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Abstract

Metric learning has been widely employed, especially in var-
ious computer vision tasks, with the fundamental assumption
that all samples (e.g., regions/superpixels in images/videos)
are independent and identically distributed (IID). How-
ever, since the samples are usually spatially-connected or
temporally-correlated with their physically-connected neigh-
bours, they are not IID (non-IID for short), which cannot be
directly handled by existing methods. Thus, we propose to
learn and integrate non-IID metrics (NIME). To incorporate
the non-IID spatial/temporal relations, instead of directly us-
ing non-IID features and metric learning as previous methods,
NIME first builds several non-IID representations on origi-
nal (non-IID) features by various graph kernel functions, and
then automatically learns the metric under the best combi-
nation of various non-IID representations. NIME is applied
to solve two typical computer vision tasks: interactive image
segmentation and histology image identification. The results
show that learning and integrating non-IID metrics improves
the performance, compared to the IID methods. Moreover,
our method achieves results comparable or better than that of
the state-of-the-arts.

Introduction

In recent years, metric learning, aiming to transform the
samples from their original feature space to a more infor-
mative and discriminative one, has been widely adopted
in various computer vision tasks, e.g., face recognition
(Wang et al. 2014; Guillaumin, Verbeek, and Schmid 2009;
Huang et al. 2015), image classification and retrieval (Wang
and Tan 2014; Gao et al. 2014; Mensink et al. 2012), ob-
ject recognition and segmentation (Lajugie, Arlot, and Bach
2014; Teney et al. 2015; Verma et al. 2012), person re-
identification (Liao and Li 2015), and visual object tracking
(Li et al. 2012; Jiang, Liu, and Wu 2012).

The main goal of metric learning is to learn the optimal
metric (i.e., positive semi-definite matrix M = L�L) by
minimizing the pair-wise Mahalanobis distance of training
samples. It is assumed that, by applying metric M (or L) for
feature space transformation, the performance of subsequent
classification or clustering can be improved, compared with
only using the original features.
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Most of existing metric learning methods developed for
computer vision tasks take the independent and identically
distributed (IID) assumption, i.e., regarding all samples
(e.g., regions/superpixels in images/videos) as IID. Conse-
quently, the obtained metric M (or L) learned under the IID
assumption ignores the relations between different samples.
This essentially follows the general metric learning prac-
tices, i.e., converting a specific computer vision task to a
general metric learning problem with the IID assumption,
although sometimes in previous methods the non-IID fea-
tures are first utilized to capture spatial/temporal informa-
tion (Teney et al. 2015).

The IID metric learning methods are not consistent with
the underlying real-life problem nature, i.e., different sam-
ples are often spatially-connected or temporally-correlated
with their neighbours in certain ways. Accordingly, existing
IID methods cannot handle the non-IID complexities, as il-
lustrated in Figure 1, and it is essential for us to develop new
and effective metric learning methods to learn the non-IID
samples.

In this work, we propose to learn and integrate non-IID
metrics (NIME), to automatically capture the underlying
non-IID relations for different tasks. To prevent the ad-hoc
setting, NIME first builds non-IID representations by model-
ing each sample along with its corresponding neighbors with
three simple and effective graph kernels (i.e., direct prod-
uct, Hausdorff distance, and max pooling) on the original
feature space, in which the respective feature vectors of dif-
ferent samples are regarded as nodes in the graph. With the
obtained non-IID representations, we further regard the sub-
sequent non-IID metric learning as a kernel-based learning
problem, the optimal metric is learned by minimizing the
corresponding empirical errors w.r.t. different non-IID rep-
resentations. The stochastic gradient descent (SGD) (Bottou
2010) is performed to accelerate the optimization process.
Also, previous methods normally design the ad-hoc setting
for specific tasks, to fully make the various non-IID repre-
sentations adapt to different tasks, the best linear combina-
tion of multiple non-IID representations (named NIME-CK)
is automatically learned. Please note that, instead of intro-
ducing additional parameters (e.g., imposing other regular-
izer) or assumption (e.g., projecting onto a unique subspace)
which might cause extra parameter tuning or heavy compu-
tational burden, NIME-CK only requires to tune one param-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1524



eter, thus keeping the same property as a single non-IID rep-
resentation, which can be solved by stochastic optimization.
Finally, the learned metric transforms the samples from their
original feature space to another space. In the transformed
feature space, many commonly-used classifiers can be di-
rectly applied to predict new samples. 1
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Figure 1: The illustration of comparing IID v.s. non-IID met-
ric learning in two different applications.

