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Abstract

There exist a number of problem classes for which obtain-
ing the exact solution becomes exponentially expensive with
increasing problem size. The quadratic assignment problem
(QAP) or the travelling salesman problem (TSP) are just two
examples of such NP-hard problems. In practice, approxi-
mate algorithms are employed to obtain a suboptimal solu-
tion, where one must face a trade-off between computational
complexity and solution quality. In this paper, we propose
to learn to solve these problem from approximate examples,
using recurrent neural networks (RNNs). Surprisingly, such
architectures are capable of producing highly accurate solu-
tions at minimal computational cost. Moreover, we introduce
a simple, yet effective technique for improving the initial
(weak) training set by incorporating the objective cost into
the training procedure. We demonstrate the functionality of
our approach on three exemplar applications: marginal dis-
tributions of a joint matching space, feature point matching
and the travelling salesman problem. We show encouraging
results on synthetic and real data in all three cases.

Introduction

Artificial neural networks have emerged in a wide vari-
ety of applications, successfully tackling problems previ-
ously considered too complex for existing techniques. Ex-
amples of such recent breakthroughs include speech recog-
nition (Graves, Mohamed, and Hinton 2013), image classifi-
cation (Krizhevsky, Sutskever, and Hinton 2012), and super-
human performance in video and board games (Mnih et al.
2015; Silver et al. 2016). Recently, deep neural networks
have also been applied to seemingly complex tasks like pre-
dicting the output of short computer programs (Zaremba
and Sutskever 2014) or computing the shortest path of the
travelling salesman problem (TSP) (Vinyals, Fortunato, and
Jaitly 2015). Inspired by this recent work, we make two im-
portant contributions.

Our first contribution is an LSTM-based architecture that
is capable of learning to predict complex similarity relation-
ships in bipartite graphs. We validate this on two examples.
On one hand, we use a deep network to compute accurate
and efficient approximations of the marginal distributions
for a joint matching problem. This is important to obtain the
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Figure 1: This example illustrates the discrepancy between
the loss typically used for training neural networks and the
actual objective. Consider a simple TSP and its solution in
a). A typical classification loss, as used e.g. in (Vinyals, For-
tunato, and Jaitly 2015) will rate both b) and c) to be equally
bad with 2 misclassified edges (dashed). However, b) is in
fact much closer to the optimal solution, which is reflected
by the task’s objective function, the path’s length.

optimal joint matching hypothesis, for instance when deal-
ing with data association in multi-target tracking (Fortmann,
Bar-Shalom, and Scheffe 1980). On the other hand, we use
the same architecture to predict the maximum a-posteriori
(MAP) estimate of a quadratic assignment problem (QAP),
which is known to be NP-hard.

Our second contribution is a simple but effective modi-
fication to the classical supervised learning procedure, that
takes the problem’s objective into account when estimating
the network’s parameters. Despite their remarkable success,
traditional deep learning approaches share one major limita-
tion. The most common strategy is to define the proximity
of the network’s prediction to the correct solution as a loss
function – for instance, the mean squared error (MSE) or
the cross-entropy loss for regression and classification prob-
lems, respectively. The goal then is to minimise this prede-
fined loss with respect to the network parameters, which re-
sults in a non-convex optimisation problem.

We argue that this strategy is suboptimal. The loss is typ-
ically chosen to be differentiable and thus convenient to be
optimised, but it often does not accurately reflect the net-
work’s performance. Considering the well-known travelling
salesman problem (TSP), for example, it is not guaranteed
that a tour that is ‘more similar’ to the shortest TSP tour
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Figure 2: In contrast to the traditional supervised learning
architecture (a) our proposed extension (b) does not re-
quire the ground truth for training. Instead, a pre-defined
cost function that incorporates the prior knowledge about
the problem (e.g. argmax), is used to fuse or select from the
current prediction and an approximate solution.

w.r.t. the node order, as measured by the log-likelihood clas-
sification error (Vinyals, Fortunato, and Jaitly 2015), neces-
sarily yields a shorter length as well. One can easily replace
two very short edges from the optimal TSP tour and gener-
ate a solution that yields a small loss but results in a highly
non-optimal path measured by the tour length. Figure 1 de-
picts such an example and illustrates how proximity of the
prediction to the optimal solution can wrongly rank different
candidate solutions in a general case. Moreover, it is a highly
demanding task to compute exact solutions to a large num-
ber of training instances of an NP-hard problem, making the
need to resort to approximate solutions, which are even less
reliable for training.

