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Abstract

Recommender systems have achieved great success in recent
years, and matrix approximation (MA) is one of the most pop-
ular techniques for collaborative filtering (CF) based recom-
mendation. However, a major issue is that MA methods per-
form poorly at detecting strong localized associations among
closely related users and items. Recently, some MA-based
CF methods adopt clustering methods to discover meaning-
ful user-item subgroups and perform ensemble on different
clusterings to improve the recommendation accuracy. How-
ever, ensemble learning suffers from lower efficiency due to
the increased overall computation overhead.

In this paper, we propose GLOMA, a new clustering-based
matrix approximation method, which can embed global in-
formation in local matrix approximation models to improve
recommendation accuracy. In GLOMA, a MA model is first
trained on the entire data to capture global information. The
global MA model is then utilized to guide the training of
cluster-based local MA models, such that the local models
can detect strong localized associations shared within clus-
ters and at the same time preserve global associations shared
among all users/items. Evaluation results using MovieLens
and Netflix datasets demonstrate that, by integrating global
information in local models, GLOMA can outperform five
state-of-the-art MA-based CF methods in recommendation
accuracy while achieving descent efficiency.

Introduction

In today’s recommender systems, matrix approximation
(MA) is one of the most commonly-used collaborative fil-
tering (CF) methods. The goal is to predict users’ missing
ratings on targeted items. More formally, given partially ob-
served user-item rating matrix M with low-rank, user ¢ and
item j are characterized by vectors of latent factors U, and
Vi, respectively, then the unknown rating M; ; can be pre-
dicted by the dot product of U;, and V,; (Su and Khoshgof-
taar 2009). Although MA-based CF methods have achieved
good success, Koren et al. (2008) pointed out that MA mod-
els can effectively estimate overall structures that relate si-
multaneously to most or all items, but they perform poorly
at detecting strong associations among a small set of items.
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Therefore, it is desirable to consider local associations to en-
hance model accuracy.

To this end, many clustering-based ensemble methods
have been proposed (Zhang et al. 2013; Lee et al. 2013;
Chen et al. 2015), in which clustering methods are first
applied to discover strong local associations and then MA
methods can be applied in parallel on the submatrices cor-
responding to the clustering-based partitions. Utilizing the
parallelism of modern many-core and distributed architec-
tures, the running time can be largely reduced. However, the
prediction quality of local models based on submatrices is
generally low, because 1) local models may easily overfit
due to insufficient training data in clusters and 2) the over-
all associations shared among all users/items are not cap-
tured. To address the above issues, clustering methods have
to be run many times in order to produce different approx-
imated matrices containing different types of information,
and then ensemble methods are used to improve recommen-
dation quality. However, ensemble learning leads to another
problem: the overall computation overhead is usually very
high, e.g., WEMAREC (Chen et al. 2015) required 8 x more
overall computation than RSVD (Paterek 2007).

In this paper, we propose GLOMA, a scalable and ac-
curate MA-based method which can capture both localized
relationships in submatrices and global structure among all
users and items. Similar to existing clustering-based ensem-
ble methods, GLOMA adopts clustering method to explore
the localized relationships. However, instead of relying on
ensemble techniques, GLOMA attempts to embed a global
MA model, which contains the global information, into the
learning process of local MA models. With the help of this
embedded model, every local model can be trained on data
which includes all the ratings corresponding to users and
items in the same cluster, such that the overall structures
can be obtained and the insufficient data issue can be allevi-
ated. By leveraging multi-task feature learning techniques,
GLOMA can capture more abundant and diverse features
than standard MA methods, and has the potential to achieve
better recommendation accuracy. To further improve the ac-
curacy and efficiency of GLOMA, a new clustering method
following the idea from (Chen et al. 2015) is proposed, in
which every user or item is characterized by its rating distri-
bution. Then, the dimension of the data space can be largely
reduced, resulting in the reduction of running time. The pro-
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Figure 1: Comparison of matrix approximation models for collaborative filtering: (a) standard low-rank model, (b) clustering-
based model, and (c) the proposed GLOMA model, where the rows and columns of the rating matrix M represent the users
and items respectively and shaded area represent the training data used for each individual model.

posed GLOMA method is evaluated using two real-world
benchmark datasets (MovieLens and Netflix), and the exper-
imental results demonstrate that the GLOMA method out-
performs five state-of-art MA-based CF methods in recom-
mendation accuracy while achieving descent efficiency.