In summary, the major highlights of our work include:
• Our method is not (non-IID) features + metric learning

as previous methods, but three phases as (non-IID) fea-
tures + various non-IID representations + joint metric
learning.

• Our method can be easily adapted to different applications
which are not ad-hoc, with the best combination of vari-
ous non-IID representations automatically learned.

• Our method is easy to implement, and has a nice property
that can be solved by stochastic optimization.

• Many features (e.g., deep features), non-IID representa-
tions (e.g., Hausdorff), and metric-learning methods (e.g.,
LMNN) can be easily integrated into our method.
1Note that, although the existing IID metric learning methods,

e.g., LMNN (Weinberger, Blitzer, and Saul 2005) and NCA (Gold-
berger et al. 2004)), also impose the constraint on k-neighborhood
samples, their data assumption and learning goal are fundamentally
different from ours. (1) They assume that the distance, measured in
Mahalanobis space, between neighboring samples with the same
label should be small. Instead, we assume that the sample with
its physically-connected (i.e., spatially and temporally) neighbors
(with either the same, different or even unknown labels) are not
IID, which makes the corresponding comparison of different sam-
ples becoming a similarity measure on different undirected graphs.
(2) Their goal is to learn the metric on a specifically-designed func-
tion, while ours is to learn the intrinsic non-IID representation and
then the baseline metric learning methods, including LMCA (Tor-
resani and Lee 2007), LMNN and NCA (Jain, Kulis, and Dhillon
2010), can be applied. In this way, our work supports to transfer
existing IID metric learning methods for non-IID problems.

NIME is evaluated for handling two typical computer vi-
sion tasks to validate the effect of considering non-IID rela-
tions compared with pure IID assumption, which shows its
great potential.

Related Work

Metric learning learns a linear, nonlinear, or a local feature
transformation to achieve better feature representation. De-
pending on whether labels (or side information) are used,
metric learning methods can be roughly classified into three
categories: supervised, semi-supervised, and weakly (un)-
supervised methods. As our proposed NIME method is for
supervised metric learning, we review the relevant works ac-
cordingly. Xing et al. proposed MMC (Xing et al. 2002) to
maximize the sum of pairwise distance for similar samples
and add a constraint to keep large distance for dissimilar
samples. Goldberger et al. reported NCA (Goldberger et al.
2004) to optimize the leave-one-out error. Weinberger et al.
presented LMNN (Weinberger, Blitzer, and Saul 2005) re-
quiring that (1) the k-nearest neighbors with the same label
to be close to each other, and (2) samples of different la-
bels be separated by imposing a large margin. Other super-
vised metric learning methods include MCML (Globerson
and Roweis 2005), RCA (Shental et al. 2002), ITML (Davis
et al. 2007). Detailed comparisons of existing methods can
be referred to (Bellet, Habrard, and Sebban 2013).

Increasing recent efforts have been made to metric learn-
ing for computer vision. For example, for face identification
and recognition, two methods, LDML and MkNN, were re-
ported in (Guillaumin, Verbeek, and Schmid 2009) by learn-
ing the metric using the image-pair information. For person
re-identification, a novel method was designed in (Liao and
Li 2015) for cross-view metric learning problem; a set of
hierarchical metrics were learned in (Verma et al. 2012) to
reflect the underlying class taxonomy for multi-class classi-
fication. In addition, TagProp (Guillaumin et al. 2009) was
introduced for image auto-annotation, which maximizes the
log-likelihood of tag predictions in the training samples by
combining a set of metrics trained with different features,
e.g., local shape descriptors and global color histograms. In
(Mensink et al. 2012), metric learning was incorporated into
two classifiers, kNN and Nearest Class Mean (NCM), for
large-scale image annotation. For dynamic scene segmenta-
tion, a metric learning framework was developed in (Teney
et al. 2015) to jointly optimize the representation from var-
ious perspectives. For visual object tracking, both (Li et al.
2012) and (Jiang, Liu, and Wu 2012) presented respective
metric learning methods.

