Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

DeepFix: Fixing Common C Language Errors by Deep Learning

Rahul Gupta, Soham Pal, Aditya Kanade, Shirish Shevade
Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
{rahul.gupta, soham.pal, kanade, shirish} @csa.iisc.ernet.in

Abstract

The problem of automatically fixing programming errors is a
very active research topic in software engineering. This is a
challenging problem as fixing even a single error may require
analysis of the entire program. In practice, a number of errors
arise due to programmer’s inexperience with the program-
ming language or lack of attention to detail. We call these
common programming errors. These are analogous to gram-
matical errors in natural languages. Compilers detect such er-
rors, but their error messages are usually inaccurate. In this
work, we present an end-to-end solution, called DeepFix, that
can fix multiple such errors in a program without relying on
any external tool to locate or fix them. At the heart of DeepFix
is a multi-layered sequence-to-sequence neural network with
attention which is trained to predict erroneous program loca-
tions along with the required correct statements. On a set of
6971 erroneous C programs written by students for 93 pro-
gramming tasks, DeepFix could fix 1881 (27%) programs
completely and 1338 (19%) programs partially.

Introduction

Debugging programming errors is one of the most time-
consuming activities for programmers. Therefore, the prob-
lem of automatically fixing programming errors, also called
program repair, is a very active research topic in software
engineering (Monperrus 2015). Most of the program re-
pair techniques focus on logical errors in programs. Using
a specification of the program (such as a test suite or an as-
sertion), they attempt to fix the program. Since their focus is
on fixing logical errors in individual programs, they assume
that the program compiles successfully.

This leaves a large and frequent class of errors out of the
purview of the existing techniques. These include errors due
to missing scope delimiters (such as a closing brace), adding
extraneous symbols, using incompatible operators or miss-
ing variable declarations. Such mistakes arise due to pro-
grammer’s inexperience or lack of attention to detail, and
cause compilation or build errors. Not only novice students
but experienced developers also make such errors as found
in a study of build errors at Google (Seo et al. 2014). We
call them common programming errors. These are common
in the sense that, unlike logical errors, they are not specific to

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1345

the programming task at hand, but relate to the overall syn-
tax and structure of the programming language. These are
analogous to grammatical errors in natural languages.

We propose to fix common programming errors by deep
learning. Because of the inter-dependencies among different
parts of a program, fixing even a single error may require
analysis of the entire program. This makes it challenging to
fix them automatically. The accuracy bar is also quite high
for program repair. The usual notion of token-level accuracy
is much too relaxed for this setting. For a fix to be correct,
the repair tool must produce the entire sequence pertaining
to the fix precisely.

We present an end-to-end solution, called DeepFix, that
does not use any external tool to localize or fix errors. We
use a compiler only to validate the fixes suggested by Deep-
Fix. At the heart of DeepFix is a multi-layered sequence-
to-sequence neural network with attention (Bahdanau, Cho,
and Bengio 2014), comprising of an encoder recurrent neu-
ral network (RNN) to process the input and a decoder RNN
with attention that generates the output. The network is
trained to predict an erroneous program location along with
the correct statement. DeepFix invokes it iteratively to fix
multiple errors in the program one-by-one.

Figure 1(a) shows an input C program p . c with a miss-
ing closing brace at line 13. Figure 1(c) shows the program
after the fix suggested by DeepFix is applied. DeepFix cor-
rectly predicts that line 13 has an error and generates a se-
quence with a closing brace inserted after “return 0;”.
To gain an insight into how our network predicts the fix cor-
rectly, we visualize the attention weights assigned by Deep-
Fix to each token in the input program in Figure 1(b). The
background color of a token is proportional to the average
attention weight assigned to it by the network while predict-
ing the sequence of tokens in the fix. We observe that the
network captures a local context closer to the faulty line (en-
closed by a box) and a global context (enclosed by a shadow-
box) which also contains the declaration of main at line 4
with the unmatched opening brace. It is also interesting to
note that attention is comparatively less for lines 6-10 and
also for lines 14-18. Lines 14-18 define another function
pow that does not have a bearing on the error being fixed.

