
A Hybrid Collaborative Filtering Model with
Deep Structure for Recommender Systems

Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, Fangxi Zhang
Ctrip Travel Network Technology (Shanghai) Co., Limited.

Shanghai, P.R.China
{dongxin, yu lei, zh wu, yx sun, lfyuan, fxzhang}@ctrip.com

Abstract

Collaborative filtering(CF) is a widely used approach in
recommender systems to solve many real-world problems.
Traditional CF-based methods employ the user-item matrix
which encodes the individual preferences of users for items
for learning to make recommendation. In real applications,
the rating matrix is usually very sparse, causing CF-based
methods to degrade significantly in recommendation perfor-
mance. In this case, some improved CF methods utilize the in-
creasing amount of side information to address the data spar-
sity problem as well as the cold start problem. However, the
learned latent factors may not be effective due to the sparse
nature of the user-item matrix and the side information. To
address this problem, we utilize advances of learning effec-
tive representations in deep learning, and propose a hybrid
model which jointly performs deep users and items’ latent
factors learning from side information and collaborative fil-
tering from the rating matrix. Extensive experimental results
on three real-world datasets show that our hybrid model out-
performs other methods in effectively utilizing side informa-
tion and achieves performance improvement.

Introduction
In recent years, with the growing number of choices avail-
able online, recommender systems are becoming more and
more indispensable. The goal of recommender systems is
to help users in identifying the items that best fit their per-
sonal tastes from a large repository of items. Besides, many
commerce companies have been using recommender sys-
tems to target their customers by recommending items. Over
the years, various algorithms for recommender systems have
been developed. Such algorithms can roughly be catego-
rized into two groups (Shi, Larson, and Hanjalic 2014):
content-based and collaborative filtering(CF) based meth-
ods. Content-based methods (Lang 1995) utilize user profile
or item content information for recommendation. CF-based
methods (Salakhutdinov and Mnih 2011), on the other hand,
ignore user or item content information and use the past
activities or preferences, such as user buying/viewing his-
tory or user ratings on items, to recommendation. Neverthe-
less, CF-based methods are often preferred to content-based
methods because of their impressive performance (Su and
Khoshgoftaar 2009).

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The most successful approach among CF-based methods
is to learn effective latent factors directly by matrix factor-
ization technique from the user-item rating matrix (Koren et
al. 2009). However, the rating matrix is often very sparse
in real world, causing CF-based methods to degrade sig-
nificantly in learning the appropriate latent factors. In par-
ticular, this phenomenon occurs seriously in online travel
agent(OTA) websites such as Ctrip.com, since user access
these websites with lower frequency. Moreover, another lim-
itation for CF-based methods is how to provide recommen-
dations when a new item arrives in the system, which is also
known as the cold start problem. The reason of the existence
about cold start is that the systems cannot recommend new
items which have not yet receive rating information from
users.

In order to overcome the cold start and data sparsity prob-
lems, it is inevitable for CF-based methods to exploit addi-
tional sources of information about the users or items, also
known as the side information, and hence hybrid CF meth-
ods have gained popularity in recent years (Shi, Larson, and
Hanjalic 2014). The side information can be obtained from
user profile and item content information, such as demo-
graphics of users, properties of items, etc. Some hybrid CF-
based methods (Singh and Gordon 2008; Nickel, Tresp, and
Kriegel 2011; Wang and Blei 2011) have integrated side in-
formation into matrix factorization to learn effective latent
factors. However, these methods employ the side informa-
tion as regularizations and the learned latent factors are of-
ten not effective especially when the rating matrix and side
information are very spare (Agarwal, Chen, and Long 2011).
Therefore, it is highly desirable to realize this latent factor
learning problem from such datasets.