Learning from non-IID data is a recent topic (Cao
2014)(Cao 2015) to address the intrinsic data complexi-
ties, with preliminary work reported such as for clustering
(Wang and Cao 2011), group behavior analysis (Cao, Ou,
and Yu 2012), and multi-instance learning (Zhou, Sun, and
Li 2009). However, the non-IID metric learning is seldom
exploited, especially for computer vision tasks.
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Non-IID Representation via Graph

To incorporate the non-IID relations, we represent each sam-
ple with its corresponding physically-connected neighbors
from spatial/temporal perspectives as an undirected graph,
where different nodes denote different samples. In the con-
structed graph, the central node denotes the current sample
under comparison, and the surrounding nodes denote the
neighboring samples (see Figure 1). Note our concept of
neighbours are different from the previous, here neighbours
refer to the physically-connected samples.

Formally, the i-th training sample (i = 1, 2, ..., Ntr) is en-
coded as xi ∈ R

d, where d is the feature dimensionality in
the original feature space, and Ntr is the number of train-
ing samples. For xi, its neighbors are denoted as x̃i,1, x̃i,2,
..., x̃i,mi

∈ R
d, where mi is the total number of neighbors

of training sample xi. Similarly, we denote the i-th testing
sample (i = 1, 2, ..., Nte) as zi ∈ R

d, where Nte is the num-
ber of testing samples. For zi, its neighbors are denoted as
z̃i,1, z̃i,2, ..., z̃i,ni ∈ R

d, where ni is the total number of
neighbors of testing sample zi.

By connecting each sample with its neighbors as an undi-
rected graph, the classic Mahalanobis distance-based pair-
wise metric function can be regarded as the pairwise similar-
ity in the defined graph kernel representations. Hence, learn-
ing metric M (or L) in the Mahalanobis distance space can
be formulated as learning metric in the corresponding graph
kernel space, such as in (Jain, Kulis, and Dhillon 2010)(Tor-
resani and Lee 2007)(Wang et al. 2011).

Although previous work also introduced similar kernels
(Lyu 2010)(Woznica, Kalousis, and Hilario 2006)(Kondor
and Jebara 2003), they usually treated all the nodes equally.
Accordingly, we define the graph kernel function by repre-
senting and measuring the constructed undirected graph for
different samples. To fully represent the non-IID relations
between each sample and its neighbors, we define the fol-
lowing three specific non-IID graph kernel functions, direct
product kernel (KDP), Hausdorff distance kernel (KHD), and
max pooling kernel (KMP), obtained on all the training and
testing samples.

The simplest method to compute the similarity of two
undirected graphs is to first calculate the distance between
two central nodes (i.e., two samples), and then calculate the
averaged distance for pairwise combinations of all surround-
ing nodes (i.e., neighboring samples), which contributes to
the direct product (DP) kernel (KDP). In some cases, it is
natural to incorporate the overall distributions of these two
sets of surrounding nodes into calculating distances. There-
fore, the Hausdorff distance is a good choice to compute
the overall distance between two discrete sets, resulting in
the Hausdorff distance (HD) kernel (KHD). In addition, the
max pooling function, widely used in computer vision tasks,
also shows success for finding the near optimal matching
between two discrete sets, contributing to the max pooling
(MP) kernel (KMP).

Definition 1 Given two samples xi and xj , their respec-
tive mi and mj neighbors are denoted as x̃i,p (p =
1, ...,mi) and x̃j,q (q = 1, ...,mj) respectively, and their
DP KDP(i, j), HD KHD(i, j), and MP KMP(i, j) distances

are defined below:

KDP(i, j) = f(xi,xj) +
1

mi ·mj

mi∑
p=1

mj∑
q=1

f(x̃i,p, x̃j,q).

(1)

KHD(i, j) = f(xi,xj) +
1

mi ·mj
h(Xi,Xj). (2)

KMP(i, j) = f(xi,xj) +
1

mi

mi∑
p=1

max
q=1,...,mj

f(x̃i,p, x̃j,q)

+
1

mj

mj∑
q=1

max
p=1,...,mi

f(x̃i,p, x̃j,q).

