
Beyond Monte Carlo Tree Search: Playing Go with
Deep Alternative Neural Network and Long-Term Evaluation

Jinzhuo Wang, Wenmin Wang, Ronggang Wang, Wen Gao†
School of Electronics and Computer Engineering, Peking University

†School of Electronics Engineering and Computer Science, Peking University
jzwang@pku.edu.cn, wangwm@ece.pku.edu.cn, rgwang@ece.pku.edu.cn, wgao@pku.edu.cn

Abstract

Monte Carlo tree search (MCTS) is extremely popular in
computer Go which determines each action by enormous sim-
ulations in a broad and deep search tree. However, human
experts select most actions by pattern analysis and careful
evaluation rather than brute search of millions of future in-
teractions. In this paper, we propose a computer Go system
that follows experts way of thinking and playing. Our system
consists of two parts. The first part is a novel deep alterna-
tive neural network (DANN) used to generate candidates of
next move. Compared with existing deep convolutional neu-
ral network (DCNN), DANN inserts recurrent layer after each
convolutional layer and stacks them in an alternative manner.
We show such setting can preserve more contexts of local fea-
tures and its evolutions which are beneficial for move predic-
tion. The second part is a long-term evaluation (LTE) module
used to provide a reliable evaluation of candidates rather than
a single probability from move predictor. This is consistent
with human experts nature of playing since they can foresee
tens of steps to give an accurate estimation of candidates. In
our system, for each candidate, LTE calculates a cumulative
reward after several future interactions when local variations
are settled. Combining criteria from the two parts, our system
determines the optimal choice of next move. For more com-
prehensive experiments, we introduce a new professional Go
dataset (PGD), consisting of 253, 233 professional records.
Experiments on GoGoD and PGD datasets show the DANN
can substantially improve performance of move prediction
over pure DCNN. When combining LTE, our system outper-
forms most relevant approaches and open engines based on
MCTS.

Introduction

Go is a game of profound complexity and draws a lot at-
tention. Although its rules are very simple (Müller 2002), it
is difficult to construct a suitable value function of actions
in most of situations mainly due to its high branching fac-
tors and subtle board situations that are sensitive to small
changes.

Previous solutions focus on simulating future possible in-
teractions to evaluate candidates. In such methods, Monte
Carlo tree search (MCTS) (Gelly and Silver 2011) is the
most popular one, which constructs a broad and deep search

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tree to simulate and evaluate each action. However, the play-
ing strength of MCTS-based Go programs is still far from
human-level due to its major limitation of uneven perfor-
mance. Well known weaknesses include capturing race or
semeai, positions with multiple cumulative evaluation er-
rors, ko fights, and close endgames (Rimmel et al. 2010;
Huang and Müller 2013). We attribute it to the following rea-
sons. First, the effectivity of truncating search tree is based
on prior knowledge and far away from perfect play (Müller
2002). Second, when the board is spacious especially at
opening, simulation is expensive and useless. Besides, the
outputs of leaves in Monte Carlo tree are difficult to be pre-
cisely evaluated (Browne et al. 2012). Last but most impor-
tant, MCTS does not follow professionals’ way of playing
since professionals hardly make brute simulation of every
possible future positions. Instead, in most situations, they
first obtain some candidates using pattern analysis and de-
termine the optimal one by evaluating these candidates.

Recently as deep learning revolutionizes and gradually
dominate many tasks in computer vision community, re-
searcher start to borrow deep learning techniques for move
prediction and develop computer Go systems (Clark and
Storkey 2015; Maddison et al. 2015; Tian and Zhu 2016;
Silver et al. 2016). However, compared with visual signals
(e.g. 224 × 224 in image domain), Go board has a much
smaller size (19 × 19), which poses the importance of rela-
tive position. This is consistent with playing Go as situation
can dramatically alter with a minor change in position. On
the other hand, existing DCNNs often mine such contexts
by stacking more convolutional layers (e.g. up to 13 layers
in (Silver et al. 2016)) to exploit high-order encodings of
low-level features. Simply increasing layers not only suffers
parameter burden but also does not embed contexts of local
features and its evolutions.