It is therefore advisable to use the problem-specific ob-
jective directly to train a deep neural network while tak-
ing advantage of suboptimal (or approximate) solutions to
a large number of instances of an NP-hard problem. Unfor-
tunately, for many NP-hard problems this objective is non-
differentiable and is thus not directly suitable for the stan-
dard framework involving gradient descent.

To address this issue, we propose an objective-based
learning scheme for deep neural networks to find approxi-
mate solutions to NP-hard problems. In order to exploit the
full potential of the backpropagation algorithm, we train our
network based on a differentiable loss as discussed above.
However, we incorporate the task’s objective as an indicator
to rank the current network’s prediction and an approximate
precomputed solution (see Fig. 2 (b)).

To summarise, we make the following contributions:

1. We present a recurrent neural network capable of learn-
ing and predicting bipartite matching in a sequential man-
ner. We explore both, the marginal distributions within a
linear objective setting, as well as the MAP estimation
of a quadratic assignment. In both cases, obtaining exact
solutions becomes intractable for medium-sized problem.
Surprisingly, the network is able to learn both tasks from
approximate training data only.

2. We introduce a simple, yet effective modification into the
traditional supervised learning paradigm. Instead of only
relying on an approximate prediction similarity measure
(loss), we propose to exploit the true, non-differentiable
objective as an additional component to rank solutions
and to continually improve on the available approximate
‘ground truth’. This enables us to exploit the power of
deep architectures and backpropagation, while at the same

time allows us to explore large portions of the solution
space, without the need for strong supervision.

3. We validate our claims on both synthetic and real data on
three applications: Data association for tracking multiple
targets, feature point matching and the travelling salesman
problem.

Related Work and Background

Deep neural networks (DNNs) have become ubiquitous in
our every day lives. A combination of both advances in
computing power as well as the sudden increase of avail-
able training data, have allowed deep networks to unfold
their capabilities on numerous tasks including image clas-
sification (Krizhevsky, Sutskever, and Hinton 2012), speech
recognition (Graves, Mohamed, and Hinton 2013), machine
translation (Sutskever, Vinyals, and Le 2014), and many
more. Since the seminal work on the Turing-Completeness
of neural networks by Siegelmann and Sontag (1995), many
customised network designs have been proposed to address
either general or specific tasks. For example, Graves et
al. (2014) propose an architecture that mimics a Turing
machine but is differentiable allowing for standard gradi-
ent descent-based training. Somewhat similar, Zaremba et
al. (2014) show that recurrent neural networks (RNNs) can
be employed to learn from data to execute very simple pro-
gram snippets.

An RNN is used for for human motion forecasting by
Fragkiadaki et al. (2015), where a representation is implic-
itly learned by an encoder-recurrent-decoder scheme. This
model is generalised by Jain et al. (2016) to consider any
spatio-temporal conditional random fields (CRFs) that are
trainable end-to-end. Another attempt to cast CRFs as RNN
was proposed recently by Zheng et al. (2015), where the iter-
ative mean field optimisation process is fully integrated into
a recurrent neural network.