Recently, one of the powerful methods to learn effective
representations is deep learning (Hinton and Salakhutdinov
2006; Hinton, Osindero, and Teh 2006). Thus, with large-
scale ratings and rich additional side information, it is na-
ture to integrate deep learning in recommender systems to
learn latent factors. Thereby, some researches have made use
of deep learning directly for the task of collaborative filter-
ing. Work (Salakhutdinov, Mnih, and Hinton 2007) employs
restricted Boltzmann machines to perform CF. Although
this method combines deep learning and CF, it does not
incorporate side information, which is crucial for accurate
recommendation. Moreover, work (Van den Oord, Diele-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1309

man, and Schrauwen 2013; Wang and Wang 2014) directly
uses convolutional neural network(CNN) or deep belief net-
work(DBN) to obtain latent factors for content information,
but they are content-based methods which only infer latent
factors for items and the methods are especially fit for music
datasets. Furthermore, work (Wang, Wang, and Yeung 2015;
Li, Kawale, and Fu 2015) utilizes Bayesian stacked denois-
ing auto-encoders(SDAE) or marginalized SDAE to CF but
requires learning of a large number of manually adjusted hy-
per parameters.

In this paper, to address the challenges above, we pro-
pose a hybrid collaborative filtering model with deep struc-
ture for recommender systems. We first present a novel deep
learning model called additional stacked denoising autoen-
coder(aSDEA), which extends the stacked denoising autoen-
coder to integrate additional side information into the in-
puts, and then overcomes cold start problem and data spar-
sity problem. With this, we then present our hybrid model
which tightly couples deep representation learning for the
additional side information and collaborative filtering for the
ratings matrix. Experiments show that our hybrid model sig-
nificantly outperforms the state of the art. Specifically, the
main contributions of this paper can be summarized as the
following three aspects:

• We propose a hybrid collaborative filtering model, which
integrates deep presentation learning and matrix factor-
ization. It simultaneously extracts effective latent factors
from side information and captures the implicit relation-
ship between users and items.

• We present a novel deep learning model aSDAE, which is
a variant of SDAE and can integrate the side information
into the learned latent factors efficiently.

• We conduct experiments on three real-world datasets to
evaluate the effectiveness of our hybrid model. Experi-
mental results show that our hybrid model outperforms
four state-of-art methods in terms of root mean squared
error(RMSE) and recall metrics.

Preliminaries

In this section, we start with formulating the problem dis-
cussed in this paper, and then have a brief view on matrix
factorization.

Problem Definition

Similar to some existing works(Hu, Koren, and Volinsky
2008), this paper also takes implicit feedback as training and
testing data to complete the recommendation task. In a stan-
dard recommendation setting, we have m users, n items, and
an extremely sparse rating matrix R ∈ R

m×n. Each entry
Rij of R corresponds to user i’s rating on item j. If Rij �= 0,
it means the rating about user i on item j is observed, oth-
erwise unobserved. Each user i can be represented by a par-
tially observed vector s

(u)
i = (Ri1, ...,Rin) ∈ R

n. Identi-
cally, each item j can be represented by a partially observed
vector s

(i)
j = (R1j , ...,Rmj) ∈ R

m. Moreover, the addi-
tional side information matrix of user and item are denoted
by X ∈ R

m×p and Y ∈ R
n×q , respectively.

Let ui, vj ∈ R
k be user i’s latent factor vector and item j’s

latent factor vector respectively, where k is the dimensional-
ity of the latent space. Therefore, the corresponding matrix
forms of latent factors for users and items are U = u1:m

and V = v1:n, respectively. Given the sparse rating matrix R
and the side information matrix X and Y, the goal is to learn
user latent factors U and item latent factors V, and hence to
predict the missing ratings in R.

Matrix Factorization

An effective collaborative filtering approach is matrix fac-
torization (Koren et al. 2009). By factorizing the user-item
interactions matrix, matrix factorization can map both users
and items to a joint latent factor space. Therefore, user-item
interactions are modeled as inner products in that space. For-
mally, matrix factorization decomposes the original rating
matrix R into two low-rank matrices U and V consisting of
the user and item latent factor vectors respectively, such that
R ≈ UV. Given the latent factor vectors for users and items,
a user’s rating for a movie is predicted by the inner product
of those vectors.

