.

Highlight Prediction (Main Experiment)

When evaluating POGBA’s performance for highlight pre-
diction in soccer matches, we aim to show the benefits of its
two core components.

1. Considering full spatio-temporal data (as opposed to static
spatial-only snapshots).

2. Indirectly estimating the conditional probability of critical
events (Equation 6).

To our knowledge, the specific task that we tackle has not
been addressed before. Hence, we devised strong baseline
algorithms based on the core components of POGBA, re-
lated tasks, and domain knowledge. More specifically, we
compare the following approaches:

POGBA: Our proposed approach, which considers the full
spatio-temporal data and performs the indirect probability
estimation.

SpatDir: A baseline that only considers the spatial data,
i.e., it ignores an event sequence’s temporal evolution and
performs direct conditional probability estimation.

SpatIndir: A baseline that only considers spatial data,
but uses the same indirect conditional probability estima-
tion technique as POGBA. This baseline is based on an
expected-goals model, which is the most advanced met-
ric for quantifying goal attempts in the soccer analytics
community (Ijtsma 2015; Lucey et al. 2014).

SpatTempDir: A baseline that considers full spatio-
temporal data and performs direct probability estimation.
This baseline is a state-of-the-art technique for time series
classification (Wang et al. 2013; Bagnall and Lines 2014).

Final 4th: A deterministic baseline that predicts a highlight
for the dominating team if, in a given minute, it spent at
least ω seconds in the final quarter of the pitch, i.e., close
to the opponent’s goal (see Figure 2).

Random: A baseline that predicts timestamps and teams
for highlights uniformly at random.
To construct the spatial-only baselines, we divide the soc-

cer pitch into 20 zones, as shown in Figure 2. In the predic-
tion phase, each static approach (i.e., Spatdir and SpatIndir)
discards all events in the window E−ω , except for the last
one et−1; determines the pitch zone in which it occurred;
and returns the probability estimate for this zone. The base-
lines differ in the way they estimate the goal probability for
the given zone:

Pz
∗ = P (e∗ ∈ E+ω | zone (et−1) = z)

1. SpatDir: Direct goal probability estimation

Pz
∗ =

1 +#Goals within ωs from an event in z

1000 + #Events in z
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Time, s Event X Y Team Player Windows

225.1 Running with ball +3 virtual events↓ 3560 2100 a q
227.0 Pass +2 virtual events↓ 3560 2100 a q
228.8 Shot on target (eC) 4960 −810 a r
229.1 Diving save 5240 −450 b s
229.6 Out for corner +56 virtual events↓ 5250 3200 − −
258.1 Cross +3 virtual events↓ 5225 3375 a t
259.9 Clearance +1 virtual event↓ 4400 −50 b u
261.2 Pass 4140 950 a v
261.3 Reception 4190 1060 b w

Table 1: An anonymized excerpt of raw sequence data, showing several available event attributes. Overlapping windows contain
a varying number of non-virtual events. In this paper, we only use the x- and y-coordinates for inference.

Figure 2: Division of the pitch into 20 zones for the baseline
approaches. The direction of play is from left to right.

2. SpatIndir: Indirect goal probability estimation

Pz
∗ =

1 +
∑

Attempts within ωs from an event in z

P (goal | attempt)

1000 + # Events in z

where 1/1000 is the prior goal probability. Each zone’s con-
ditional probability estimate is computed from the data.

Ground Truth

Soccer highlights are a subjective concept. A goalless 0:0
draw can have more highlights than a run-of-the-mill 2:1
match. Therefore, instead of limiting ourselves to goals as
highlights, we construct the ground truth from judgments of
professional journalists. For 25 matches, we manually select
highlights from live text commentary downloaded from the
leading Belgian sports website. The following is an example
message corresponding to the data excerpt shown in Table 1:

49’: Excellent attack from [Team a] via [Player q] who
launches [Player r]. [Player q] temporizes and then
finds [Player r], whose shot is stopped by [Player s].