One of the drawbacks of standard RNNs is that the map-
ping between the input and the output is implicitly assumed
to be known, i.e. at each time step, some combination of the
hidden state and the input is expected to produce one output.
For some problems such as machine translation, this poses a
serious limitation because a sentence in the target language
generally depends on the entire input sentence. To remedy
these shortcomings, (Sutskever, Vinyals, and Le 2014) pro-
pose an effective trick to encode the entire source first before
starting to make the predictions. While achieving the goal of
successful machine translation, this method is not suitable
for tasks where the output space is governed by the input,
e.g. if any solution is a permutation of the input entities. To
address that, Vinyals et al. (2015) design pointer networks
that assemble the output at each step as a collection of all
inputs. A beam search is employed to guarantee a feasible
solution.

Our work is inspired by the recent application of recurrent
networks to tasks like TSP (Vinyals, Fortunato, and Jaitly
2015) or code execution (Zaremba and Sutskever 2014).
However, we extend the existing work in several important
ways. First, we apply our algorithm on real-world data and
show competitive results on standard datasets. Second, we

1454



introduce a simple, yet effective scheme that allows one to
bypass the often expensive collection of exact ground truth
data. A similar idea has also recently been explored in the
context of semantic segmentation (Papandreou et al. 2015).
However, in contrast to (Papandreou et al. 2015), our train-
ing does not require any strong supervision at all. Garg,
Kumar BG, and Reid (2016) have also considered training
a deep neural network directly on the problem’s objective
function, which is in spirit closest to our work. Note, how-
ever, that the objective in (Garg, Kumar BG, and Reid 2016)
is differentiable, such that standard stochastic gradient de-
scent (SGD) can be directly applied to optimise it. In con-
trast, we do not make this strong assumption and allow for
an arbitrary objective to be integrated into the training.

Recurrent neural networks

Let us briefly recap the functionality of recurrent neural
nets (RNNs) for completeness. In its most general form,
an RNN is a function that maps a sequence of inputs
x = [x1, x2, . . . , xT ] to a sequence of outputs y =
[y1, y2, . . . , yT ] . It does so by maintaining and modifying
an internal hidden state h = [h1, h2, . . . , hT ] . More for-
mally, the hidden state at time t is typically computed given
the previous hidden state ht−1 and the current input xt as

ht = Rh (Wihxt +Whhht−1 + bh) , (1)

where W and b denote the learnable parameters as weights
and biases, respectively. R is a non-linear activation func-
tion, usually chosen to be the logistic function or the hy-
perbolic tangent. The output at time t is extracted from the
hidden representation as

yt = Ro (Whoht + bo) . (2)

Note that the same parameters are shared across all time in-
stances.

A very popular extension of the standard RNN model
from above is the long short-term memory (LSTM) first pre-
sented by Hochreiter and Schmidhuber (1997). It maintains
a memory cell c that allows one to capture long-term depen-
dencies. It also implements a gating mechanism that controls
what portion of the hidden state should be kept and what
should be replaced. This mechanism is modelled by input,
output, and forget gates as i, o, f = σ [W...x+W...h+ b] ,
where σ is the sigmoid function. In both cases the model
complexity can be extended by having multiple layers in
each time step.

Our Approach

We will now present our method for sequential prediction
of assignments in a bipartite matching problem. We em-
ploy the long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997) to make sequential matching predic-
tions, one pair at a time. The input F is passed through a
fully-connected layer and added to the hidden state h. The
output is a probability distribution over the number of el-
ements in the second set, obtained by applying a softmax
transform. The approach is illustrated in Fig. 3. This ar-
chitecture is used for predicting both the marginal distribu-
tion of the linear assignment and the MAP estimation of the
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Figure 3: Our LSTM model for solving bipartite matching.
At each step, the network outputs a probability distribution
for matching one point from set A to each point in set B.

quadratic binary program. We have also considered using
the sequence-to-sequence architecture (Sutskever, Vinyals,
and Le 2014) to encode the entire input for the matching
problem but could not achieve reasonable performance. We
believe that this is mainly due to the fact that the input se-
quences become too long, which is a known limitation of
that technique. Concretely, in the case of quadratic assign-
ment with N point pairs, the cost matrix (or feature vector
F) contains N4 elements.