Based on the above discussions, this paper introduces a
computer Go system consisting of two major parts. The first
part is a novel deep architecture used to provide a probabil-
ity distribution of legal candidates learned from profession-
als’ records. These candidates are further sent to a long-term
evaluation part by considering local future impact instead of
immediate reward. We expect the model focus on several
suggested important regions rather than blind simulation of
every corner in the board. The primary contributions of this
work are summarized as follows.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1576



• We propose a novel deep alternative neural network
(DANN) to learn a pattern recognizer for move prediction.
The proposed DANN enjoys the advantages of both CNN
and recurrent neural network (RNN), preserving contexts
of local features and its evolutions which we show are
essential for playing Go. Compared with existing DCNN-
based models, DANN can substantially improve the move
prediction performance using less layers and parameters.

• To further enhance the candidates generated from DANN,
we present a novel recurrent model to make a long-term
evaluation around each candidate for the final choice. We
formulate the process as a partially observe Markov deci-
sion process (POMDP) problem and propose a reinforce-
ment learning solution with careful control of variance.

• We introduce a new professional Go dataset (PGD) for
comprehensive evaluation. PGD consists of 329.4k mod-
ern professional records and considered useful for com-
puter Go community. Thorough experiments on GoGoD
and PGD demonstrates the advantages of our system over
DCNNs and MCTS on both move prediction and win rate
against open source engines.

Related Work

Monte Carlo tree search (MCTS). It is a best-first search
method based on randomized explorations of search space,
which does not require a positional evaluation function
(Browne et al. 2012). Using the results of previous explo-
rations, the algorithm gradually grows a game tree, and suc-
cessively becomes better at accurately estimating the val-
ues of the optimal moves (Bouzy and Helmstetter 2004)
(Coulom 2006). Such programs have led to strong ama-
teur level performance, but a considerable gap still remains
between top professionals and the strongest computer pro-
grams. The majority of recent progress is due to increased
quantity and quality of prior knowledge, which is used to
bias the search towards more promising states, and it is
widely believed that this knowledge is the major bottleneck
towards further progress. The first successful current Go
program (Kocsis and Szepesvári 2006) was based on MCTS.
Their basic algorithm was augmented in MoGo (Gelly and
Silver 2007) to leverage prior knowledge to bootstrap value
estimates in the search tree. Training with professionals’
moves was enhanced in Fuego (Enzenberger et al. 2010) and
Pachi (Baudiš and Gailly 2011) and achieved strong amateur
level.

Supervised pattern-matching policy learning. Go pro-
fessionals rely heavily on pattern analysis rather than brute
simulation in most cases (Clark and Storkey 2015; Xiao and
Müller 2016). They can gain strong intuitions about what are
the best moves to consider at a glance. This is in contrast to
MCTS which simulates enormous possible future positions.
The prediction functions are expected to be non-smooth
and highly complex, since it is fair to assume professionals
think in complex, non-linear ways when they choose moves.
To this end, neural networks especially CNNs are widely
used (Schraudolph, Dayan, and Sejnowski 1994; Enzen-
berger 1996; Richards, Moriarty, and Miikkulainen 1998;
Sutskever and Nair 2008). Recent works in image recog-

nition have demonstrated considerable advantages of DC-
NNs (Krizhevsky, Sutskever, and Hinton 2012; Simonyan
and Zisserman 2014; Szegedy et al. 2015) and showed sub-
stantial improvement over shallow networks based on man-
ually designed features or simple patterns extracted from
previous games (Silver 2009). DCNNs have yielded several
state-of-the-art Go playing system (Clark and Storkey 2015;
Maddison et al. 2015; Tian and Zhu 2016; Silver et al. 2016)
with 8, 12 and 13 convolutional layers. Besides, these works
have also indicated combining DCNNs and MCTS can im-
prove the overall playing strength. Similar conclusions are
validated in state-of-the-art Go programs (Enzenberger et
al. 2010; Baudiš and Gailly 2011). The major difference be-
tween this paper and existing combinations comes from two
perspectives. The first one is that we use a novel architecture
DANN to generate candidates with more consideration of
local contexts and its evolutions. The proposed architecture
shows substantial improvement with pure DCNN with fewer
layers and parameters. The second is that we use a long-term
evaluation to analyze previous candidates instead of MCTS
to assist the final choice. This strategy is faster than MCTS
because the former needs to consider a large search space.