Compilers can detect common programming errors, but
they usually do not pinpoint error locations accurately
(Traver 2010). For example, if we compile the program in

12

if(j<i){
printf("%d ",pow (i, 3));}}
printf ("\n");}

I | #include <stdio.h>
1 #include <stdio.h> > | #include <stdlib.h>
2 #include <stdlib.h> 3 |int pow(int a, int b.
3 int pow(int a, int b); 4 _
4 int main () { 5 -n;
5 int n;
6 scanf ("%d",&n); 6 scanf ("%d", &n);
7 int i, j; 7 int i, 3;
8§ for (i=1;i<=n;i++) { 8 for(i=l;i<=n;i++) {
9 for (j=0; j<=n; j++) { 9 for (j=1; j<=n; j++) {

if (3<i) |

printf ("%d ",pow (i, 3));i}}

printf (" \n"-

12

#include <stdio.h>
#include <stdlib.h>
int pow(int a, int Db);
int main () {
int n;
scanf ("%d", &n) ;
int i, 3j;
for (i=1;i<=n;i++) {
for (j=0; j<=n; j++) {
if (j<i){
printf ("$d ",pow (i, J));}}
printf ("\n");}

13 return 0;

13 return 0;

13 return 0;}

14 int pow(int a, int Db) {
15 int i,

16 for (i=0;1i<b;i++)

res=1;
15 int i,
17 res = a * res;

18 return res;} 17 ECC

18 return res;}

(a) Input program p . ¢ with a
missing closing brace at line 13

14 int pow(int a,
res=1;
16 for (i=0; i<b; i++)

int D) {

a * res;

(b) Attention weights (darker the
background, higher the weight)

14 int pow(int a, int Db) {
15 int 1,

16 for (i=0;1i<b;i++)

res=1;

17 res = a *x resy

18 return res;}

(c) The program after the fix (shaded)
suggested by DeepFix is applied

Figure 1: Example to illustrate the DeepFix approach.

Figure 1(a) through the GCC compiler, we get the following
error message:

p.c: In function ‘main’:
p.c:18:2: error: expected declaration or
statement at end of input
return res;}

The error message is both cryptic and misleading. It does not
localize the error to line 13. Instead, it wrongly implicates
line 18 in the program text.

Common programming errors are not specific to any par-
ticular programming task. Two recent approaches (Bhatia
and Singh 2016; Pu et al. 2016) train neural networks on
correct student solutions to a specific programming task and
try to learn task-specific patterns for fixing erroneous so-
Iutions for the same task. In comparison, DeepFix can be
used on solutions to any unseen programming task. Unlike
DeepFix, the neural networks used in the above-mentioned
approaches cannot localize errors on their own. Bhatia and
Singh (2016) use prefixes implicated by a compiler and Pu
et al. (2016) perform a brute force, enumerative search for
localizing errors. Based on the compiler message above, the
approach in (Bhatia and Singh 2016) would treat a prefix up
to line 18 in Figure 1(a) as correct and try to predict a suf-
fix. The error however is much earlier at line 13 and hence,
cannot be fixed by it. Fixing non-trivial errors requires rea-
soning about long term dependencies in the program text. Pu
et al. (2016) train a language model to predict an intermedi-
ate line given the statements at the previous and next lines,
and thus, capture only a short local context. DeepFix uses an
attention based sequence-to-sequence model to capture long
term dependencies.

1346

We apply DeepFix on C programs written by students for
93 different programming tasks in an introductory program-
ming course. The nature of these tasks and thereby, that of
the programs vary widely. Nevertheless, our network gener-
alizes well to programs from across these tasks. Out of 6971
erroneous programs, DeepFix fixed 1881 (27%) programs
completely and 1338 (19%) programs partially.

The main contributions of this work are as follows:

1. It introduces the issue of common programming errors

and offers an end-to-end solution based on deep nets.

2. It can iteratively fix multiple errors in the same program.

3. The technique is evaluated on thousands of erroneous C

programs with encouraging results.