Objective-based training

As an important technical contribution, we extend our model
from above to allow for a so-called objective-based learn-
ing. To that end, we compute the problem-specific objec-
tive at each iteration of gradient descent for both the current
network prediction and the available approximate solution
to be used as our target. Contrary to traditional loss-based
training, we only propagate the gradient if the available so-
lution proposal yields a better objective than our predicted
solution (see Fig. 2 for an illustration). We argue that this
strategy will steer the training towards higher quality solu-
tions. Moreover, it provides a simple way to generate a more
accurate training set during training itself.

Experiments

We demonstrate the efficacy of our proposed method on
three examples. First, we show that the marginal distribu-
tions of a linear assignment problems can be successfully
learned. Second, the MAP solution of a binary quadratic
binary program is estimated and used to find feature point
correspondences. Third, we show that the objective-based
scheme leads to a minor but consistent performance boost
on both aforementioned applications as well as the Pointer-
Net (Vinyals, Fortunato, and Jaitly 2015) applied on the trav-
elling salesman problem.

Marginalisation of linear assignment for data
association

Bipartite matching is a well-known problem in graph the-
ory that arises in many practical applications. Given two
sets, the goal here is to find correspondences between ele-
ments in the two sets, such that the overall similarity score
is maximised, while maintaining a one-to-one relationship.
Solving the matching problem is important to find feature
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Figure 4: Tracking multiple targets on synthetic data over 20 frames (x, y-coordinates shown). Left: Ground truth (solid lines)
and noisy detections. Middle: Results obtained by JPDA (Fortmann, Bar-Shalom, and Scheffe 1980). Right: Our approach
(LSTM obj.). Each colour corresponds to a particular target. Note that our LSTM-based data association correctly resolves this
crossing case while JPDA switches the red and green trajectories.

point pairs across images for 3D reconstruction (Zamir and
Shah 2014) and action recognition (Brendel and Todorovic
2011), to find the same person in different frames of a video
for multi-target tracking (Xiong et al. 2013) and person re-
identification, or to find similarities between chemical com-
pounds using subgraph isomorphism (Ullmann 1976). The
task can be generally formulated as a constrained binary op-
timisation problem, where the constraints ensure a valid as-
signment.

In some specific cases such as person re-identification, the
problem is addressed as a linear assignment, which can be
formulated as a binary linear program

X∗ =argmax
X

c�X (3)

s. t. ∀j :
∑

i

Xij = 1 ∧ ∀i
∑

j

Xij = 1, (4)

where c are the (linear) coefficients, X ∈ {0, 1}N2

is the
binary solution vector and X ∈ R

N×N is the same vector
reshaped as a square matrix, where Xij = 1 iff element i is
matched to element j. The constraints (4) ensure that X is
an assignment matrix.

It turns out that the globally optimal linear assignment
in Eq. (3)-(4) can be found in polynomial time, for in-
stance using the well-known Hungarian (or Munkres) algo-
rithm. However, it was recently shown (Rezatofighi et al.
2016) that matching accuracy can be improved significantly
through marginalisation over each entity. More precisely, the
marginal probability p of matching element i to j is obtained
by summing over all valid (one-to-one) solutions that con-
tain that match (Xij = 1)

p(Xij) =
∑

{X∈Θ|Xij=1}
p(X ), (5)

where Θ is the space of all feasible solutions and p(X ) ∝∏
∀k,l p(Xkl)

Xkl is the joint probability of one particular as-
signment hypothesis. Here, p(X ) can be calculated by refor-
mulating it as linear assignment problem

log (p(X )) =
∑

∀k,l
cklXkl = c�X, (6)

where ckl ∝ log (p(Xkl)). In contrast to Eq. (3), the
marginal probability effectively considers all feasible (not

Method OSPA-T ↓ ID switches ↓
JPDA 0.41 0.40
JPDA10* 0.43 1.10
HA 0.47 1.30
LSTM (loss) 0.42 0.70
LSTM (obj.) 0.37 0.60
*Used as training data

Table 1: Tracking performance, averaged over 100 random
runs, measured by the OSPA-T error and the number of iden-
tity switches. The best and second best results for each met-
ric are highlighted in bold red and blue, respectively. Note
that only the approximation JPDA10 was used for training,
but the LSTM is able to capture the structure of the problem,
resulting in a slight performance improvement.

only optimal) solutions simultaneously, which is also the
main reason for the high robustness of joint probabilis-
tic data association (JPDA) (Fortmann, Bar-Shalom, and
Scheffe 1980) in the context of multi-target tracking.