The Proposed Computer Go System

The proposed system is illustrated in Figure 1). Given a
situation, we first obtain a probability distribution of legal
points that are learned from a pattern-aware prediction in-
strument based on supervised policy learning from existing
professional records. We then further analyze those candi-
dates with high-confidence by a long-term evaluation to pur-
sue a expectation reward after several future steps when the
local situation is settled. The action with the highest score of
criteria combination of two criteria is our final choice.

Deep Alternative Neural Network

We train a novel deep alternative neural network (DANN)
to generate a probability distribution of legal points given
current board situation as an input. We treat the 19×19 board
as a 19 × 19 image with multiple channels. Each channel
encodes a different aspect of board information (see details
in Table 1). In the following we describe the structure of
DANN including its key component (alternative layer) and
overall architecture. Afterwards we discuss its relations and
advantages over popular DCNNs.

Alternative layer. The key component of DANN is the
alternative layer (AL), which consists of a standard convo-
lutional layer followed by a designed recurrent layer. Specif-
ically, convolution operation is first performed to extract fea-
tures from local neighborhoods on feature maps in the previ-
ous layers. Then a recurrent layer is applied to the output and
iteratively proceeds for T times. This procedure makes each
unit evolve over discrete time steps and aggregate larger re-
ceptive fields (RFs). More formally, the input of a unit at
position (x, y, z) in the jth feature map of the ith AL at time
t, denoted as uxyz

ij (t), is given by

uxyz
ij (t) = uxyz

ij (0) + f(wr
iju

xyz
ij (t− 1)) + bij

uxyz
ij (0) = f(wc

(i−1)ju
xyz
(i−1)j)

(1)

1577



Figure 1: The proposed computer Go system with deep alternative neural network (DANN) and long-term evaluation. Given
a situation the system generate several candidates by DANN that are learned from professional records. These candidates are
further analyzed using a long-term evaluation with consideration of future rewards to determine a final action.

Figure 2: Comparison of DANN (right) and DCNN (left).

where uxyz
ij (0) denotes the feed-forward output of convolu-

tional layer, uxyz
ij (t − 1) is the recurrent input of previous

time, wc
k and wr

k are the vectorized feed-forward kernels
and recurrent kernels, bij is the bias for jth feature map in
ith layer, uxyz

ij (0) is the output of convolutional output of
previous layer and f(wr

iju
xyz
ij (t− 1))) is induced by the re-

current connections. f is defined as popular rectified linear
unit (ReLU) function f(x) = max(0, x), followed by a lo-
cal response normalization (LRN)

LRN(uxyz
ij ) =

uxyz
ij

(1 + α
L
∑min(K,k+L/2)

k′=max(0,k−L/2) (u
xyz
ij )

2
)
β

(2)

where K is the number of feature maps, α and β are con-
stants controlling the amplitude of normalization. The LRN
forces the units in the same location to compete for high ac-
tivities, which mimics the lateral inhibition in the cortex. In
our experiments, LRN is found to consistently improve the
accuracy, though slightly. Following (Krizhevsky, Sutskever,
and Hinton 2012), α and β are set to 0.001 and 0.75, respec-
tively. L is set to K/8 + 1.

Equation 1 describes the dynamic behavior of AL where
contexts are involved after local features are extracted. Un-
folding this layer for T time steps results in a feed-forward
subnetwork of depth T + 1 as shown in the right of Fig-
ure 2. While the recurrent input evolves over iterations, the
feed-forward input remains the same in all iterations. When
T = 0 only the feed-forward input is present. The subnet-
work has several paths from the input layer to the output
layer. The longest path goes through all unfolded recurrent
connections, while the shortest path goes through the feed-
forward connection only. The effective RF of an AL unit in

the feature maps of the previous layer expands when the it-
eration number increases. If both input and recurrent kernels
in equation have square shapes in each feature map of size
Lfeed and Lrec, then the effective RF of an AL unit is also
square, whose side length is Lfeed + Lrec × (T + 1).