(3)

where f is a positive semi-definite kernel. In Eqn.(2), Xi =
{x̃i,1, x̃i,2, ..., x̃i,mi} is the set including all the neighbours
of xi, and h is the HD kernel function.

Note that there are many alternatives to define f . In this
paper, we choose the Gaussian RBF kernel as f(xi,xj) =
exp(−α1‖xi −xj‖2) for simplicity, where α1 is the param-
eter. In Eqn.(2), the second term calculates the HD between
two sets Xi and Xj . For two sets A and B, HD kernel func-
tion h is defined below.

h(A,B) = exp
(
− α2 ·max

(
H(A,B), H(B,A)

))
, (4)

where α2 is the parameter, and

H(A,B) = max
a∈A

min
b∈B

‖a− b‖, H(B,A) = max
b∈B

min
a∈A

‖b− a‖.

Eqns.(1), (2) and (3) are easy to implement and fast
to compute. All the graph kernels KDP, KHD and KMP
are computed on all the training samples (x1,x2, ...,xNtr )
and testing samples (z1, z2, ..., zNte ), hence, KDP, KHD,
KMP ∈ R

(Ntr+Nte)×(Ntr+Nte). Also, all the graph kernels
should be processed by using kernel alignment, i.e., for a
kernel function K, rescaling each K(i, j) as K(i, j) =

K(i,j)√
K(i,i)·

√
K(j,j)

.

For better representation, without loss of generality we
put all the training samples before the testing samples. Tak-
ing KDP as an example, we split the graph kernel matrix as
follows:

KDP =

(
Ktr

DP GDP

G�
DP Kte

DP

)
, (5)

where Ktr
DP ∈ R

Ntr×Ntr and Kte
DP ∈ R

Nte×Nte are the parts of
graph kernel matrix calculated on the training samples and
testing samples, respectively. GDP ∈ R

Ntr×Nte denotes the
kernel similarity matrix between training and testing sam-
ples.

Learning to Combine Metrics

To learn the metric (transformation) on the obtained non-IID
representations, the original representation is equivalently
transformed into the kernel-based representation according
to the following Lemma (Torresani and Lee 2007).
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Lemma 1 Given L (a learned metric in original feature
space), and a nonlinear mapping Φ, the projection of fea-
ture vector transformation is equivalent to

LΦ = ΩK, (6)
where Ω is the matrix that represents L as a linear combina-
tion of the feature vectors, and K is a corresponding kernel
matrix corresponding to the nonlinear mapping Φ.

Accordingly, in the kernel space, the original optimiza-
tion of solving the metric L in original feature space (using
the nonlinear mapping Φ), is transformed to an equivalent
form by solving Ω (using the kernel matrix K). With the
obtained non-IID representations, to learn the optimal met-
ric on all the training samples, K can be Ktr

DP, Ktr
HD, Ktr

MP,
or any positive semi-definite combination of them.

We now discuss how to learn metric Ω. First, we in-
troduce the method to learn the metric by only using the
single non-IID representation. For simplicity, NIME-DP,
NIME-HD, and NIME-MP denote the respective single non-
IID representation-based metric learning methods. Then, the
NIME-CK is introduced as a simple yet effective method to
combine multiple non-IID representations.

Learning with Single Non-IID Representation

Inspired by (Torresani and Lee 2007), for a given K (here
K can be Ktr

DP, Ktr
HD, or Ktr

MP) calculated on all the train-
ing samples with known labels, the task of learning metric
Ω with single non-IID representation is to minimize the fol-
lowing objective function:

E(Ω;K) =
∑
i,j

ηij‖Ω(ki − kj)‖2 + λ
∑
i,j,l

ηij(1− yil)

h
(
‖Ω(ki − kj)‖2 − ‖Ω(ki − kl)‖2 + 1

)
.

where ηij ∈ {0, 1} indicates that if j-th training sample is
one of the k-closest neighbours of i-th training sample with
the same label yi. yil ∈ {0, 1} indicates whether i-th train-
ing sample and l-th training sample are with the same label.
h(z) = max(z, 0) is the hinge loss function. λ is the weight
parameter of the second term. ki is the i-th column of K.