Related Work

In recent years, deep learning algorithms have been success-
fully applied to a variety of tasks in natural language pro-
cessing. Though there exist similarities between natural lan-
guages and programming languages, programs are charac-
terized by rich structural information. Hindle et al. (2012)
have explored regularities in program text which they refer
to as “naturalness” in an analogy to natural language text.
The software engineering community has successfully ap-
plied deep learning to problems such as API mining, code
migration and code categorization. For more details, we re-
fer the reader to (White et al. 2015) and the references
therein.

Genetic programming has been used for discovering
fixes for programs (Arcuri 2008; Debroy and Wong 2010;
Le Goues et al. 2012). These techniques typically rely on
redundancy present in other parts of the program to restrict
the search space of mutants. Long and Rinard (2016) learn a

probabilistic model using explicitly designed code features
to rank repair candidates. However, the repair candidates are
enumerated separately and not predicted as in our work.

The popularity of massive open online courses (MOOCs)
in the recent past is evident from the large number of regis-
trants for such courses. Piech et al. (2015) proposed a neu-
ral network based approach to find program representations
and used them for automatically propagating instructor feed-
back to students in a massive course. Their approach is based
on an encoder-decoder framework and is useful especially
in the discrete gridworld-type programming problems. We
consider the far more general class of C programs and gen-
erate fixes automatically.

We pose the problem of program repair as that of gen-
erating an output sequence (a fix) from an input sequence
(an erroneous program). Sutskever, Vinyals, and Le (2014)
introduced a neural network model for solving the sequence-
to-sequence learning problem under the general framework
of neural machine translation. The main drawback of this
approach is the use of a fixed length vector for encoding
information related to source sequences of various lengths.
Bahdanau, Cho, and Bengio (2014) alleviated this problem
by proposing a model with an attention mechanism. This
model focuses on the most relevant information in a source
sequence by appropriate search mechanism and has the ca-
pability of handling long distance relations well. Vinyals et
al. (2015) achieved state-of-the-art results for the problem of
syntactic constituency parsing using this architecture. Xie et
al. (2016) use a character-level attention based mechanism
for natural language correction. To our knowledge, ours is
the first end-to-end solution which uses a deep network for
localizing and fixing common programming errors.

Technical Details
In this section, we discuss the overall design of DeepFix.

Program Representation

We pose the problem of fixing a programming error as a
sequence-to-sequence learning problem. This requires a pro-
gram to be represented as a sequence. We now give details
of our program representation.

Program text consists of different kinds of tokens such as
types, keywords, special characters (e.g., semicolons), func-
tions, literals and variables. Among these, types, keywords,
special characters and library functions form a shared vo-
cabulary across different programs. We retain them while
representing a program. We model the other types of tokens
as follows. We first define a fixed-size pool of names and
then construct a separate encoding map for each program by
randomly mapping each distinct identifier (variable or func-
tion name) in the program to a unique name in our pool.
We choose a pool that is large enough to create the above
mapping for any program in our dataset. This transforma-
tion does not change the semantics of the program and is
reversible. The exact values of literals do not matter for our
learning task. We therefore map a literal to a special token
based on its type, e.g., we map all integer literals to NUM
and all string literals to STR. We use a special token <eos>
to denote the end of a token sequence.

We treat a program as a sequence of tokens X. We may
want a network to produce another sequence Y such that Y’
fixes errors in X. However, a typical program we consider
has a few hundred tokens and predicting the target sequence
of similar size accurately is difficult. To overcome this prob-
lem, we encode line numbers in the program representation.
A statement S at a line L in a program is represented by
(¢, s) where £ and s are tokenizations of L and S. A program
P with k lines is represented as (¢1, s1), . . ., (¢k, Sk) <eos>
where {1, ...,/ are the line numbers and s1, ..., s are to-
ken sequences for statements at the respective lines. We can
now train the network to predict a single fix. A fix consists
of a line number ¢; and an associated statement s/ that fixes
errors in the statement s;. This output is much smaller com-
pared to the entire sequence representing the fixed program
and might be easier to predict. We discuss shortly how to
reconcile the fix with the input program and how to fix mul-
tiple errors in a program.

Neural Network Architecture

Bahdanau, Cho, and Bengio (2014) introduced an atten-
tion mechanism on top of the sequence-to-sequence model
of (Sutskever, Vinyals, and Le 2014). Their network con-
sists of an encoder RNN to process the input sequence and
a decoder RNN with attention to generate the output se-
quence. Our network is based on the multi-layered variant
in (Vinyals et al. 2015). We briefly describe it below.