Related Work

Collaborative filtering (CF) is widely used in the business
world for simplicity of implementation and high quality
of recommendation. Breese et al. (1998) categorized CF
approaches into two classes: memory-based and model-
based algorithms. Memory-based algorithms, such as user-
based (Herlocker et al. 1999) and item-based (Sarwar et al.
2001) methods, build neighborhood relationship for every
user, and usually use the weighted sum of the ratings to
predict missing values. However, the user/item similarities
cannot be calculated accurately without sufficient ratings, so
these approaches suffer from the data sparsity problem.

In contrast, model-based algorithms first learn a model
from the training data then use it to make predictions. Matrix
approximation (MA) methods, which as illustrated in Fig-
ure 1(a) learn user features U and item features V' from the
entire rating matrix, have been empirically and theoretically
demonstrated to have the capacity of recovering the rating
matrix accurately from a small number of observations (Sre-
bro and Jaakkola 2003; Candes and Tao 2010). Specifically,
Billsus et al. (1998) first introduced SVD to the domain of
CF, and proved that MA-based methods can effectively alle-
viate the data sparsity issue. Salakhutdinov et al. (2007) ex-
plained the MA-based CF algorithms in a Bayesian perspec-
tive, developed a probabilistic matrix factorization (PMF)
method, and moreover constructed BPMF, a Bayesian exten-
sion of PMF method (Salakhutdinov and Mnih 2008). How-
ever, as summarized by Koren et al. (2008), these MA-based
models are generally effective at estimating overall structure
that relates simultaneously to most or all items, but perform
poorly at detecting strong associations among a small set of
closely related items.

To address this issue, clustering-based CF methods have
been proposed, where clustering techniques (Chen et al.
2015) and community detection methods (Zhang et al. 2013)
are adopted to find user-item subgroups with strong correla-
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tions. For example, as shown in Figure 1(b), the entire rat-
ing matrix is divided into four submatrices. The expensive
MA task is equivalently divided into smaller subproblems
which can be solved in parallel. However, due to insufficient
training data in each detected user-item cluster, there can
be severe overfitting and the recommendation quality can
be much worse. Therefore, ensemble techniques are always
adopted to achieve better accuracy, such as DFC (Mackey,
Jordan, and Talwalkar 2011), LLORMA (Lee et al. 2013),
and WEMAREC (Chen et al. 2015), all of which attempted
to use multiple local models to describe every user-item rat-
ing, and then use the weighted sum of the predictions from
multiple local models to estimate the missing ratings. In
other words, these clustering and ensemble based methods
try to discover various strong associations contained in user-
item subgroups, and aim to improve prediction accuracy by
identifying and leveraging more diverse clusters.

Some recent works also attempted to train a singleton
model integrated with multiple types of relations. For ex-
ample, Singh et al. (2008) shared parameters among factors
when decomposing multiple matrices represented for multi-
ple relations to learn different type of user behaviors. Yuan et
al. (2014) used group sparsity regularization to automati-
cally transfer information among multiple types of behav-
iors. In additional, Chen et al. (2016) assumes every user-
item rating is depicted by a Gaussian mixture model with
three component, each of which containing relational infor-
mation of different level.

Different from existing works, we develope a new way to
solve the problem of MA-based methods by directly embed-
ding a previously-trained model containing global informa-
tion into the procedure of training local models. As illus-
trated in Figure 1(c), U and V are the embedded features,
and U and V are desired features. The intuition behind the
idea is, if U could be trained on the submatrix M (1*) by in-
troducing V that can describe all the items, U would be able
to learn the global relations of its corresponding users, be-
cause M (*) has the entire historical records of the user set.
Similarly, item features V' follows the same theory. Based
on this, we share the latent factors U and V' across multiple
tasks such that the proposed GLOMA method can learn dif-
ferent tasks simultaneously to achieve better performance by



using multi-task feature learning techniques (Evgeniou and
Pontil 2007; Ando and Zhang 2005).

GLOMA Algorithm Design

In this section, we first formulate the GLOMA problem, then
introduce a gradient-based learning algorithm to solve the
problem, and finally discuss its application in the model up-
date scenario.