To obtain Ω, the gradient descent method is applied, with
the derivative of E(Ω;K) calculated as follows:
∂E(Ω;K)

∂Ω
=
(
2Ω

∑
i,j

ηij

[
E

(ki−kj)
i −E

(ki−kj)
j

])
Φ

+
(
2λΩ

∑
i,j,l

ηij(1− yil)h
′(sijl)

[
E

(ki−kj)
i −E

(ki−kj)
j −E

(ki−kl)
i +E

(ki−kl)
l

])
Φ.

(7)

where Ev
i = [0, ..., 0,v, 0, ..., 0] is the square matrix with i-

th column as vector v and other columns as all 0. For h′(z),
we adopt the smooth hinge function that can handle the non-
differentiability at z = 0, as suggested in (Rennie and Sre-
bro 2005). For simplicity, we denote ∂E(Ω;K)/∂Ω as ΓΦ.
Thus, at the t + 1-th iteration, we employ the gradient de-
scent to iteratively update Ωt+1 as below:

Ωt+1 = Ωt − ρ
∂E(Ω;K)

∂Ω

∣∣∣∣
Ω=Ωt

= Ωt − ρΓt, (8)

where ρ is the step size for the iterations.
By replacing K with Ktr

DP, Ktr
HD, or Ktr

MP for learning
metric, we obtain three methods NIME-DP, NIME-HD, and
NIME-MP. Their corresponding learned metrics are denoted
as ΩDP, ΩHD, and ΩMP, respectively.

To further accelerate the learning process, we here adopt
the SGD to calculate Eqn.(7). To predict the labels for testing
samples, we use the learned metric Ω to map testing sam-
ples from the kernel space to a transformed space. Taking
NIME-DP as an example, let i-th column in G as gi (here
G can be GDP, GHD, or GMP), Ωgi denotes the transformed
feature vector of the i-th testing samples. Subsequently, in
the transformed feature space, many alternative classifiers
can be employed to predict the labels of testing samples.
The processes for NIME-HD, NIME-MP and the following
NIME-CK are similar.

Combining Multiple Non-IID Representations

Instead of introducing additional parameters (e.g., impos-
ing other regularizer) or assumption (e.g., projecting onto
a unique subspace) which might lead to extra parameter tun-
ing or heavy computational burden, NIME-CK learns the
optimal metric by automatically finding the best linear com-
bination of multiple non-IID representations. The major ad-
vantage is that NIME-CK only requires one parameter to be
tuned (i.e., λ), and also holds the property as a single ker-
nel method (e.g., NIME-HD), thus solvable by SGD. The
objective function of NIME-CK is below:

argmin
Ω,wp

E(Ω;
∑
p

wpKp) s.t.
∑
p

wp = 1, wp ≥ 0. (9)

wp is the non-negative weight for p-th (p = 1, 2, ..., P ) non-
IID representations. Eqn.(9) can be effectively solved by al-
ternating optimization strategy to iteratively solve the fol-
lowing two sub-problems until convergence.

Solving Ω by fixing wp. The process is similar as the
aforementioned way (see Eqn.(8)).

Solving wp by fixing Ω. This problem can be represented
as follows:

argmin
wp

∑
i,j

ψij‖Ω
(∑

p

wpkp
i −

∑
p

wpkp
j

)
‖2+

λ
∑
i,j,l

ψij(1− yil)h
[
‖Ω

(∑
p

wpkp
i −

∑
p

wpkp
j

)
‖2

− ‖Ω
(∑

p

wpkp
i −

∑
p

wpkp
l

)
‖2 + 1

]
.

s.t.
∑
p

wp = 1, wp ≥ 0.

(10)

For non-IID representation
∑

p w
pKp, ψij indicates

whether j-th training sample is one of the k-closest neigh-
bours of i-th training sample with the same label yi.