Both the encoder and decoder RNNs consist of N stacked
gated recurrent units (GRUs) (Cho et al. 2014). The encoder
maps each token in the input sequence to a real vector called
the annotation. For an input sequence 1, ..., 2,, the hid-
den unit activation at time ¢ is computed as follows:

h{") = GRU (hgg, xt>
(" = GRU (h@l, hg"‘”) nef2,..., N}

The hidden states of the decoder network are initialized
with the final states of the encoder network and then updated
as follows:

d™ = GRU (dﬁ’_”l, d§"‘1>) Wnef{2,... N}
dY = GRU (dil_)l, zt)

where z; is the concatenation of the output j;_; at time step
t — 1 and the context vector ¢; defined as follows:

Ty
c = Z atjhg-N)
j=1

_ exp(eq;)
Snty explew)
etk = @ (dt—h hSCN))

The context vector ¢; is computed as a weighted sum

of the input sequence annotations th), PN h(TJZ) using the
normalized weights a;; for j € {1,...,T,}. The associ-
ated energy values e;; are learned using a soft alignment

CLtj

Input program

(1, 51),

(L2, s2), Seq2seq Reject
e attention
t
Lk, sk) network | (4, s7) ot stop
<eos> <eos> Accept
Updated program

(1,81)y -y (£iy85), -y (Biy S1) <e€0S>

Figure 2: The iterative repair strategy of DeepFix.

model ¢ parameterized as a feed-forward network which is
jointly trained with the other components of the model. In-
tuitively, these weights or energy values determine the im-
portance of the annotations with respect to the hidden state
dy_1 for computing the current decoder hidden state d,.

Finally, the decoder output dEN) is concatenated with c;
and the result is passed through an affine transformation
layer followed by a softmax layer to predict the most proba-
ble output token y;. We calculate the cross-entropy over the
softmax layer outputs at each time step and sum them over
the output sequence to compute the loss function.

Iterative Repair

As discussed earlier, in order to keep the prediction task sim-
ple, we decided that the network can predict only a single
fix. However, a program may have multiple errors. DeepFix
uses a simple yet effective iterative strategy to fix multiple
errors in a program as shown in Figure 2.

Given the tokenized representation of an input program
(1,81)y- -, (L, si) <eos>, the network predicts a fix, say
(¢4;,s}) <eos>. An oracle takes this fix and the input pro-
gram, and reconciles them to create the updated program.
The updated program is obtained by replacing s; at line ¢;
with s}. The job of the oracle is to decide whether to accept
the fix or not, by checking whether the updated program is
better than the input program. In our case, we use a com-
piler and accept a fix if the updated program does not result
in more error messages than the input program. We also use
some heuristics to prevent arbitrary changes to the input pro-
gram. For example, the oracle rejects a fix s} if it does not
preserve the identifiers and keywords present in the original
statement s;. Once a fix is accepted, DeepFix presents the
updated program again to the network as shown in Figure 2.
This iterative strategy stops when either 1) the oracle deter-
mines that the updated program does not have any errors left
to be fixed, or 2) the network deems the input program to
be correct and emits a special token “fixed”, or 3) the oracle
rejects the fix, or 4) a predefined upper bound on the number
of iterations is reached.

Apart from deciding to replace a statement at a line, the
network may determine that a new line is to be inserted be-
fore (or after) a line /;. In that case, it emits [; (or Zj) in-
stead of [;. To delete a line [;, it emits /; with an empty
string €. The network operates on a tokenized representation
of a program. Since we must ultimately fix actual programs,
the oracle reconstructs the program text from the token se-

1348

Dataset statistics Results
Dataset| Erroneous| Avg. | Error| Completely Msgs.
programs | tokens | msgs. fixed resolved
programs
Raw 6971 203[16743| 1881 (27%)| 5366 (32%)
Seeded 9230 206 [31783| 5185 (56%) | 19962 (63%)

Table 1: Summary of the datasets and results.

quence obtained after applying the fix. It uses the program-
specific encoding map constructed during tokenization to
back-substitute the original identifiers. It uses the line num-
ber in the fix and replaces the special tokens like NUM and
STR by literals at the corresponding line in the input pro-
gram. If the oracle cannot reconstruct the program text then
it rejects the fix.