Problem Formulation

We first introduce the notations used in this paper. Up-
per case letters represent matrices, such as a matrix R €
R™*™ with m users and n items. R;, is the i-th row vec-
tor, R,; is the j-th column vector, and R; ; is the entry
in the ¢-th row and j-th column. In addition, the Frobe-
nius norm is adopted in this paper, which is defined as

1Rl = /2002 25— B

As we mentioned before, the dilemma for the existing
clustering-based CF methods without using ensemble strat-
egy is the degraded recommendation quality due to the lack
of sufficient data in each local model, while the advantage of
high-efficiency and localized associations contained in cer-
tain small-scale user-item subgroups diminishes when more
data are used to train local models.

To address this issue, a straightforward idea is to keep the
local model training in its own submatrix, and additionally
user/item features are trained separately in expanded data in
order to learn the global information among all the ratings
of related users and items. For example, given a f x ¢ clus-
tering, for arbitrary submatrix M) (c € [f], r € [g]), the
submatrix M (™) has all historical records for users of the
subgroup, so if user features U were trained on M ("*) then
user features U would be able to obtain the overall struc-
tures of those users by solving the squared error optimiza-

tion function
DD (M = UiV,
g

min £(M“? UV) =
U,V
However, the problem is that the quality of user features
U depends on the quality of item features V' which cannot be
learned properly due to insufficient item-related data. There-
fore, it is reasonable to replace the untrained or randomly-

initialized features V with a well-trained item features V
and the optimization problem in (1) becomes the following

M Uv) = ZZ MY~ ULV @

And similarily for item features V
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In other words, we attempt to use the previously-trained
model to help local models capture the global information by
planting U and V into the learning process of local models.
Then, learning the GLOMA model can be viewed as mini-
mizing the loss function (e.g., squared error) subject to the
constraints related to embedded model
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Using Lagrange multipliers, the objective function with /5
regularizer of GLOMA method can be further presented as

mingv LMD UVY+ A0 [ U |2 +Av [V 2 5)
+m LM UV + M || V|2 (6)
+m L(MOD V) 4+ o | U ||? (7)

where \i7, Ay, A1 and A, are the regularization parameters,
and hyper-parameters 7, and 7o control the impacts of the
introduced user/item features U and V.

The key characteristics of GLOMA are summarized as
follows:

* The terms in Equation (5) are the same as the optimization
objective of clustering-based CF method, which ensure
that the learned U and V' can accurately capture the strong
associations in certain user-item subgroups. Actually, the
clustering-based method can be viewed as a special case
of GLOMA by setting m; = 3 = 0 and A\; = Ay = 0.

e The terms in Equation (6) and Equation (7) can help lo-
cal models estimate the overall structure and avoid over-
fitting based on the embedded latent factors U and V,
and parameters m; and 7, can be employed to control
the contribution of individual user/item-specific data ex-
tension. Meanwhile, empirical results show that each of
these two terms can help improve model performance,
and the model satisfying these two terms will not only
produce better recommendations than basic clustering-
based methods, but also perform better than five state-of-
the-art CF algorithms.

Learning Algorithm

In collaborative filtering, the root mean square error (RMSE)
is usually adopted as the evaluation metric, which can be
computed as

N 1 .
DM, M) = [|— Mu,i — Mu,i)?
<,>\/|T|Z<, 9

(u,i)€T

where T’ denotes the set of ratings in the data and |T| is

the number of ratings. Therefore, we directly use RMSE as
the loss function in Equations (5) to (7). As shown by Li et
al. (2016), minimizing this objective function is a difficult
non-convex optimization problem. To tackle this problem,
we develop an iterative-based learning algorithm based on
stochastic gradient descent (SGD).

Specifically, the standard subroutine in SGD just needs to
compute the partial derivatives in terms of latent factors of
U and V, and then iteratively updates the parameters un-
til convergence, since the embedded features U and V are
well-trained. However, we empirically found that continu-
ously updating U and V' during the training process of U and
V can always produce better prediction accuracy than fix-
ing the embedded features. The reason is that, as explained
in (Chen et al. 2016), multi-task feature learning would help
U and V unify localized relationships in user-item sub-
groups and common associations among all users and items,
and moreover the embedded features U and V and desired
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features U and V' will boost the goodness of each other.
Please note that this brings another benefit — the well-trained
condition of embedded model is largely relieved, which in-
dicates that an embedded model of low accuracy can also
help GLOMA produce good recommendations.