Computing the exact marginals is an expensive combina-
torial problem because one needs to iterate over exponen-
tially many permutations. Here, we propose to learn to esti-
mate the marginal matching distribution by training a recur-
rent neural net specifically customised for the task at hand.

As described above, the input matrix1 F ∈ R
N×N con-

tains the edge weights of the bipartite graph. In our applica-
tion of tracking multiple targets, these weights are computed
as Mahalanobis distances between the estimated target states
and all measurements. We use the Kullback-Leibler (KL)
divergence as the loss to fit the predicted assignment distri-
bution to the provided (approximate) marginal distribution.
The network’s size, i.e. the dimension of the hidden state
vector h is 128 and there is one layer with a dropout prob-
ability of 0.1. We use 50 000 training examples and a batch
size of 10. The learning rate is set to 0.001 and is decreased
by 10% every 1000 iterations.

To validate our method for approximating marginal dis-
tributions, we perform experiments on tracking five targets
in a simulated setting. The target locations are generated
on a 2D plane over 20 frames such that all tracks cross
around frame 10 (cf . Fig. 4 left). Detections are obtained
by adding random Gaussian noise in x and y and permuting

1In practice, the matrix is reshaped as a vector.
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Figure 5: Left: One test exemplar of feature point matching using IPFP-S (Leordeanu, Sukthankar, and Hebert 2011); middle:
our prediction using traditional loss-based training; and right: and the objective-based strategy. Yellow and blue lines depict
correct and false matches, respectively. Note that with the objective-based training, we achieve better results both in terms of
the matching accuracy and w.r.t. the objective value than the IPFP-S baseline.

their identities. The tracking is performed using independent
Kalman filters that are updated using the weighted data as-
sociation output of each method. We compare our standard
supervised (loss-based) training and our objective-based
training approach (LSTM obj.) with three baselines. The
joint probabilistic data association (JPDA) (Fortmann, Bar-
Shalom, and Scheffe 1980), which uses the exact marginals
for each target-to-measurement assignment, its approxima-
tion computed from only 10 best association hypotheses
(JPDA10) (Rezatofighi et al. 2015), and the MAP solution of
the linear assignment from Eq. (3) solved by the Hungarian
algorithm (HA). The tracking performance listed in Tab. 1
is measured by two different metrics: OSPA-T location er-
ror (Ristic et al. 2011), which combines track accuracy and
misassignments, as well as the raw number of ID switches.

Interestingly, the LSTM is able to outperform the JPDA10

approximation that was used for training. We believe that
this is due to the present structure of the problem at hand
that the network is able to capture. Moreover, as expected,
the objective-based variant of our training leads to slightly
better results for both metrics, indicating the effectiveness
of the proposed method.

Quadratic assignment for feature point matching

In feature point matching the task is to find one-to-one point
correspondences between two images, and is typically for-
mulated as a quadratic assignment problem (QAP) (Cho,
Lee, and Lee 2010; Leordeanu, Sukthankar, and Hebert
2011; Zhou and De la Torre 2012; Zhang et al. 2016). Sim-
ilar to the linear case above (Eq. (3)), the solution is repre-
sented by a binary vector X ∈ {0, 1}N2

that should obey
the same assignment constraints from Eq. (4). The differ-
ence, however, is that here, the objective takes on a quadratic
form X∗ = argmaxX X�QX , which makes the problem
NP-hard and consequently the computation of the global
optimum intractable for real-sized problems. Here, the in-
put matrix F ∈ R

N2×N2

carries the pairwise edge terms
computed from geometric features as defined in (Leordeanu,
Sukthankar, and Hebert 2011). In particular, these features
measure the similarity of two interest point pairs w.r.t. their
distance and orientation defined by their normal vectors.