The proposed repair strategy has several advantages.
1) The program is presented in its entirety to the network.
Identifying and fixing programming errors typically requires
global analysis capable of inferring long term dependencies.
The network architecture, being capable of attending selec-
tively to any part of the program, can reason about the struc-
tural and syntactic constraints to predict an erroneous loca-
tion and required fix. 2) The inclusion of line numbers in
both input and output reduces the granularity and hence, the
complexity of the prediction task. 3) DeepFix can iteratively
fix multiple errors in a program. 4) The oracle is used to
track progress and prevent unhelpful or arbitrary changes.
5) The repair strategy of DeepFix is quite general. For ex-
ample, if we are to attempt fixes for logical errors, we can
use a test engine with a test suite as an oracle. A fix would
be accepted if it results in a program that passes more tests.

Experiments
Experimental Setup

For training and evaluation, we used C programs written
by students for 93 different programming tasks in an intro-
ductory programming course. The programs were captured
through a web-based tutoring system (Das et al. 2016). We
train the neural networks on an Intel(R) Xeon(R) E5-2640
v3 16-core machine clocked at 2.60GHz with 125GB of
RAM and equipped with an NVIDIA Tesla K40 GPU ac-
celerator. To work within this machine configuration, we se-
lected programs whose token length ranged from 100 to 400.

Dataset We have two classes of programs in our dataset
— programs which compile (henceforth, correct programs),
and programs which do not compile (henceforth, erroneous
programs). A student may submit several erroneous pro-
grams. We randomly select only one erroneous program per
student for each programming task in order to avoid biasing
the test results.

In order to give an accurate evaluation of our technique,
we do a 5-fold cross validation by holding out roughly 1/5th
of the programming tasks for each fold. The erroneous pro-
grams belonging to the held out tasks are used for generat-
ing the raw dataset (Table 1). The correct programs from the
rest of the tasks are used for generating training examples.
We studied the erroneous programs in our dataset to design

mutations required for seeding common programming errors
into the correct programs.

We mutate up to 5 statements from each correct program
to introduce errors. The mutated program is paired with the
fix for the first erroneous line (in the order of increasing line
numbers) and this pair constitutes a single training exam-
ple. We then apply this fix to the first erroneous line and
continue to recursively generate mutant-fix pairs until all the
mutated lines have been fixed. Additionally, we also train
the network to identify correct programs by training it to
emit a special token “fixed” in response to unedited correct
programs. Thus, if the network identifies a program as being
correct, it emits this special token to stop the DeepFix itera-
tion loop. To avoid biasing the network to any of the tasks,
we restrict the training data generation process to consider
only 500 correct programs for each task.

Training We use the attention based sequence-to-
sequence architecture implemented in Tensorflow (Abadi et
al. 2015). Both the encoder and the decoder in our network
have 4 stacked GRU layers with 300 cells in each layer. We
use dropout (Srivastava et al. 2014) at a rate of 0.2 on the
non-recurrent connections (Pham et al. 2014). The initial
weights are drawn from the distribution &/ (—0.07,0.07) and
biases are initialized to 1.0. Our vocabulary has 129 unique
tokens, each of which is embedded into a 50-dimensional
vector. The tokenized representation of an input program is
fed to the network in the reverse direction, as in (Sutskever,
Vinyals, and Le 2014; Vinyals et al. 2015). The network is
trained using the Adam optimizer (Kingma and Ba 2015)
with the learning and the decay rates set to their default val-
ues and a mini-batch size of 128. We clip the gradients to
keep them within the range [—1, 1] and train the network for
up to 20 epochs. Finally, we select the trained model with
peak validation performance. We train two networks, one
for fixing undeclared variables and another to fix all other
errors. Since the exact identifier is not relevant for the latter,
they are represented by a special token ‘ID’. This optimiza-
tion reduces the complexity of the fix prediction task. In our
experiments, we found that it improves the network valida-
tion accuracy by up to 5%. We run the two networks simul-
taneously and for each iteration, show the combined results
of both. We provide the source code of the tool online at
http://iisc-seal.net/deepfix.