After computing the partial derivatives of parameters,
there are three different ways to update the latent factors de-
pending on which training submatrix the given training case
M; ; belongs to. First, if the given training case M; ; is in
M) we modify the parameters by moving in the opposite
direction of the gradient, yielding:

Usyr < Usp +7v- (00 AO‘/rj“V‘U;lWlAl‘;;'j_)\UUi,'r)
Vi Vij+v-(og AOUZ r+oy L AU, = Av Vi) ©
Ui r = Ui R (U; w2 Ao Vy 5 — )\2Ui,7')

Vij Ve +7- (o7 'mMUs e — M Vi)

where + is the learning rate. We set 0g, o1 and o2 as the
RMSE in M), M) M) respectively, and Ao, Ay,

Ay as the prediction errors M; ; — U Vi, M; 5 — Ui Vi,
M; j — U Vi
Second, for a given training case M, ; € M=) — pplre)
the parameters can be updated as follows
Uip < Ui+ (07 'mA Ve = AU ) (10)
Vg Vg +7 - (07 'mA1 Ui — M Vi)
Finally, given training case M; ; € M (e) — M) we
have
Ui,r <~ U’L,r + Y (0;1W2A2Vr,j - A217'L,'r) (11)

Vii & Vij+7- (05 ' mloUsr — Av Vi)

Application in Model Update Scenario

Naturally, the training of the embedded model would im-
pose extra computational overhead, but at the same time,
GLOMA sheds some light on how to use out-of-date mod-
els which were trained on obsolete data to boost the per-
formance of up-to-date models which will be trained over
the latest data. Recall that a low-accuracy embedded model
can still improve the model accuracy. A model can not only
be used to produce recommendations, but also help to train
the new model instead of being discarded when new data
arrives. As such, the embedded model is not merely extra
computational burden but also “wisdom from the past”.

Domain-specific Data-projected Clustering

Obviously, the clustering method would impact the model
performance in both accuracy and efficiency, but unfortu-
nately we found the popular K-Means approach is too heavy
(i.e., it takes nearly 48 hours in Netflix data even longer than
training GLOMA model takes), because it is trying to find
the subgroups where users give similar ratings on the same
item such that every user (item) is characterized by its all
historical ratings. It means the dimension of the data space
is very high, O(n) for every user and O(m) for every item,

1298

Algorithm 1 Domain-specific Data-projected Clustering

Input: data samples S, number of samples |.S|, number of
clusters «, and KL divergence Dk, (- || -)-
Output: cluster assignment function € : [|S|] — [k].
1: Randomly divide all samples into « clusters.
2: while not converged do
3:  // for each cluster k, set ¢ as the center of the as-
signed samples
for k in [x] do
cp = Z%(i):k x; /N, where Ny, is the number of
data samples belonging to the k-th cluster.
6: end for
7:  //for each sample ¢ with value x;, assign 7 to the clos-
est cluster
8: foriin[|S|] do
9: ¢(i) = argmin, <. Dxw (@i || cx);
end for
11: end while
12: return %.

oo

resulting in the high computational complexity and cluster-
ing quality suffering from the curse of high dimensionality
and data sparsity.

In order to lower the cost and enhance the recommen-
dation qualify of GLOMA, we propose a domain-specific
data-projected based clustering algorithm (DSDP), which
attempts to discover the subgroups where users have similar
rating tendencies on a set of items. It means the rating dis-
tribution for every user on certain item set is similar to each
other. In other words, we project the data of historical rat-
ings with length of O(n) (O(m)) for every user (item) into
the data of each rating value’s frequency with length of O(1)
(e.g., rating value in Neflix is discrete number from 1 to 5)
for every user/item. To do so, the dimension of data space
is largely reduced, and thus the running time of clustering
will decrease significantly as well. Meanwhile, we adopt the
Kullback-Leibler (KL) divergence to measure the difference
between two probability distributions, which can be defined
as

Dii.(z || ¢ sz ln— (12)

where x and c are the data sample and cluster center, respec-
tively. x, (c,) is the z-th dimensional value of = (¢).