Advantages over DCNNs. The recurrent connections in
DANN provide three major advantages compared with pop-
ular DCNNs used for move prediction (Clark and Storkey
2015; Maddison et al. 2015; Tian and Zhu 2016; Silver et
al. 2016). First, they enable every unit to incorporate con-
texts in an arbitrarily large region in the current layer, which
is particular suitable in the game of Go as the input signal
is very small where the contexts are essential. As the time
steps increase, the state of every unit is influenced by other
units in a larger and larger neighborhood in the current layer.
In consequence, the size of regions that each unit can watch
in the input space also increases. In standard convolutional
layers, the size of effective RFs of the units in the current
layer is fixed, and watching a larger region is only possible
for units in higher layers. But unfortunately the context seen
by higher-level units cannot influence the states of the units
in the current layer without top-down connections. Second,
the recurrent connections increase the network depth while
keeping the number of adjustable parameters constant by
weight sharing. Specially, stacking higher layers consume
more parameters while AL uses only additional constant pa-
rameters compared to standard convolutional layer. This is
consistent with the trend of modern deep architectures, i.e.,
going deeper with relatively small number of parameters (Si-
monyan and Zisserman 2014; Szegedy et al. 2015). Note
that simply increasing the depth of CNN by sharing weights
between layers can result in the same depth and the same
number parameters as DANN. We have tried such a model
which leads to a lower performance. The third advantage is
the time-unfolded manner in Figure 2, which is actually a
CNN with multiple paths between the input layer to the out-
put layer to facilitate the learning procedure. On one hand,
the existence of longer paths makes it possible for the model
to learn highly complex features. On the other hand, the exis-
tence of shorter paths may help gradient of backpropagation
during training. Multi-path is also used in (Lee et al. 2015;
Szegedy et al. 2015), but extra objective functions are used
in hidden layers to alleviate the difficulty in training deep
networks, which are not used in DANN.

1578



Figure 3: A recurrent model for long-term evaluation.

Overall architecture. The overall architecture of our
DANN has 6 ALs with 64, 128, 256, 256, 512 and 512 ker-
nels, followed by 2 fully connected (FC) layers of size 1024
each. We use 3× 3 kernel for convolutional layer and recur-
rent layers of all 6 ALs. After each AL, the network includes
a ReLU activation. We use max pooling kernels of 2 × 2
size. All of these convolutional layers and recurrent layers
are applied with appropriate padding and stride. FC layers
are followed by a ReLU and a softmax, which outputs the
probabilities of Go board and illegal points are set 0.

Long-Term Evaluation of Candidates

DANN provides a probability distribution of next move
candidates give a situation. We further enhance this model
by evaluating these candidates in a long-term considera-
tion since predicting only the immediate next move lim-
its the information received by lower layers (Tian and Zhu
2016). Besides, many situations in intensive battle or cap-
ture chase is far beyond fair evaluation and need to be ac-
curately judged when local variation is settled. We aim to
avoiding shortsighted moves. There are some works such as
(Littman 1994) that consider playing games as a sequential
decision process of a goal-directed agent interacting with vi-
sual environment. We extend this idea to evaluate candidates
in a similar manner. We calculate the cumulative rewards of
each candidate with several future interactions. Combining
previous probabilities criterion, we obtain a final score and
determine the optimal action.

Recurrent model and internal state. Figure 3 shows our
model structure, which is build a agent around a RNN. To
avoiding blind search space like MCTS, the agent observes
the environment only via a bandwidth-limited sensor, i.e. it
never senses the full board. It may extract information only
in a local region around candidates. The goal of our model is
to provide a reliable evaluation of each candidate and assist
the final choice. The agent maintains an internal state which
summarizes information extracted from past observations. It
encodes the agent’s knowledge of the environment and is
instrumental to deciding how to act and where to deploy the
next action. This internal state is formed by the hidden units
ht of the recurrent neural network and updated over time by
the core network ht = fh(ht−1, lt−1; θh).