In particular, we consider goals, goal attempts, and penal-
ties (“attempt highlights”) as well as penalty claims, crosses,
dribbles, opponent errors, and offsides (“non-attempt high-
lights”). The highlights from the latter group only include

the events that merited being mentioned in the live com-
mentary, e.g., not all offsides were automatically considered
highlights. This results in 644 highlights in total. The ground
truth consists of a set of highlight timestamps annotated with
the team to which a particular highlight is attributed. These
highlights are never used during the training phase.

Data and Methodology

Our dataset, which covers 69 matches, contains 179,000
events, 2,027 preconditions, and 185 critical events. In addi-
tion, our stream-preprocessing procedure generates 423,000
virtual events. We split each match into subsequences of ten
seconds allowing an overlap of five seconds between con-
secutive subsequences. Hence, each subsequence covers 20
events, which can be actual or virtual events, and the overlap
between consecutive subsequences amounts to ten events.
After preprocessing our dataset, we obtain 62,000 subse-
quences, where each subsequence corresponds to an exam-
ple. Table 1 shows an anonymized excerpt of the data.

We predict highlights as explained earlier. As the time-
stamps in the commentary feeds are coarse-grained and ap-
proximate, we consider a prediction correct, if there is a true
highlight in the commentary feed within 90 seconds of the
peak. If peaks for both teams fall in the same window, we at-
tribute the highlight to the team with the highest probability.
We compute performance measures using the “leave-one-
match-out” procedure. For each match, we train the model
on the 68 other matches and compute the precision and re-
call for the remaining match aggregated over both teams.
We report average precision, recall, and F1 score over the
25 matches that we manually selected highlights from.

Based on our preliminary experiments and domain knowl-
edge, we set the number of nearest neighbors k to 100, the
exponential smoothing parameter α to 0.2, and the peak de-
tection window w to 18. The choice of w is based on the
analysis of the training data. It showed that, on average,
a noteworthy event (e.g., a goal attempt) happens approxi-
mately every three minutes. Hence, we set the peak detec-
tion window to 18, which corresponds to 90 seconds, as this
yields roughly one detected peak per three minutes.

Our unoptimized Python implementation classifies a win-
dow in approximately three seconds. Hence, we can predict
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Temporal Indirect
Precision Recall F1aspect estimation

POGBA � � 0.44 0.61 0.51

SpatTempDir � − 0.43 0.59 0.50
SpatIndir − � 0.36 0.46 0.40
SpatDir − − 0.34 0.39 0.36

Final 4th − − 0.22 0.72 0.33
Random − − 0.05 0.05 0.05

Table 2: Precision and recall for highlight prediction.

highlights in real-time since we use a five-second overlap
between consecutive windows.

Results

Table 2 summarizes the results. POGBA outperforms all the
baselines in terms of F1, indicating that its core components
of considering the full spatio-temporal data and performing
indirect probability estimation are essential to the highlight
prediction task. Random highlight prediction is practically
infeasible. The simple deterministic baseline Final 4th has
the highest recall at the expense of low precision. The base-
line SpatDir, which neither considers the temporal aspect
nor performs indirect critical event probability estimation,
achieves a recall of 39% and a precision of 44%. Introducing
indirect probability estimation into the baseline SpatIndir
slightly increases the recall at the expense of precision. In-
troducing full spatio-temporal data into the baseline Spat-
TempDir allows increasing both measures.

Figure 3 shows POGBA’s output for the second half of
a representative match, including probability estimates, pre-
dicted highlights, and ground-truth highlights. We discuss
the match in detail and highlight some of POGBA’s errors.
Even though the match ended in a goalless draw, the ground
truth contains over 20 highlights. The precision is 39% and
recall is 44% for highlight prediction on this match, which
is below the average performance over the whole dataset.
False positives often cluster together, along the stretches
where one team controls the game, e.g., the stretch after the
60th minute for Team A. Furthermore, false positives tend to
correspond to peaks with lower predicted probabilities than
those of true positives, which suggests that more sophisti-
cated estimation of the average level in the peak detection
algorithm might improve performance. Finally, a false posi-
tive for Team A slightly before the 80th minute indicates the
ground truth’s imperfections: in that moment, a player of
Team B committed a foul leading to a yellow card, implying
a highly favourable situation for Team A.