Results

We evaluate DeepFix on the raw dataset as follows. For each
fold, we consider all erroneous student programs belonging
to the held-out tasks in that particular fold and evaluate the
trained model on them. We give the summarized results for
all programs in the raw dataset below.

Successful fixes DeepFix completely fixes 1881 (27%) out
of the 6971 erroneous programs in a way that the fixed pro-
grams compile without any errors. It also fixes an additional
1338 (19%) programs partially. Originally, all the programs
put together had generated 16743 error messages when com-
piled using GCC. As shown in Table 1, DeepFix resolves
5366 (32%) error messages from these. DeepFix is also effi-

1349

T I
[. Completely fixed 7
. Partially fixed

200 U Remaining N

250

&
s
& 150 | |
a
ks
s 100t .
Z
50
0
0 20 40 60 80
Task ID

Figure 3: Task-wise reduction in erroneous programs for the
raw dataset.

Error types Representative causes of errors
e; expected declaration missing statement delimiters
or statement missing block delimiters
es expected identifier duplicate block delimiters
e3 undeclared extraneous closing parentheses
es expected extraneous commas
(misc. tokens) undeclared variables

Table 2: Summary of error types and their causes.

cient. On an average, it takes only a few tens of milliseconds
to fix errors in a test program.

Distribution of fixes by programming tasks The prob-
lem statements of the tasks from the programming course
are quite diverse, ranging from simple integer arithmetic
to sorting and dynamic programming. The programs uti-
lize many language constructs ranging from scalar and array
variables to conditionals, nested loops, recursion and func-
tions. Figure 3 shows the distribution of programs before and
after fixes for each of the 93 programming tasks. It can be
seen that our network generalizes well to programs from all
these programming tasks. This gives credence to our claim
that many programming errors are common and not task-
specific, and DeepFix can fix them.

Distribution of fixes by error types Across the entire raw
dataset, we observed 71 unique types of compiler error mes-
sages. This indicates that errors were of diverse nature. In
Figure 4, we show the Top-4 types of error messages and
their numbers before and after the fixes for the raw dataset.
These form a majority of errors in the dataset. Table 2 de-
scribes the top-4 error types and some representative causes
for the errors. As can be seen, DeepFix can handle diversity
in errors and successfully resolves errors leading to each of
these messages.

Effectiveness of iterative repair A student may make
multiple errors in a program. The iterative strategy of Deep-
Fix attempts to fix them one-by-one. Figure 5 shows the
original errors for the raw dataset marked as iteration 0 and

11604

11432

. Fixed - 20k 73
6k [D Remaining g{) S
Z g -
g 5 15k|||
o g —
105 i
= E 10k ||
= Y
8 9]
o 5k
Z
0
el () es €4 0 1

Type of errors

Figure 4: Top-4 types of error messages
and their numbers before and after the
fixes for the raw dataset.

then shows the number of error messages remaining at the
end of each iteration. We used up to 5 iterations. The first it-
eration resolves 4447 error messages, while the subsequent
iterations resolve an additional 919 messages. If the network
fails to produce a fix for a program in an iteration, the sub-
sequent iterations are not executed for that program as ap-
plying the same network again will not change the outcome.
Thus, the number of programs processed in each iteration re-
duces and consequently, the number of errors that get fixed
also reduces. Nevertheless, many programs get increasingly
more correct with each iteration.

Detailed Analysis

We randomly select up to 100 correct submissions from each
of the 93 programming tasks and mutate up to 5 statements
from each of them to generate a seeded dataset. Table 1 gives
the results for the seeded dataset. Of the 9230 programs,
DeepFix fixes 5185 (56%) programs completely and 1534
(17%) programs partially. Out of the 31783 compilation er-
ror messages, it resolves 19962 (63%) error messages.

Unlike the raw dataset, we know the exact fixes expected
in the seeded dataset. We use this to better understand the
performance of DeepFix. In the remaining part of this sub-
section, we consider the fixes generated by DeepFix on the
seeded dataset in the first iteration.