The objective function of matrix factorization can be writ-
ten as:

argmin
U,V

L(R,UVT) + λ(||U||2F + ||V||2F),

where L(·, ·) is the loss function that measures the distance
between two matrices with the same size, the last two terms
are the regularizations used to avoid overfitting and || · ||F
denotes the Frobenius norm. By specifying different L(·, ·),
many matrix factorization models have been proposed, for
example, non-negative matrix factorization (Lee and Se-
ung 2001), probabilistic matrix factorization (Salakhutdi-
nov and Mnih 2011), Bayesian probabilistic matrix factor-
ization (Salakhutdinov and Mnih 2008), max-margin matrix
factor (Srebro, Rennie, and Jaakkola 2004), etc.

When side information are available, some matrix factor-
ization models generate a rating from the product of latent
factor vectors which contain additional information about
users or items. Various models show that additional side in-
formation can act as a useful informative prior that can sig-
nificantly improve results (Porteous, Asuncion, and Welling
2010; Singh and Gordon 2008).

Additional Stacked Denoising Autoencoder

In this section we first provide a introduction of additional
denoising autoencoder and then give a detailed description
of additional stacked denoising autoencoder(aSDAE).

Additional Denoising Autoencoder

An autoencoder is a specific form of neural network, which
consists of an encoder and a decoder component. The en-
coder g(·) takes a given input s and maps it to a hidden rep-
resentation g(s), while the decoder f(·) maps this hidden
representation back to a reconstructed version of s, such that
f(g(s)) ≈ s. The parameters of the autoencoder are learned
to minimize the reconstruction error, measured by some loss

1310

(a) Additional Denoising
Autoencoder(aDAE)

(b) Additional Stacked Denoising
Autoencoder(aSDAE)

Figure 1: The models of aDAE and aSDAE

L(s, f(g(s))). However, denoising autoencoders(DAE) in-
corporate a slight modification to this setup, which recon-
structs the input from a corrupted version with the mo-
tivation of learning a more effective representation from
the input(Vincent et al. 2008). A denoising autoencoder is
trained to reconstruct the original input s from its corrupted
version s̃ by minimizing L(s, f(g(s̃))). Usually, choices of
corruption include additive isotropic Gaussian noise or bi-
nary masking noise (Vincent et al. 2008). Moreover, var-
ious types of autoencoders have been developed in sev-
eral domains to show promising results(Chen et al. 2012;
Lee et al. 2009).

In this paper, we extend the denoising autoencoder to in-
tegrate additional side information into the inputs, as shown
in Figure 1(a). Given a sample set S = [s1, ..., sn], the cor-
responding side information set X = [x1, ..., xn], additional
denoising autoencoder(aDAE) considers a random corrup-
tions over S and X to obtain S̃ and X̃. It then encoders and
decoders the inputs as follows:

h = g(W1s̃ + V1x̃ + bh)

ŝ = f(W2h + bŝ)

x̂ = f(V2h + bx̂),

where s̃ and x̃ represent the corrupted version of the original
inputs s and x, ŝ and x̂ represent the reconstructions of s and
x, h represents the hidden latent representation of the inputs,
W and V are weight matrix, b is bias vector, and g(·) and
f(·) are activation functions such as tanh(·).

The objective function considers the losses between all
the inputs and their reconstructions. Then, an aDAE solves
the following optimization problem:

arg min
{Wl},{Vl},{bl}

α||S − Ŝ||2F + (1− α)||X − X̂||2F +

λ(
∑

l

||Wl||2F + ||Vl||2F), (1)

where α is a trade-off parameter which balances the outputs,
and λ is a regularization parameter.

Additional Stacked Denoising Autoencoder

Existing literatures have shown that multiple layers stacked
together can generate rich representations in hidden lay-
ers, and therefore leads to better performance for various

tasks (Rifai et al. 2011; Chen et al. 2012; Kavukcuoglu et
al. 2009; Glorot, Bordes, and Bengio 2011). The stacked de-
noising autoencoder(SDAE) stacks several DAEs together to
create higher-level representations (Vincent et al. 2010). In-
spired by the stacked denoising autoencoder, we stack mul-
tiple aDAE together to form an additional stacked denoising
autoencoder(aSDAE). The model of aSDAE is shown in Fig-
ure 1(b) and the generative process is presented as follows:

• For each hidden layer l ∈ {1, ..., L − 1} of the aSDAE
model, the hidden representation hl is computed as:

hl = g(Wlhl−1 + Vlx̃ + bl),

where h0 = s̃ is one of the corrupted inputs.