We use the same architecture as above (cf . Fig. 3) to pre-
dict one matching pair at a time from the input, but with two
minor differences. First, we are interested in computing the
optimal solution of the QAP instead of fitting a probability
distribution and thus employ the standard log-likelihood loss

Name Accuracy Objective Time [s]
Branch-and-cut 0.90 10.99 0.007
IPFP-S 0.66 10.11 0.009
IPFP-S (best of 10) 0.70 10.47 0.056
LSTM (loss) 0.68 9.54 0.004
LSTM (obj.) 0.76 10.52 0.004

Table 2: Bipartite matching with quadratic costs, averaged
over 10 samples from the motorbike test set. The best and
second best results for each metric are highlighted in bold
red and blue, respectively.

to measure the number of mismatches. Second, for this task,
we use a 2-layered RNN of size 64. Reducing the network
size for a more complex problem may seem counterintuitive,
however we found that this regularisation is necessary due to
the increased number of parameters induced by the larger in-
put feature F . The remainder of the settings are equivalent
to the network described in the previous section.

For this experiment, we employ the public car and mo-
torbikes dataset of Leordeanu et al. (2011), consisting of 30
pairs of car images and 20 pairs of motorbikes images with
manually annotated point correspondences.2 We train our
network to match eight point pairs. To generate the training
and validation data, we randomly sample the points from car
images for each training instance and obtain 100 approxi-
mate solutions using the Integer Projected Fixed Point solver
(IPFP) (Leordeanu, Sukthankar, and Hebert 2011) combined
with a naive exclusion strategy proposed in (Rezatofighi et
al. 2016). The motorbikes set is used exclusively for testing.
We do not add any outliers in our experiments. Note that
we demonstrate the efficacy of the proposed method on this
rather small-sized problem, which allows us to validate the
solution with respect to the global optimum.

Tab. 2 lists quantitative results of our method, compared
to several baselines. Gurobi’s QBP solver (Gurobi Opti-
mization 2015) is able to find the optimal solution for this
problem size. Note, however, that this is not the case for
larger instances. The IPFP-S solver (Leordeanu, Sukthankar,
and Hebert 2011) is efficient, but often leads to suboptimal
matching solutions. Choosing the best out of ten computed
IPFP solutions improves the result, but necessarily requires
a large computational overhead. Out LSTM-based method
can match the approximate solver in terms of accuracy and

2Note that these annotations are not used for training.
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Figure 6: Blue curves show the decrease of the predicted
tour length on the training set for the traditional loss-based
training (Vinyals, Fortunato, and Jaitly 2015) (dashed) and
our proposed approach. The red graph depicts the percent-
age of predicted solutions that yield a lower length than the
provided approximate solutions.

Method Nearest neighbours Ptr-Net Ptr-Net
Best 20 Avg 20 Worst 20 (orig.) (ours)

Tour length 3.09 3.43 3.87 3.80 3.45

Table 3: TSP test results after 6 epochs, averaged over 1000
20-node problems.

is at the same time twice as fast as one single IPFP itera-
tion. When using the objective to select the optimal solution
proposals during training (LSTM obj.), we are able to im-
prove the results even further, while maintaining the same
efficiency during inference. Fig. 5 shows qualitative results.

Travelling salesman problem

To further demonstrate the benefits of the proposed
objective-based learning method over traditional supervised
learning with approximate ground truth, we explore the
well-known travelling salesman problem (TSP). To that end,
we use a publicly available implementation3 of Pointer Net-
works (Vinyals, Fortunato, and Jaitly 2015) as our base-
line architecture, which is slightly different from the LSTM
for bipartite matching, and experimentally validate that our
objective-based learning generalises to a variety of network
architectures and NP-hard problems.