Finally, we can have the user-item subgroups after per-
forming the Algorithm 1 on both users and items, respec-
tively. In detailed, lines 4-6 first compute the center of the
cluster which has the smallest mean distance to all sam-
ples in the cluster, then lines 8-10 assign every sample to
its closest center, and finally repeat these two steps until
converged. The experimental section highlights the empir-
ically effectiveness and efficiency of the proposed clustering
method. Additionally, the demonstration about that the pro-
posed clustering method will converge to a local optimum is
in the supplementary material due to limited spaces.
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Figure 2: Effects of different clustering methods on GLOMA, while the rank varies from 50 to 200 (left), the number of row
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Table 1: Computational efficiency comparisons of the pro-
posed domain-specific data-projected clustering method
(DSDP) and K-means++ method (KMPP) in seconds on
MovieLens 1M and MovieLens 10M with the numbers of
row and column clusters being 2 x 2.

Method | MovieLens (1IM) | MovieLens (10M)
DSDP 0.471+ 0.002 4.242 + 0.675
KMPP | 156.94242.093 | 7554.522 4+ 464.806

Experimental Results

In this section, we evaluate the proposed matrix approxima-
tion CF method and domain-specific data-projected cluster-
ing method using three real-world datasets, which have been
widely used for evaluating recommendation algorithms —
MovieLens 1M (10° ratings), MovieLens 10M (107 ratings),
and Netflix (108 ratings). For each dataset, we split it into
train and test sets randomly by setting the ratio between train
set and test set as 9 : 1. The results are presented by aver-
aging the results over five different random train-test splits.
Recall that the root mean square error (RMSE) is adopted as
the evaluation metric for recommendation accuracy which is
defined in Equation (8).

For parameter setting, we use learning rate v = 0.0008 for
gradient decent method, A = 0.06 for all Ly-regularization
coefficients, ¢ = 0.0001 for gradient descent convergence
threshold, and 7" = 120 for maximum number of iterations.
The source codes of all experiments are publicly available '.

Sensitivity Analysis

In this study, we varied the GLOMA hyper-parameters to
better understanding its dependencies, where in default the
embedded model is trained over the entire training dataset.

Impact of Clustering Methods Figure 2 analyzes the
impact of different partition methods, where we name
the GLOMA algorithm with random partition (GLOMA-
RNDM), k-means++ method (GLOMA-KMPP), and the
proposed data-projected clustering method (GLOMA-
DSDP). We can see in the Figure 2 (left) the recommen-
dation accuracy of all three methods with the number of row

"https://github.com/Idscc/StableMA. git.
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and column clusters being 2 x 2 increases as the rank in-
creases, whereas in the Figure 2 (middle) the prediction ac-
curacy of all three methods with setting rank = 20 decreases
as the clustering size increases, this is because the data in
every local model is becoming less and less as the data is
divided into more clusters, resulting in data insufficiency for
accurate models.

Meanwhile, Figure 2 (right) also investigates the effect of
the embedded model with fixing the rank to 50, where these
embedded models are trained over different ratio of the train-
ing dataset. Obviously, we can see that the prediction accu-
racy of all three methods increases as more data is used to
train the embedded model. This is because the quality of in-
troduced model will be better with having involving more
training data such that it can better boost the performance
of local models as mentioned before. Moreover, we have to
note that the points at 0% means embedded model is ran-
domly established, and even in such scenario all GLOMA
algorithms can obtain the RMSE less than 0.7800, which ac-
tually is still better than the RSVD method. This is because
when training every local model, the embedded model will
be updated individually, such that a weak global model can
be learnt, although the quality is relatively low due to lack
of adequately training.

In all above three conditions, we have to note that
GLOMA-DSDP and GLOMA-KMPP always outperform
GLOMA-RNDM, which indicates the meaningful user-item
subgroups can definitely improve the recommendation qual-
ity. Furthermore, GLOMA-DSDP is the best one of all,
which demonstrates the proposed DSDP clustering method
can effectively improve the model performance. Addition-
ally, Table 1 compares the running time of the proposed
DSDP and KMPP method, it can be clear to see that the
DSDP method is 300X - 1700X faster than KMPP method
and this advantage in running time will become larger in
larger rating matrix due to the reduction in dimensionality.