• For the output layer L, the outputs are computed as:

ŝ = f(WLhL + bŝ)

x̂ = f(VLhL + bx̂)

Note that the first L/2 layers of the model act as an en-
coder and the last L/2 layers act as a decoder. The aS-
DAE employs a deep network to reconstruct the inputs and
minimizes the squared loss between inputs and their recon-
structions. The objective function for aSDAE is similar with
Equation (1). Accordingly, we can learn Wl, Vl and bl for
each layer using the back-propagation algorithm. In our aS-
DAE model, we assume that only one hidden layer should be
close to the latent factor and the latent factor vector is gen-
erated from the L/2 layer, given the total number of layers
is L.

A Hybrid Collaborative Filtering Model

In some CF-based methods, the main challenges are to in-
fer effective and high-level latent factor vectors for users
and items from raw inputs. MF-based methods are able to
meet the requirements so as to capture the implicit rela-
tionship between the users and items. However, they suffer
from the cold start and data sparsity problems. Moreover,
deep learning models have been shown to be highly effec-
tive in discovering high-level hidden representations from
the raw input data for a variety of tasks (Shen et al. 2014;
Li, Kawale, and Fu 2015; Wang, Wang, and Yeung 2015).
Therefore, it is straightforward to take over the expressive
ability from deep learning to improve the collaborative fil-
tering algorithms.

In this section, we propose a hybrid collaborative filtering
model which unifies our aSDAE model with matrix factor-
ization for recommender systems.

Overview

The proposed model is a hybrid model, which makes use
of both rating matrix and side information and combines
aSDAE and matrix factorization together. Matrix factoriza-
tion is a widely used model-based CF method with excel-
lent scalability and accuracy, and aSDAE is a powerful way
to extract high-level representations from raw inputs. The
combination of this two models leverages their benefits for
learning more expressive models.

1311

×
User-Item

Rating Matrix

R

Figure 2: The structure of the proposed hybrid model. The
model contains three components: the upper component and
the lower component are two aSDAEs which extract latent
factor vectors for users and items respectively; the middle
component decomposes the rating matrix R into two latent
factor matrices.

Given the user-item rating matrix R, we first transform
R into the set S(u) containing m instances {s

(u)
1 , ..., s

(u)
m },

where s
(u)
i = {Ri1, ...,Rin} is the n-dimensional feedback

vector of user i on all the items. Similarly, we can ob-
tain set S(i) with n instances {s

(i)
1 , ..., s

(i)
n }, where s

(i)
j =

{R1j , ...,Rmj} is the m-dimensional feedback vector of
item j rated by all the users. Our hybrid model learns user
and item latent factors(i.e., U and V) from R, S(u), S(i) and
the additional side information(i.e., X and Y) through the
following optimization objective:

argmin
U,V

LR(R,UVT) + λ(||U||2F + ||V||2F) +

βL (S(u),X,U) + δL (S(i),Y,V), (2)

where LR(·, ·) is the loss function for decomposing the
rating matrix R into two latent factor matrices U and V,
L (·, ·, ·) is the function that connects the user or item side
information with the latent factors, β and δ are the trade-off
parameters and λ is a regularization parameter. Note that,
the last two terms in Equation (2) devised using our aSDAE
model which extracts latent factor matrix from the rating
matrix and additional side information.

Our Hybrid Model

Let S(u) ∈ R
m×n and S(i) ∈ R

n×m denote the matrices
obtained in the above section, and let S̃

(u)
and S̃

(i)
denote

their corrupted versions respectively. Moreover, X ∈ R
m×p

and Y ∈ R
n×q are the additional side information matrices

about users and items respectively, and the corresponding
corrupted versions are X̃ and Ỹ. Obviously, Figure 2 illus-
trates our hybrid collective filtering model. It indicates that

the inputs of the hybrid model are S̃
(u)

, S̃
(i)

, X̃, Ỹ and R. As
shown in Equation (2), the first term is the loss function of
matrix factorization to decompose the rating matrix R into
user and item latent factor matrices, i.e.,