To obtain the approximated solution of wp in a reason-
able time period, we employ the Simulated Annealing (SA)
for optimization. With the new kernel

∑
p w

pKp, we can
classify the testing samples using the aforementioned steps.
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Table 1: The error rates of all comparison methods.
Method GMMRF Geodesic Cut Random Walker Lazy Snapping Graph Cut Grab Cut

Error Rate (%) 7.9 4.8 5.4 6.7 6.7 5.7
(Nguyen et al. 2012) LMNN LMCA NIME-DP NIME-HD NIME-MP NIME-MK

3.8 4.83 5.03 4.15 3.56 3.31 3.27

Figure 2: Visualization of feature transformation in segmentation. First column: original images, second to last columns:
LMNN, LMCA, NIME-DP, NIME-HD, NIME-MP, NIME-CK. Pink points belong to foreground, and blue points belong to
background.

Figure 2 shows the typical examples of feature transforma-
tion for different methods by applying respectively learned
metrics, in which two features with the highest Mutual Infor-
mation (MI) values (Peng, Long, and Ding 2005) calculated
from ground truth labels after feature transformation are se-
lected for visualization. In Figure 3, four examples of the
objective function values of NIME-CK are shown for each
iteration step, showing that solving NIME-CK can converge.
Also, by performing SGD, only one triplet is used to calcu-
late the gradient in Eqn.(7), resulting in low computational
cost.

Algorithm 1 shows the pseudo code of NIME-CK.

Algorithm 1 NIME-CK
Input: Kp, φij and yij .
Output: Ω, wp (p = 1, ..., P ).

1: wp
1 ← 1

P
2: Ω1 ← Kernel PCA Initialization (2007)
3: while not converge do
4: Ωt+1 ← Ωt − ρΓt in Eqn.(8)
5: wp

t+1 ← Solved in Eqn.(10) by SA
6: end while

Natural Image Segmentation

We evaluate the NIME models against various segmentation
methods on the MSRC image set (Rother, Kolmogorov, and
Blake 2004), which is a challenging and commonly-used
image set in image segmentation and with results available
from many existing methods for comparison. In the MSRC
image set, a single foreground needs to be segmented from

the background for each image and the ground-truth seg-
mentations are available.

The major pipeline of interactive segmentation in our
work includes: (1) For each image before segmentation, we
first perform superpixel over-segmentation and also extract
features for each segmented superpixel; (2) Then, the seed
points are given by a user, where each superpixel that con-
tains the seed points is assigned the corresponding label (i.e.,
background or foreground); (3) Finally, the image segmen-
tation is treated as a non-IID metric learning problem, in
which each superpixel with its neighboring superpixels are
modeled by the non-IID representation. To segment an im-
age, the labeled superpixels are used to learn the non-IID
metric; after the feature space transformation, we classify
the unlabeled superpixels (using SVM with a linear kernel)
to complete the segmentation.

For experimental settings, for each superpixel, we choose
its adjacent superpixels as the spatial neighbors. For the step
of superpixel over-segmentation, we employ SLIC (Achanta
et al. 2012) to over-segment each image into a number
of non-overlapping superpixels (typically 500-1500 super-
pixels). For feature representation, we extract LBP (30-
dimensional), Gabor (48-dimensional), color (including his-
togram, mean, variance, with totally 66-dimensional), and
intensity (4-dimensional). In total, to represent a superpixel,
we extract 148-dimensional features. All the parameters
(e.g., λ) are experimentally determined by inner cross val-
idation.

Several state-of-the-art interactive image segmentation
methods are chosen as baselines for comparison, includ-
ing Graph Cut (Boykov and Jolly 2001), Grab Cut (Rother,
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Table 2: The results of Accuracy (AC), Specificity (SP), Sensitivity (SE), F1 Score, and AUC of all methods. HC and DL denote
hand-crafted and deeply-learned features, respectively.

Method (Lee 2010) CKNN PCA+RF KPCA GPLVM mSRC LMNN LMCA NIME-DP NIME-HD NIME-MP NIME-MK

ACHC 82.0 85.0 79.0 75.0 81.0 87.0 80.0 77.0 86.0 83.0 84.0 89.0
SPHC 80.8 83.0 76.4 76.6 78.2 87.8 78.9 76.5 84.6 85.1 88.6 91.5
SEHC 83.3 87.2 82.2 73.6 84.4 86.3 81.3 77.6 87.5 81.1 80.4 86.8
F1HC 81.6 84.5 77.9 75.7 80.0 87.1 79.6 76.8 85.7 83.5 84.9 89.3