Impact of Latent Factors Figure 3 further studies the
contribution of user and item features in embedded model
by modifying the parameters 7; and 72 defined in Equation
(6) and (7). Notably, the point at (0, 0) represents the typical
clustering-based CF method, as we can see it does not per-
form well. Moreover, the points with m; = 0 means that the
constraint of Equation (6) is disabled and only user features
U of embedded model can work effectively, and similarly
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Figure 3: Effects of 71 and 72 controlling the contribution
of embedded model on GLOMA with rank = 10, while both
1 and 7o range in [0.0, 2.0] on MovieLens 1M.

points with mo = 0 means that only item features V" are ac-
tually able to function. Evidently, we can see the RMSEs
in both situations are significantly higher than others, which
proves that introducing both the user features and item fea-
tures from the model containing overall structures among
all users and items can definitely improve the model perfor-
mance. In additional, the optimal performance is achieved
at nearly (0.5,0.3), where both 7; and 7y are less than
1. It really makes sense since latent factors U and V are
used to make prediction such that the terms in Equation (5)
should be more important. Therefore, we adopt m; = 0.5
and w2 = 0.3 in the following experiments.

Figure 4 studies the impact of rank with the numbers of
row and column clusters being g x f = 2 x 2. It can be seen
clearly that the accuracy of RSVD gradually decreases as the
rank increase from 20 to 100, whereas the accuracy of the
GLOMA method increases. The reason is that the GLOMA
methods attempt to capture more information than RSVD
method does, such that more latent factors are required.
In additional, GLOMA outperform the other five state-of-
the-art CF methods with parameter setting in their original
papers, RSVD (Paterek 2007), BPMF (Salakhutdinov and
Mnih 2008), GSMF (Yuan et al. 2014), WEMAREC (Chen
et al. 2015), MPMA (Chen et al. 2016).

Performance Comparison

In this section, we compare the performance of GLOMA
(r 200) with five fore-mentioned baselines on Movie-
Lens 10M and Netflix datasets, and moreover we re-tune
the parameters for some methods to achieve better accu-
racy than using the default setting in their original pa-
pers, where RSVD (r 50) (Paterek 2007), BPMF
(r = 300) (Salakhutdinov and Mnih 2008), GSMF (r =
20) (Yuan et al. 2014), WEMAREC (r = 100) (Chen et al.
2015) and MPMA (r = 200) (Chen et al. 2016). Notably,
RSVD and BPMF are standard matrix approximation meth-
ods, and WEMAREC is clustering-based ensemble method
which has been shown to be more accurate than single meth-
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Figure 4: Effects of latent factors on GLOMA with the
numbers of row and column clusters being 2 x 2, while
the rank varies in [20, 100] on MovieLens 10M.

Table 2: Recommendation accuracy comparison of the pro-
posed GLOMA method and the other five state-of-the-art
methods. Bold faces mean that the method performs statis-
tically significantly better in the setting, at the level of 95%
confidence level.

MovieLens (10M) Netflix
RSVD 0.8271 + 0.0009 | 0.8534 4+ 0.0001
BPMF 0.8195 + 0.0006 | 0.8420 4 0.0003
GSMF 0.8012 + 0.0011 | 0.8420 + 0.0006
WEMAREC | 0.7734 + 0.0003 | 0.8098 4+ 0.0009
MPMA 0.7702 + 0.0004 | 0.8083 4+ 0.0006
GLOMA 0.7672 + 0.0001 | 0.8011 + 0.0003

ods due to better generalization performance. Particularly,
we emphasize the comparison among GSMF, MPMA and
GLOMA, because GSMF and MPMA are the latest work
related to the proposed GLOMA, all of which attempts to
capture various associations within user-item subgroups. As
shown in Table 2, the GLOMA method significantly out-
performs all five compared methods on both two datasets.
This confirms that GLOMA can indeed achieve better per-
formance than both state-of-the-art single methods and en-
semble methods.

Conclusion

Standard matrix approximation based collaborative filtering
methods have a major drawback that they perform poorly at
detecting strong associations among a small set of closely re-
lated items. In order to address this issue, recent work adopt
ensemble methods or multi-task feature learning techniques
to learn the localized relations in order to produce accurate
recommendations. In this paper, we develop an extension
of clustering-based MA method, where a previous-trained
standard MA model is introduced to help to train the lo-
cal models such that the GLOMA model can unify global
latent factors and local latent factors of users and items



to improve recommendation accuracy. Experimental study
on two real-world datasets demonstrates that the proposed
GLOMA method can outperform five state-of-the-art MA-
based collaborative filtering methods in recommendation ac-
curacy, and also the proposed DSDP clustering method can
efficiently discover the meaningful user-item subgroups and
effectively improve the performance of GLOMA model.
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