LR(R,UVT) =
∑
i,j

Iij(Rij − uiv
T
j)

2

where I is an indicator matrix indicating the non-empty en-
tities in R. The last two terms are the loss functions of our
aSDAE models which extract latent factors from the hidden
layers for users and items respectively. For simplicity, we set
β and δ to 1 in Equation (2). Therefore, the objective func-
tion of our hybrid model is formulated as follows:

L =
∑
i,j

Iij(Rij − uiv
T
j)

2 + α1

∑
i

(s
(u)
i − ŝ

(u)
i)2

+ (1− α1)
∑
i

(xi − x̂i)
2 + α2

∑
j

(s
(i)
j − ŝ

(i)
j)2

+ (1− α2)
∑
j

(yj − ŷj)
2 + λ · freg (3)

where α1, α2are trade-off parameters, and freg are the reg-
ularization terms that prevent overfitting, i.e.,

freg =
∑

i

||ui||2F +
∑

j

||vj ||2F +
∑

l

(||Wl||2F + ||Vl||2F

+||bl||+ ||W′
l||2F + ||V′

l||2F + ||b′
l||2F),

Wl,Vl and W′
l,V′

l are the weight matrices for two aSDAEs
at layer l, bl and b′

l are the corresponding bias vectors.
Generally, the middle layers of two aSDAEs server as

bridges between the ratings and additional side information.
These two middle layers are the key that enables our hybrid
model to simultaneously learn effective latent factors and
capture the the similarity and relationship between users and
items.

Optimization

Although the optimization of the objective function is not
jointly convex in all the variables, it is convex to each of
them when fixing the others. Therefore, we can alternately
optimize for each of the variables in the above objective
function.

For ui and vj , we use stochastic gradient descent(SGD)
algorithm to learn these latent factors. For simplicity, we let
L(U,V) denote the objective function when other variables
irrelevant to U and V are fixed. Therefore, the update rules
are:

ui = ui − η
∂

∂ui
L(U,V),

vj = vj − η
∂

∂vj
L(U,V),

1312

where η is the learning rate, and the detail gradients are as
follows:

∂

∂ui
L(U,V) = α

∑
i

(s
(u)
i − ŝ

(u)
i)

∂ŝ
(u)
i

∂ui
+ λui

+ (1− α)
∑
i

(xi − x̂i)
∂x̂i

∂ui
−

∑

i,j∈I

(Rij − uiv
T
j)vj

∂

∂vj
L(U,V) = α

∑
j

(s
(i)
j − ŝ

(i)
j)

∂ŝ
(i)
j

∂vj
+ λvj

+ (1− α)
∑
j

(yj − ŷj)
∂ŷj

∂vj
−

∑

i,j∈I

(Rij − uiv
T
j)ui.

Note that, we set α1 equal to α2 in Equation (3) for sim-
plicity. Moreover, given U and V, we can learn the weight
matrices and biases for each layer using the popular back-
propagation learning algorithm. By alternating the update of
variables, a local optimum for L can be found. Neverthe-
less, we can use some common techniques such as using a
momentum term to alleviate the local optimum problem.

Prediction

After the latent factors for each user and item are learned,
we approximate the predicted rating R̂ij as: R̂ij ≈ uiv

T
j ,

and then a list of ranked items is generated for each user
based on these prediction ratings.

Experiments

In this section, we evaluate the performance of our hybrid
model with three real-world datasets from different domains,
and compare our hybrid model with four state-of-art algo-
rithms.

Datasets

We use three datasets from different real-world domains,
two from MovieLens and one from Book-Crossing dataset,
for our experiments. The first two datasets, MovieLens-
100K and MovieLens-1M, are commonly used for evaluat-
ing the performance of recommender systems (Wang, Shi,
and Yeung 2015; Li, Kawale, and Fu 2015). The MovieLens-
100K dataset contains 100K ratings from 943 users on 1682
movies, and the MovieLens-1M dataset contains more than
1 million ratings from 6040 users on 3706 movies. Each rat-
ing is an integer between 1 and 5. We binarize explicit data
by keeping the ratings of four or higher and interpret them
as implicit feedback. Therefore, MovieLens-1M is much
sparser as only 2.57% of its user-item matrix entries con-
tain ratings but MovieLens-100K has ratings in 3.49% of
its user-item matrix entries. Moreover, we extract the user
and item information provided by the datasets to construct
the additional matrices X and Y respectively. To summarize,
the user side information contains the user’s ID, age, gen-
der, occupation and zipcode are encoded into a binary val-
ued vector of length 1943. Identically, the item side informa-
tion contains the item’s title, release data and 18 categories

of movie genre are encoded into a binary valued vector of
length 1822.