AUCHC 87.9 91.6 84.2 79.1 86.8 93.8 85.3 81.6 92.7 89.1 90.6 96.0

ACDL 86.0 84.0 82.0 79.0 81.0 86.0 81.0 79.0 88.0 85.0 84.0 90.0
SPDL 89.1 84.0 83.3 76.4 81.6 89.1 81.6 80.9 89.6 85.7 79.3 88.5
SEDL 83.3 84.0 80.8 82.2 80.4 83.3 80.4 77.4 86.6 84.3 90.5 91.7
F1DL 86.5 84.0 82.4 77.9 81.2 86.5 81.2 79.6 88.2 85.2 82.6 89.8

AUCDL 92.8 90.3 87.9 84.2 86.6 92.8 86.6 84.1 95.0 91.5 90.8 96.9

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 3: Illustration of the convergence of NIME-CK.

Figure 4: Typical results. First to last columns: Graph Cut,
Grab Cut, LMNN, LMCA, NIME-DP, NIME-HD, NIME-
MP, NIME-CK.

Kolmogorov, and Blake 2004), LMNN (Weinberger, Blitzer,
and Saul 2005) and LMCA (Torresani and Lee 2007)
(IID methods). For other methods including Nguyen et
al. (Nguyen et al. 2012), Random Walker (Grady 2006),
Geodesic Cut (Price, Morse, and Cohen 2010), and GMMRF
(Blake et al. 2004), we simply cite their best performance on
MSRC image set from the respective literatures. Note that
the same labeled seed points are used for all these methods.

Since pixel-level error rate is widely used for performance
evaluation (i.e., the number of misclassified pixels divided
by the number of pixels in the unclassified region), we report
it in Table 1. It shows that the non-IID metric learning meth-
ods outperform the IID metric learning LMNN and LMCA.
Our methods achieve better segmentation performance than
GMMRF, Random Walker, Geodesic Cut, Grab Cut, Graph
Cut, and Lazy Snapping. Moreover, compared with (Nguyen
et al. 2012) that was specifically designed for image seg-
mentation, our methods still have comparable or even bet-
ter results. The results are illustrated in Figure 4, with the

non-light yellow region as the true foreground, and the blue
contour as the predicted results of respective methods.

It is noteworthy that we did not compare ours with deep
methods in image segmentation. First, during segmentation,
the training and testing samples come from the same im-
age, i.e., we do not use additional samples (or images) for
model training as that in deep methods. Second, the ex-
tracted local regions by super-pixel partition are with irregu-
lar shape, rather than squared patches in deep methods. Also
for NIME, we have investigated different initializations of
seed points. The performance normally remains stable, since
the non-IID assumption preserves spatial relations to avoid
possible labelling noise.

Histology Image Identification

Histology image identification is a crucial and challenging
task in medical image analysis. Each histology image con-
sists of several cells, which are spatially connected with each
other. The goal of histology image identification is to clas-
sify a new image to be cancerous or normal, according to
other images pre-diagnosed by pathologists (a.k.a. training
images). See Figure 5(a) for more details about the cancer-
ous and normal images.

All histological images were collected per a needle biopsy
procedure. Each image was preprocessed per the following
steps: image denoising and smoothing by a Gaussian ker-
nel, gray scale conversion, and cell region segmentation by
a threshold-based method. To represent the segmented cell
regions, we adopt hand-crafted and deeply-learned features,
respectively, to fully investigate the performance of using
different feature types:
• Hand-crafted features: Those features whose effective-

ness are already validated in (Kovalev et al. 2006)(Shi et al.
2013) are chosen, including height, width, RGB, HSI, area,
circumference, Fourier descriptor, entropy, and central mo-
ment. In total, to represent a cell region, 37-dimensional fea-
tures are used.
• Deeply-learned features: Regarding the relative small-

scale cell regions compared with natural images, we here
first use the bounding box to bound the irregular segmented
cell regions, resize them into 32×32 patches, and then em-
ploy the LeNet model to automatically learn the deep fea-
tures, which will form a 64-dimensional feature for each cell
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(b) The ROC curves.