Unlike the work of Pointer-Net, which shows the basic
functionality of the approach on randomly generated TSP
instances, we focus on solving the travelling salesman prob-
lem on a real map. We use the map of Qatar (Lelonek 2013)
with 194 different locations as our playing field for learn-
ing to solve the TSP with 20 nodes. Even on such relatively
small map one can encounter nearly 1027 unique 20-node
travelling salesman problems. We randomly sample only
10K subsets from the large pool and aim to learn a network
without strong supervision, which can in turn be used to ac-
curately solve any new TSP on the same map.

3https://github.com/vshallc/PtrNets

Although a vast number of approximate TSP algorithms
exist, without loss of generality we use a simple ensemble
of 20 nearest neighbour (NN) solutions (one starting from
each node) as our approximate solver for training. In other
words, for each training instance we choose the best-of-20
NN solutions as our initial ground truth.

In our experiment, we train the Pointer-Net on 10K train-
ing examples with the standard log-likelihood loss, a batch
size of 1, and learning rate of 1 using stochastic gradient de-
cent. We then repeat the exact same experiment with the ex-
ception that instead of blindly relying on the gradient of the
log-likelihood loss function, before every gradient upgrade
we project the predicted tour onto the valid solution space
via beam search and compare the tour length of the predic-
tion to that of the nearest neighbour algorithm. Finally, we
only back-propagate the gradients for those instances whose
prediction yields a longer tour, as described earlier. Fig. 6
shows that including the objective-based gradient replace-
ment yields a faster and more consistent convergence with
marginally better results, compared to Pointer-Net. What is
even more striking is that already after very few epochs, the
predictions outperform the provided ‘ground truth’ in nearly
20% of all training instances. As Fig. 6 (red) illustrates, this
effect of bootstrapping is rather strong in the beginning and
flattens out as the model becomes more and more accurate.
As expected, better training examples continually lead the
model towards better predictions, averaged over the dataset.
This once again supports our claim that the objective-based
training is an effective way to generate more accurate train-
ing data that can in turn be used to further refine both the
network and the training data iteratively.

Discussion and Limitations

We showed that the proposed approach gives reasonable ap-
proximations to complex combinatorial problems. Neverthe-
less, we would like to point out some existing limitations and
to discuss important aspects that should not be ignored.

One of the most obvious drawbacks of the presented
method is the relatively long training procedure that is nec-
essary, which is encountered in almost all existing tech-
niques that deal with deep learning and such huge numbers
of free parameters. Even though this is a completely offline
process and does not pose an issue for most practical ap-
plications, it should not be left out of sight. Another im-
portant limitation factor is the fixed input and output size
of the matching problem. Note that we have considered us-
ing the Pointer-Net architecture to allow for arbitrary sized
problems, however, this is non-trivial because we are deal-
ing with a structured and not only sequential input. The main
goal of this work is to provide first steps towards data-driven,
objective-based learning of complex algorithms. Although
we believe that dealing with arbitrary sized graphs is an im-
portant issue to be addressed, it lies outside the scope of this
paper and we leave it for future work.

Conclusion and Outlook

We have presented a method for learning to solve complex
combinatorial problems. The proposed architecture exploits
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the sequential process of RNNs and allows for a step-by-step
prediction of the final solution. Our experiments on multiple
applications show that this learning-based approach results
in very good approximations of the globally optimal solu-
tion, while taking only a fraction of the computational re-
sources. Furthermore, we showed that by incorporating the
problem specific objective, one is able to bypass the expen-
sive step of generating exact ground truth, rendering our ap-
proach “less supervised”. In future, we plan to further in-
vestigate the possibility to extend our method to arbitrary
sized problems, using either an input embedding strategy,
or exploring convolutional techniques for general graphs. It
is also possible to explore the application of the presented
approach to other NP-hard problems.
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