Action and reward. At each step, the agent performs
two actions. It decides how to deploy its sensor via the
sensor control lt, and an action at which might affect the
state of the environment. The location are chosen stochasti-
cally from a distribution parameterized by the location net-
work lt ∼ p(·|fl(ht; θl). The action is similarly drawn from
a distribution conditioned on a second network output at
at ∼ p(·|fa(ht; θa). Finally, our model can also be aug-
mented with an additional action that decides when it will
stop when local fights are settled. After executing an action
the agent receives a new visual observation and a reward
signal r. The goal of the agent is to maximize the sum of
the reward signal R =

∑T
t=1 rt. The above setup is a spe-

cial instance of partially observable Markov decision pro-
cess (POMDP), where the true state of whole board is unob-
served.

Training. The policy of the agent, possibly in combina-
tion with the dynamics of interactions, induces a distribution
over possible interaction sequences and we aim to maximize
the reward under the distribution of

J (θ) = Ep(s1:T ;θ)[

T∑

t=1

rt] = Ep(s1:T ;θ)[R] (3)

Maximizing J exactly is difficult because it involves an
expectation over interaction sequences which may in turn
involve unknown environment dynamics. Viewing the prob-
lem as a POMDP problem, however, allows us to bring tech-
niques from the RL literature to bear. As shown in (Williams
1992) a sample approximation to the gradient is given by

∇θJ =

T∑

t=1

Ep(s1:T ; θ)[∇θ log π(ut|s1:t; θ)R]

≈ 1

M

M∑

i=1

T∑

t=1

∇θ log π(u
i
t|si1:t; θ)Ri

(4)

where si,s are the interaction sequences obtained by running
the current agent πθ for i = 1 · · ·M episodes. The learn-
ing rule of Equation 4 is also known as the REINFORCE
rule, and it involves running the agent with its current pol-
icy to obtain samples of interaction sequences s1:T and then
adjusting the parameters θ such that the log-probability of
chosen actions that have led to high cumulative reward is in-
creased, while that of actions having produced low reward is
decreased. ∇θ log π(u

i
t|si1:t; θ) in Equation 4 is just the gra-

dient of the RNN and can be computed by standard back-
propagation (Wierstra et al. 2007).

Variance reduction. Equation 4 provides us with an un-
biased estimate of the gradient but it may have high variance.
It is common to consider a gradient estimate of the form

1

M

M∑

i=1

T∑

t=1

∇θ log π(u
i
t|si1:t; θ)(Ri

t − bt) (5)

where Ri
t =

∑T
t′=1 r

i
t′ is the cumulative reward following

the execution of action ui
t, and bt is a baseline that depends

on si1:t but not on the action ui
t itself. This estimate is equal

1579



Table 1: Input feature channels for DANN.

Feature # Description

Ladder capture 1 Whether point is a successful ladder capture
Ladder escape 1 Whether point is a successful ladder escape
Sensibleness 1 Whether point is legal and does not fill eyes
Legality 1 Whether point is legal for current player
Player color 1 Whether current player is black
Zeros 1 A constant plane filled with 0
Stone color 3 Player stone/opponent stone/empty
Liberties 4 Number of liberties (empty adjacent points)
Liberties∗ 6 Number of liberties (after this move)
Turn since 6 Number of liberties (after this move)
Capture size 8 How many opponent stones would be captured
Self-atari size 8 How many own stones would be captured

to Equation 4 in expectation but may have lower variance.
We select the value function of baseline following (Sutton et
al. 1999) in the form of bt = Eπ[Rt]. We use this type of
baseline and learn it by reducing the squared error between
Ri,

t and bt.
Final score. We define the final score for each candidate

using the criteria of both DANN and long-term evaluation.
We select the action of the highest score of S = p × E[R]
as the final choice of our system, where p is the probability
produced by the softmax layer of DANN.

Experiments

Setup

Datasets. The first dataset we used is GoGoD (2015 win-
ter version). The dataset consists of 82, 609 historical and
modern games. We limited our experiments to a subset
of games that satisfied the following criteria: 19 × 19
board, modern (played after 1950), “standard” komi (komi
∈ {5.5, 6.5, 7.5}), and no handicap stones. We did not dis-
tinguish between rulesets (most games followed Chinese
or Japanese rules). Our criteria produced a training set of
around 70, 000 games. We did not use popular KGS dataset
because it consists of more games by lower dan players. The
average level is approximately 5 dan.