The last dataset, Book-Crossing dataset, contains
1149780 ratings from 278858 users on 271379 books.
The rating is expressed on a scale from 0 to 10 with the
higher values denoting higher appreciation. However, we
binarize explicit data by keeping the ratings of six or higher
and interpret them as implicit feedback. This leads to the
user-item matrix with a sparsity of 99.99%. Some attributes
for users and books are also provided in this dataset. The
user and item additional matrices are generated as the above
datasets, and the lengths of the two binary vectors are 1973
and 3679.

Evaluation Metric

We employ the root mean squared error(RMSE) as one of
the evaluation metrics,

RMSE =

√√√√ 1

|T|
∑

Rij∈T

(Rij − R̂ij)2,

where Rij is the rating of user i on item j, R̂ij denotes the
corresponding predicted rating, T is the test set and |T| is the
total number of ratings in the test set.

Similar to (Wang, Wang, and Yeung 2015; Wang and Blei
2011), we use recall as another evaluation metric since the
rating information is in the form of implicit feedback (Hu,
Koren, and Volinsky 2008; Rendle et al. 2009). Specifically,
another common metric, precision, is not suited for implicit
feedback. Because a zero rating in the user-item matrix may
be due to the fact that the user is not interested in the item,
or that the user is unaware of it. To evaluate our hybrid
model, we sort the predicted ratings of all the items for each
user, and then recommend the top K items to each user. The
recall@K for each user is defined as follows:

recall@K =
number of items the user likes in top K

total number of items the user likes
.

The final metric result is the average recall over all users.

Baselines and Parameter Settings

In order to evaluate the performance of our model, we com-
pare it with the following recommendation algorithms:

• PMF. Probabilistic Matrix Factorization (Salakhutdinov
and Mnih 2011) is a model to factorize the user-item ma-
trix to user and item factors. It assumes there exists Gaus-
sion observation noise and Gaussian priors on the latent
factor vectors.

• CMF. Collective Matrix Factorization (Singh and Gordon
2008) is a model which simultaneously factorizes multi-
ple sources, including the user-item matrix and matrices
containing the additional side information.

• CDL. Collaborative Deep Learning (Wang, Wang, and
Yeung 2015) is a hierarchical deep Bayesian model to
achieve deep representation learning for the item informa-
tion and collaborative filtering for the user-item matrix.

1313

Table 1: Average RMSE of compared models with different percentages of training data on three datasets

Model MovieLen-100K MovieLen-1M Book-Crossing
60% 80% 95% 60% 80% 95% 60% 80% 95%

PMF 0.7024 0.5941 0.5673 0.6966 0.5715 0.5415 1.7534 1.2453 1.1896
CMF 0.6986 0.5881 0.5454 0.6758 0.5709 0.5382 1.5467 1.0563 0.9715
CDL 0.6601 0.5667 0.5213 0.6546 0.5435 0.5221 1.4465 0.9921 0.9652
DCF 0.6516 0.5516 0.5135 0.6635 0.5467 0.5335 1.3413 0.9784 0.9448
Ours 0.6436 0.5435 0.5079 0.6449 0.5236 0.5023 1.3206 0.9579 0.9244

(a) Recall on MovieLen-100K (b) Recall on MovieLen-1M (c) Recall on Book-Crossing

Figure 3: Performance comparison of PMF, CMF, CDL, DCF and Ours based on recall@K for the three datasets.

• DCF. Deep Collaborative Filtering (Li, Kawale, and Fu
2015) is a model which combines PMF with marginalized
denoising stacked autoencoders to achieve recommenda-
tion.