Auxiliary Experiments

We briefly overview two auxiliary experiments concerning
individual building blocks of POGBA. More extensive and
detailed results are available in the online supplement.3

3https://dtai.cs.kuleuven.be/sports/pogba

Goal attempt prediction. We consider a simplified ver-
sion of this task, where we only predict whether an attempt
will occur in the next window, instead of predicting its at-
tributes, as required by the full highlight-prediction pipeline.
Only 5% of the windows are followed by an attempt. The
DTW approach used in the previous experiments attains an
area under the ROC curve (AUROC) of 0.8. The nearest-
neighbor classifier based on the Euclidean distance between
the last events in each window performs considerably worse,
only attaining an AUROC of 0.6. This further illustrates the
utility of considering full spatio-temporal data.
Goal probability estimation. This task is equivalent to
probabilistic classification. In our data, only 9% of the at-
tempts results in a goal. We compare four state-of-the-art
probabilistic classifiers: Naive Bayes, Logistic Regression,
Random Forests, and Extremely Randomized Trees (ERT).
Empirically, the overall performance is not sensitive to the
choice of the classifier. The AUROC values are high, rang-
ing from 0.73 to 0.79. In the main experiment, we used ERT.

Related Work

Our approach is related to learning from time series and
sports analytics.
Learning from time series. Nearest-neighbor-based meth-
ods with dynamic time warping (Berndt and Clifford 1994)
(NN-DTW) are the state-of-the-art techniques for time se-
ries classification (Xi et al. 2006; Shokoohi-Yekta, Wang,
and Keogh 2015). Alternative approaches based on symbolic
time series abstractions (Lin et al. 2007; Rakthanmanon and
Keogh 2013; Baydogan, Runger, and Tuv 2013), are neither
faster, nor more accurate than NN-DTW (Wang et al. 2013;
Bagnall and Lines 2014). Hence, we use a NN-DTW variant
for estimating the event probabilities.

Alternatively, highlight prediction can be seen as an in-
stance of outlier detection in time series (Gupta et al. 2014).
However, outlier detection is usually an unsupervised task,
whereas we evaluate on labeled examples. Goals might
be considered outliers, but situations potentially leading to
goals are more frequent and interesting on their own.
Sports analytics. The task of estimating P (goal | attempt) is
a popular research topic in the soccer analytics community,
where it is known as the expected-goals value of an attempt.
The approaches proposed to date are mostly logistic regres-
sion models using different features of the attempts (Ijtsma
2015; Caley 2015; Lucey et al. 2014).

Furthermore, predicting how a game state will evolve has
been studied for other sports. Cervone et al. (2014) propose
the Expected Possession Value (EPV) model for basketball,
which gives the number of points a team is expected to score
during a possession. Routley and Schulte (2015) introduce a
conceptually similar model for ice hockey.

Conclusions

This paper presents the POGBA algorithm for automati-
cally predicting highlights in soccer matches from spatio-
temporal data. The algorithm views this task as predicting
the probability that a game state will lead to a goal. It first

1307



Consecutive false positives in the stretch 
where Team A controls the match

False positive due to ground truth 
imperfection: yellow card for the opponent

Probabilities of false positives tend to 
be lower than those of true positives

Figure 3: POGBA’s goal probability estimates for both teams, detected peaks, and the ground truth highlights for the second
half of a match. Although the match was a 0:0 draw, the ground truth contains more than twenty highlights. POGBA’s precision
and recall for highlight prediction on this match are 39% and 44% respectively.

estimates the probability of a game state leading to a goal at-
tempt, and then that of a possible attempt resulting in a goal.
On a real-world dataset, POGBA outperforms the baseline
algorithms in terms of precision and recall.