Besides, we have collected a new professional Go
dataset (PGD) consisting of 253, 233 professional records,
which exceeds GoGoD and KGS in both quantity and
playing strength. PGD was parsed from non-profit web
sites. All records are saved as widely used smart go file
(SGF), named as DT EV PW WR PB BR RE.sgf, where
DT,EV,PW,WR,PB,BR and RE represent date, tournament
type, black player name, black playing strength, white player
name, white playing strength and result.

Feature channels. The features that we used come di-
rectly from the raw representation of the game rules (stones,
liberties, captures, legality, turns since) as in Table 1. Many
of the features are split into multiple planes of binary values,
for example in the case of liberties there are separate binary
features representing whether each intersection has 1 liberty,
2 liberties, 3 liberties, >= 4 liberties.

Implementation details. The major implementations of
DANN including convolutional layers, recurrent layers and
optimizations are derived from Torch7 toolbox (Collobert,

Kavukcuoglu, and Farabet 2011). We use SGD applied to
mini-batches with negative log likelihood criterion. The size
of mini-batch is set 200. Training is performed by minimiz-
ing the cross-entropy loss function using the backpropaga-
tion through time (BPTT) algorithm (Werbos 1990). This is
equivalent to using the standard BP algorithm on the time-
unfolded network. The final gradient of a shared weight is
the sum of its gradients over all time steps. The initial learn-
ing rate for networks learned from scratch is 3×10−3 and it
is 3×10−4 for networks fine-tuned from pre-trained models.
The momentum is set to 0.9 and weight decay is initialized
with 5× 10−3 and reduced by 10−1 factor at every decrease
of the learning rate.

Move Prediction

We first evaluate different configurations of DANN. Then
we compare our best DANN model with DCNN-based
methods. Finally, we study the impact of long-term evalua-
tion and report the overall performance on move prediction.

Model investigation of DANN. There are two crucial
configurations for DANN model. The first one is the AL set-
ting including its order and number. The other one is the un-
folding time T in recurrent layers. Comparison details are
reported in Table 2, where B 6C 2FC is a baseline com-
posed of similar configuration with DANN but using stan-
dard convolutional layers instead of ALs. The first column
of left table in Table 2 has only one AL layer and the accu-
racy comparison demonstrates the benefits of inserting AL
in advance. We attribute it to the context mining of lower
features. The fourth column of left table in Table 2 shows
the performance increases as the number of AL increases,
which verifies the effectiveness of inserting recurrent layer.
Specifically, the order of AL can contribute a performance
gain up to 11% which indicates that mining contexts of
lower layer is beneficial for playing Go. Right table in Ta-
ble 2 uses 5AL 2FC and 6AL 2FC to study the impact of T
and the results prove larger T leads to better performance in
most cases. Given such results we use our best DANN model
6AL 2FC in the following experiments.

Comparison with DCNN-based methods. Figure 4 re-
ports the performance comparison of our best DANN model
and related approaches using pure DCNN. Following (Mad-
dison et al. 2015) we evaluate the accuracy that the cor-
rect move is within the network’s n most confident predic-
tions. As Figure 4 shows, our model consistently outperform
two recent approaches (Maddison et al. 2015; Tian and Zhu
2016) using pure DCNN on two datasets. Also, note that our
architecture consume less layers where the parameters are
also saved .

Combining long-term evaluation. Next we examine the
influence of our long-term evaluation (LTE). We focus
mainly on the future step that is used to achieve the ex-
pectation of reward, and the episode number when solving
Equation 4. We combine our best DANN model with LTE
on Top-1 move prediction accuracy. Table 5 demonstrates
the details. As can be seen, the best performance is achieved
around 15 to 21 steps. As for the episode, LTE often con-
verges after around 200 episodes. Using the optimal setting
of both part, the overall top-1 accuracy can be obtained at

1580



Table 2: Performance comparison (top-1) with different configurations of DANN on GoGoD and PGD datasets.