• Ours. Our approach is proposed as described above. It is
a hybrid collaborative filtering model which unifies our
aSDAE model with matrix factorization.

For all the compared models, we train each compared
method with different percentages(60%, 80% and 95%)
of ratings. We randomly select the training set from each
dataset, and use the remaining data as the test set. We repeat
the evaluation five times with different randomly selected
training sets and the average performance is reported. For
our hybrid model, we set the parameters α, β and λ to 0.2,
0.8, and 0.01, respectively. The learning rate η used in SGD
algorithm is set to 0.004. Similar to (Wang, Wang, and Ye-
ung 2015), we use a masking noise with a noise level of 0.3
to get the corrupted inputs from the raw inputs. In terms of
deep network architecture, the number of layers is set to 4
in our experiments. Moreover, the dimensionality of learned
latent factors for user and item is set to 64.

Summary of Experimental Results

Table 1 shows the average RMSE of PMF, CMF, CDL, DCF
and our hybrid model with different percentages of train-
ing data on the three datasets. We can observe from Table 1
that CMF, CDL, DCF and our hybrid model achieves better
performance than PMF. It demonstrates the effectiveness of
incorporating additional side information. Moreover, CDL,
DCF and our hybrid model outperform PMF and CMF. That
is, deep structures can admire better feature quality of side
information. Furthermore, from Table 1, we can see that

our hybrid model obtains lower RMSE than CDL and DCF,
which validates the strengths of the latent factor vectors
learned by our aSDAE models. Therefore, the RMSE metric
demonstrates the effectiveness of our hybrid model.

Figure 3 shows the recall results that compare PMF, CMF,
CDL, DCF and Our hybrid model using the three datasets.
We can see that PMF is the worse model because of the
lack of additional side information. Moreover, CMF per-
forms worse than CDL, DCF and our hybrid model. This
may be related to the discussion as in (Agarwal, Chen, and
Long 2011), that is, when the side information is spare,
CMF may not work well. Figure 3 also shows that our hy-
brid model achieves much better performance than CDL and
DCF, as it takes advantage of our aSDAE models. Conse-
quently, by seamlessly combining our aSDAE models for
additional side information and matrix factorization for the
user-item rating matrix, our hybrid model can handle both
the sparse user-item rating matrix and the spare side infor-
mation much better, and learn a much more effective latent
factor for each user and item, and hence provides more ac-
curate recommendation.

Conclusion

In this paper, we present a hybrid collaborative filtering
model which bridges our aSDAE and matrix factorization.
Our hybrid model can learn effective latent factors from both
user-item rating matrix and side information for users and
items. Moreover, the proposed deep learning model, aSDAE,
is a variant of SDAE and can integrate the side information
into the learned latent factors efficiently. Our experimental
results present that our hybrid model outperforms other four
state-of-art algorithms. As part of the future work, we will
investigate other deep learning models to replace aSDAE

1314

for boosting further performance, e.g., recurrent neural net-
works and convolutional neural networks.