Figure 5: Application to histology image identification. HC
and DL denotes hand-crafted and deeply-learned features,
respectively.

region.
The experiments were carried on 100 real histology im-

ages (each image normally contains 10-300 cell regions)
provided by a cancer research center, including 50 cancer-
ous and 50 normal images, respectively. Each histology im-
age is labeled by a pathologist for experimental evaluation.
10-fold cross validation was taken for all the baseline and
our methods. All the parameters (e.g., λ) were experimen-
tally determined by inner cross validation.

In non-IID metric learning, for each current cell, we em-
pirically choose its top 5 closest cells as the spatial neigh-
bors. Thus, the constructed non-IID graph is with one cen-
tral node (current cell) and 5 surrounding nodes (5 spatially
neighboring cells).

We choose six related methods as the baseline, including
(1) Citation-kNN (CKNN) (Wang and Zucker 2000), a clas-
sical multi-instance learning method assuming that the cells
in each image follow the bag-of-instance setting; (2) Lee et
al.’s method (Lee 2010), a two-stage diagnosis framework
by first automatically selecting the most informative features
and then training the classifier for diagnosis; (3) mSRC (Shi
et al. 2013), a multi-modal sparse learning framework gener-
ating the dictionaries from cells, (4) Kovalev et al.’s method
(Kovalev et al. 2006), a comprehensive study that experi-
mentally compares many combinations of feature reduction
methods and classifiers. We use the PCA + Random For-
est (obtain the best performance in (Kovalev et al. 2006)),
(5) KPCA + LMCA, and (6) GPLVM + LMCA as the base-
lines. Also, LMNN (Weinberger, Blitzer, and Saul 2005) and
LMCA (Torresani and Lee 2007) are included, representing
the metric learning methods assuming cells are IID. While
our method only obtains the labels of each cell, our task is to
classify the whole testing image instead of cells. A majority
voting strategy is thus taken: a testing image is eventually
diagnosed as normal if all the cells are classified as normal;
otherwise, it is diagnosed as cancerous.

The accuracy, specificity, sensitivity, and F1 score of all
comparison methods are listed in Table 2, and the ROC
curves are in Figure 5(b), including both the hand-crafted
and deeply-learned features. It is observed that (1) compar-
ing with LMNN and LMCA, our non-IID metric obtains
the superior results; (2) comparing with the baselines which
were specifically designed for histology image identifica-

tion, our methods achieve the comparable or even better per-
formance; (3) different types of features can be easily em-
ployed in our model.

Furthermore, we have investigated the performance by
choosing different numbers of spatial neighbors. By varying
the number of spatial neighbors from 3 to 7, the accuracy
of using hand-crafted features are 0.84, 0.89, 0.89, 0.87 and
0.87, while the accuracy of using deeply-learned features are
0.89, 0.91, 0.90, 0.89 and 0.88, respectively.

Discussions

For the relations between specific non-IID representation
and application. Indeed, different applications prefer differ-
ent non-IID representations, e.g., in histological image iden-
tification, neighboring cells are usually similar, thus NIME-
DP can identify the grouping cancerous cells. In segmenta-
tion, max-pooling in NIME-MP can preserve the maximum
matching w.r.t. object rotation. To automatically learn the
best combinations when no prior knowledge is available,
NIME-CK can be used to integrate various non-IID repre-
sentations (but not limited to those three).

For the relation and difference with deep methods, first,
the relation between layer/region in deep methods is fixed
once whole architecture is designed, however, our method
allows the best combination to reveal different non-IIDness
can be learned; Second, our method can borrow deep fea-
tures for performance improvement.

Conclusions

Metric learning for computer vision usually assumes data
is IID, which is inconsistent with the fact that different
neighboring regions/superpixels in images/videos are non-
IID. This fundamentally challenges existing metric learning
methods. Our work proposes an effective method NIME for
learning and integrating multiple non-IID metrics for com-
puter vision tasks. Its substantial comparisons with state-of-
the-art baselines shows its superior performance in not only
capturing the intrinsic non-IID data characteristics but be-
ing easy to implement by stochastic optimization and only
needing to tune very few parameters. For future directions,
our current work relies on pairwise computing, thus we are
developing parallel-computing strategy and converting our
method to a layer in deep models.
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