Architecture GoGoD PGD Architecture GoGoD PGD
B 6C 2FC 32.2% 37.2% 2AL 4C 2FC 35.0% 39.3%
AL 5C 2FC 40.5% 42.5% 3AL 3C 2FC 42.7% 43.1%
C AL 4C 2FC 41.1% 41.1% 4AL 2C 2FC 47.4% 42.2%
2C AL 3C 2FC 45.6% 44.8% 5AL C 2FC 47.2% 46.4%
3C AL 2C 2FC 47.4% 43.0% 6AL 2FC 53.5% 51.8%
4C AL C 2FC 49.4% 46.6%
5C AL 2FC 51.9% 49.3%

Architecture GoGoD PGD
5AL 2FC, T = 2 46.9% 42.3%
5AL 2FC, T = 3 48.2% 47.1%
5AL 2FC, T = 4 52.3% 45.8%
5AL 2FC, T = 5 55.0% 51.6%
6AL 2FC, T = 2 46.4% 47.2%
6AL 2FC, T = 3 51.1% 51.6%
6AL 2FC, T = 4 55.3% 49.4%
6AL 2FC, T = 5 57.7% 53.8%

Table 3: Win rate comparison against open source engines between our system and previous work.

GnuGo MoGo 10k Pachi 10k Pachi 100k Fuego 10k Fuego 100k
8-layer-DCNN + MCTS (Clark and Storkey 2015) 91.0% - - - 14.0% 14.0%
12-layer-DCNN + MCTS (Maddison et al. 2015) 97.2% 45.9% 47.4% 11.0% 23.3% 12.5%
12-layer-DCNN + MCTS (Tian and Zhu 2016) 100±0.0% - 94.3±1.7% 72.69±1.9% 93.2±1.5% 89.7±2.1%

6-layer-DANN + LTE (Ours) 100±0.0% 72.5±1.8% 83.1±1.4% 65.3±1.6% 82.6±1.2% 76.5±1.6%

Figure 4: Top-n comparison of our best DANN model and
DCNN-based methods on GoGoD and PGD datasets.

61% and 56% on GoGod and PGD datasets, respectively.

Figure 5: Impact of future steps and episode number in long-
term evaluation on GoGoD and PGD datasets.

Playing Strength

Finally, we evaluate the overall playing strength of our sys-
tem by playing against several publicly available benchmark
programs. All programs were played at the strongest avail-
able settings, and a fixed number of rollouts per move. We
used GnuGo 3.8 level 10, MoGo (Gelly and Silver 2007),
Pachi 11.99 (Genjo-devel) with the pattern files, and Fuego
1.1 throughout our experiments. For each setting, 3 groups
of 100 games were played. We report the average win rate
and standard deviation computed from group averages. All
the game experiments mentioned in this paper used komi 7.5
and Chinese rules. Pondering (keep searching when the op-
ponent is thinking) in Pachi and Fuego are on. As Table 3

shows, our system outperform most MCTS-based Go pro-
grams. Also, the win rate of our approach is higher than that
of previous works except (Tian and Zhu 2016).

Conclusion
In this work, we have proposed a computer Go system
based on a novel deep alternative neural networks (DANN)
and long-term evaluation (LTE). We also public a new
dataset consisting of around 25k professional records. On
two datasets, we showed that DANN can predict the next
move made by Go professionals with an accuracy that sub-
stantially exceeds previous deep convolutional neural net-
work (DCNN) methods. LTE strategy can further enhance
the quality of candidates selection, by combining the in-
fluence of future interaction instead of immediate reward.
Without brute simulation of possible interaction in a large
and deep search space, our system is able to outperform most
MCTS-based open source Go programs.

Future work mainly includes the improvement of DANN
structure for move prediction and more reliable LTE imple-
mentation. Advance techniques in computer vision commu-
nity such as residual networks may help DANN obtain fur-
ther improvement. As for LTE, domain knowledge of Go
will be attempted to provide a more reliable estimation of
next move candidates.