References

Agarwal, D.; Chen, B.-C.; and Long, B. 2011. Localized factor
models for multi-context recommendation. In Proceedings of
the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, 609–617. ACM.
Chen, M.; Xu, Z.; Weinberger, K.; and Sha, F. 2012. Marginal-
ized denoising autoencoders for domain adaptation. arXiv
preprint arXiv:1206.4683.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Domain adap-
tation for large-scale sentiment classification: A deep learning
approach. In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), 513–520.
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reduc-
ing the dimensionality of data with neural networks. Science
313(5786):504–507.
Hinton, G. E.; Osindero, S.; and Teh, Y.-W. 2006. A fast learning
algorithm for deep belief nets. Neural computation 18(7):1527–
1554.
Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative filtering
for implicit feedback datasets. In 2008 Eighth IEEE Interna-
tional Conference on Data Mining, 263–272. IEEE.
Kavukcuoglu, K.; Fergus, R.; LeCun, Y.; et al. 2009. Learning
invariant features through topographic filter maps. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on, 1605–1612. IEEE.
Koren, Y.; Bell, R.; Volinsky, C.; et al. 2009. Matrix factoriza-
tion techniques for recommender systems. Computer 42(8):30–
37.
Lang, K. 1995. Newsweeder: Learning to filter netnews. In
Proceedings of the 12th international conference on machine
learning, 331–339.
Lee, D. D., and Seung, H. S. 2001. Algorithms for non-negative
matrix factorization. In Advances in neural information process-
ing systems, 556–562.
Lee, H.; Pham, P.; Largman, Y.; and Ng, A. Y. 2009. Unsu-
pervised feature learning for audio classification using convolu-
tional deep belief networks. In Advances in neural information
processing systems, 1096–1104.
Li, S.; Kawale, J.; and Fu, Y. 2015. Deep collaborative filter-
ing via marginalized denoising auto-encoder. In Proceedings of
the 24th ACM International on Conference on Information and
Knowledge Management, 811–820. ACM.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A three-way
model for collective learning on multi-relational data. In Pro-
ceedings of the 28th international conference on machine learn-
ing (ICML-11), 809–816.
Porteous, I.; Asuncion, A. U.; and Welling, M. 2010. Bayesian
matrix factorization with side information and dirichlet process
mixtures. In AAAI.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-Thieme,
L. 2009. Bpr: Bayesian personalized ranking from implicit feed-
back. In Proceedings of the twenty-fifth conference on uncer-
tainty in artificial intelligence, 452–461. AUAI Press.
Rifai, S.; Vincent, P.; Muller, X.; Glorot, X.; and Bengio, Y.
2011. Contractive auto-encoders: Explicit invariance during fea-

ture extraction. In Proceedings of the 28th international confer-
ence on machine learning (ICML-11), 833–840.
Salakhutdinov, R., and Mnih, A. 2008. Bayesian probabilistic
matrix factorization using markov chain monte carlo. In Pro-
ceedings of the 25th international conference on Machine learn-
ing, 880–887. ACM.
Salakhutdinov, R., and Mnih, A. 2011. Probabilistic matrix
factorization. In NIPS, volume 20, 1–8.
Salakhutdinov, R.; Mnih, A.; and Hinton, G. 2007. Restricted
boltzmann machines for collaborative filtering. In Proceedings
of the 24th international conference on Machine learning, 791–
798. ACM.
Shen, Y.; He, X.; Gao, J.; Deng, L.; and Mesnil, G. 2014. A
latent semantic model with convolutional-pooling structure for
information retrieval. In Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowl-
edge Management, 101–110. ACM.
Shi, Y.; Larson, M.; and Hanjalic, A. 2014. Collaborative filter-
ing beyond the user-item matrix: A survey of the state of the
art and future challenges. ACM Computing Surveys (CSUR)
47(1):3.
Singh, A. P., and Gordon, G. J. 2008. Relational learning via
collective matrix factorization. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and
data mining, 650–658. ACM.
Srebro, N.; Rennie, J.; and Jaakkola, T. S. 2004. Maximum-
margin matrix factorization. In Advances in neural information
processing systems, 1329–1336.
Su, X., and Khoshgoftaar, T. M. 2009. A survey of collaborative
filtering techniques. Advances in artificial intelligence 2009:4.
Van den Oord, A.; Dieleman, S.; and Schrauwen, B. 2013. Deep
content-based music recommendation. In Advances in Neural
Information Processing Systems, 2643–2651.
Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-A.
2008. Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th international confer-
ence on Machine learning, 1096–1103. ACM.
Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; and Manzagol,
P.-A. 2010. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising cri-
terion. Journal of Machine Learning Research 11(Dec):3371–
3408.
Wang, C., and Blei, D. M. 2011. Collaborative topic modeling
for recommending scientific articles. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discov-
ery and data mining, 448–456. ACM.
Wang, X., and Wang, Y. 2014. Improving content-based and
hybrid music recommendation using deep learning. In Proceed-
ings of the 22nd ACM international conference on Multimedia,
627–636. ACM.
Wang, H.; Shi, X.; and Yeung, D.-Y. 2015. Relational stacked
denoising autoencoder for tag recommendation. In AAAI, 3052–
3058.
Wang, H.; Wang, N.; and Yeung, D.-Y. 2015. Collaborative deep
learning for recommender systems. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 1235–1244. ACM.

1315