Acknowledgments

Tom Decroos is supported by the KU Leuven Research Fund
(C22/15/015) and FWO-Vlaanderen (G.0356.12). Vladimir
Dzyuba is supported by FWO-Vlaanderen. Jan Van Haaren
is supported by the Agency for Innovation by Science and
Technology in Flanders (IWT). Jesse Davis is partially sup-
ported by the KU Leuven Research Fund (C22/15/015) and
FWO-Vlaanderen (G.0356.12, SBO-150033).

References

Bagnall, A., and Lines, J. 2014. An experimental evalua-
tion of nearest neighbour time series classification. CoRR
abs/1406.4757.
Baydogan, M. G.; Runger, G.; and Tuv, E. 2013. A
bag-of-features framework to classify time series. IEEE
Transactions on Pattern Analysis and Machine Intelligence
35(11):2796–2802.
Berndt, D. J., and Clifford, J. 1994. Using Dynamic Time
Warping to find patterns in time series. In Proc. of AAAI
KDD Workshop, 359–370.
Caley, M. 2015. Premier League projections and new ex-
pected goals. http://cartilagefreecaptain.sbnation.com/.
Cervone, D.; D’Amour, A.; Bornn, L.; and Goldsberry, K.
2014. POINTWISE: Predicting points and valuing decisions
in real time with NBA optical tracking data. In Proc. of MIT
Sloan Sports Analytics Conference.
Eastwood, M. 2015. Expected goals and Support Vector
Machines. http://pena.lt/y/2015/07/13/expected-goals-svm/.
Gupta, M.; Gao, J.; Aggarwal, C.; and Han, J. 2014. Outlier
Detection for Temporal Data. Morgan & Claypool.
Ijtsma, S. 2015. A close look at my new expected goals
model. http://11tegen11.net/2015/08/14/.

Lin, J.; Keogh, E.; Wei, L.; and Lonardi, S. 2007. Experi-
encing SAX: A novel symbolic representation of time series.
Data Mining and Knowledge Discovery 15(2):107–144.
Lucey, P.; Bialkowski, A.; Monfort, M.; Carr, P.; and
Matthews, I. 2014. “Quality vs quantity”: Improved shot
prediction in soccer using strategic features from spatiotem-
poral data. In Proc. of MIT Sloan Sports Analytics Confer-
ence.
Müller, M. 2007. Dynamic time warping. Information re-
trieval for music and motion. Springer. chapter 4, 69–84.
Rakthanmanon, T., and Keogh, E. 2013. Fast shapelets: A
scalable algorithm for discovering time series shapelets. In
Proc. of SDM, 668–676.
Routley, K., and Schulte, O. 2015. A Markov game model
for valuing player actions in ice hockey. In Proc. of UAI,
782–791.
Shokoohi-Yekta, M.; Wang, J.; and Keogh, E. 2015. On the
non-trivial generalization of Dynamic Time Warping to the
multi-dimensional case. In Proc. of SDM, 289–297.
Vidal, E.; Casacuberta, F.; Benedi, J. M.; Lloret, M. J.; and
Rulot, H. 1988. On the verification of triangle inequality
by Dynamic Time Warping dissimilarity measures. Speech
Communication 7(1):67–79.
Wang, X.; Mueen, A.; Ding, H.; Trajcevski, G.; Scheuer-
mann, P.; and Keogh, E. 2013. Experimental compari-
son of representation methods and distance measures for
time series data. Data Mining and Knowledge Discovery
26(2):275–309.
Xi, X.; Keogh, E.; Shelton, C.; Wei, L.; and Ratanama-
hatana, C. A. 2006. Fast time series classification using
numerosity reduction. In Proc. of ICML, 1033–1040.
Yianilos, P. N. 1993. Data structures and algorithms for
nearest neighbor search in general metric spaces. In Proc. of
SODA, 311–321.

1308