Acknowledgement

This work was supported by Shenzhen Peacock Plan
(20130408-183003656).

References
Baudiš, P., and Gailly, J.-l. 2011. Pachi: State of the art
open source go program. In Advances in Computer Games.
24–38.
Bouzy, B., and Helmstetter, B. 2004. Monte-carlo go devel-
opments. In Advances in computer games. 159–174.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;

1581



Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. Computational Intelligence and
AI in Games, IEEE Transactions on 4(1):1–43.
Clark, C., and Storkey, A. 2015. Training deep convolutional
neural networks to play go. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, 1766–1774.
Collobert, R.; Kavukcuoglu, K.; and Farabet, C. 2011.
Torch7: A matlab-like environment for machine learning. In
BigLearn, NIPS Workshop, number EPFL-CONF-192376.
Coulom, R. 2006. Efficient selectivity and backup operators
in monte-carlo tree search. In Computers and games. 72–83.
Enzenberger, M.; Müller, M.; Arneson, B.; and Segal, R.
2010. Fuego- an open-source framework for board games
and go engine based on monte carlo tree search. Computa-
tional Intelligence and AI in Games, IEEE Transactions on
2(4):259–270.
Enzenberger, M. 1996. The integration of a priori knowl-
edge into a go playing neural network. URL: http://www.
markus-enzenberger. de/neurogo. html.
Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in uct. In International Conference on Machine
Learning, 273–280. ACM.
Gelly, S., and Silver, D. 2011. Monte-carlo tree search and
rapid action value estimation in computer go. Artificial In-
telligence 175(11):1856–1875.
Huang, S.-C., and Müller, M. 2013. Investigating the lim-
its of monte-carlo tree search methods in computer go. In
Computers and Games. 39–48.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European Conference Machine Learning.
282–293.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Lee, C.-Y.; Xie, S.; Gallagher, P.; Zhang, Z.; and Tu, Z.
2015. Deeply-supervised nets. In International Conference
on Artificial Intelligence and Statistics, volume 2, 6.
Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of the
eleventh international conference on machine learning, vol-
ume 157, 157–163.
Maddison, C. J.; Huang, A.; Sutskever, I.; and Silver, D.
2015. Move evaluation in go using deep convolutional neu-
ral networks. In International Conference on Learning Rep-
resentation.
Müller, M. 2002. Computer go. Artificial Intelligence
134(1):145–179.
Richards, N.; Moriarty, D. E.; and Miikkulainen, R. 1998.
Evolving neural networks to play go. Applied Intelligence
8(1):85–96.
Rimmel, A.; Teytaud, O.; Lee, C.-S.; Yen, S.-J.; Wang, M.-
H.; and Tsai, S.-R. 2010. Current frontiers in computer go.
Computational Intelligence and AI in Games, IEEE Trans-
actions on 2(4):229–238.

Schraudolph, N. N.; Dayan, P.; and Sejnowski, T. J. 1994.
Temporal difference learning of position evaluation in the
game of go. In Advances in Neural Information Processing
Systems, 817–817.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Silver, D. 2009. Reinforcement learning and simulation-
based search. Doctor of philosophy, University of Alberta.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Sutskever, I., and Nair, V. 2008. Mimicking go experts with
convolutional neural networks. In International Conference
on Artificial Neural Networks. 101–110.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; Mansour, Y.;
et al. 1999. Policy gradient methods for reinforcement learn-
ing with function approximation. In Advances in neural in-
formation processing systems, volume 99, 1057–1063.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In Computer
Vision and Pattern Recognition, 1–9.
Tian, Y., and Zhu, Y. 2016. Better computer go player with
neural network and long-term prediction. In International
Conference on Learning Representation.
Werbos, P. J. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the IEEE
78(10):1550–1560.
Wierstra, D.; Foerster, A.; Peters, J.; and Schmidhuber, J.
2007. Solving deep memory pomdps with recurrent policy
gradients. In International Conference on Artificial Neural
Networks, 697–706.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4):229–256.
Xiao, C., and Müller, M. 2016. Factorization ranking model
for move prediction in the game of go. In AAAI Conference
on Artificial Intelligence.

1582