Error localization As discussed before, compilers do not
localize errors accurately. Ours is an end-to-end solution in
which the network performs error localization on its own.
We evaluated the localization accuracy of our network on the
seeded dataset. In the first iteration, it is expected to localize
the first erroneous line in each program. Of the 9230 erro-
neous lines, it localizes 7262 (78.68%) successfully. Soft-
ware error localization tools usually report a ranked list of
potentially erroneous lines. With beam search, we can ob-
tain a ranked list. Out of the 9230 erroneous lines, 8077
lines (87.50%) appeared in the top-5 erroneous lines pre-
dicted by the network. While we do aim at predicting the re-
quired fixes, in practice, even reporting the erroneous lines
can itself be of substantial help to programmers.

2

& 11388
W 11377

3

Iterations

Figure 5: Number of error messages
after each iteration on the raw dataset.

1350

Figure 6: PCA projection of vector-
representations of correct (circles) and
incorrect (triangle) programs.

Fix length | Number | Token-level Fix
(tokens) of fixes accuracy accuracy
<10 3105 90.01% | 72.43%
10—-15 3994 88.21% | 66.82%
> 15 2131 80.28% | 50.63%

Table 3: Fix length vs fix accuracy for the seeded dataset.

Token-level accuracy versus fix accuracy Program re-
pair is a challenging prediction problem as a proposed fix
is correct only if it correctly predicts the required token
at every position in the output sequence. Our network had
86.98% token-level accuracy but only 64.97% fix accuracy.
The former counts the number of tokens from the output se-
quence predicted correctly and the latter counts the number
of output sequences predicted correctly.

Fix length versus fix accuracy In Table 3, we partition
the fixes generated by DeepFix in the first iteration by the
length of the fix in number of tokens. As the length of a fix
to be predicted increases, both the token-level accuracy and
fix accuracy decrease. Nevertheless, even for fixes requiring
more than 15 tokens, it has fix accuracy of 50.63%.

Visualizing intermediate representations We feed 2000
programs sampled from the raw dataset into a trained Deep-
Fix encoder and extract the final annotation vectors. We
show the first two principal components of these vectors in
Figure 6. As can be seen, the correct and incorrect programs
form two distinct clusters with very little overlap. This indi-
cates that the DeepFix encoder learns to capture the syntactic
validity of programs.

Discussion

Our experiments show that DeepFix fixes many programs
and error types successfully. The programs in the raw dataset
are written by students in an actual programming course.
One major reason limiting the applicability of DeepFix is
that fixes are sometimes too complicated for the network to
generate. For example, we observed errors such as trying to

assign one array variable to another which is not allowed in
C. Fixing this will require predicting a loop with element-
wise assignments between the arrays, which is beyond the
capabilities of the network. We have used a synthetic train-
ing dataset. DeepFix fixes substantially more programs in
the seeded dataset than the raw dataset (e.g., 56% completely
fixed programs for the seeded dataset against 27% for the
raw dataset). This indicates that our training dataset does not
reflect all possible errors from the raw dataset. We hope that
using a better training dataset may increase the performance
of DeepFix further. In some cases, there could be multiple
options to fix an error; but not all of them may be accept-
able. An ad-hoc fix may delete an erroneous line entirely.
We use the oracle to prevent DeepFix from accepting such
changes. While fix length has an adverse effect on the fix
accuracy, we observed that many fixes involve only minor
edits to a line. We plan to explore a suitable mechanism in
the future to exploit this fact.

Conclusions

We introduce the issue of common programming errors and
present an end-to-end solution based on deep learning. Our
solution, DeepFix, fixes multiple errors by iteratively in-
voking a trained neural network. We evaluated DeepFix on
6971 erroneous C programs written by students. DeepFix
could fix 27% programs completely and 19% programs par-
tially. Although the evaluation is done only on C programs,
our technique is programming language-agnostic and should
generalize to other programming languages as well.

In the future, we plan to apply deep learning to fix more
challenging programming errors. We also plan to explore
ways to improve the performance of DeepFix. In particular,
we want to develop neural network architectures that can ef-
fectively handle longer sequences.

Acknowledgments

We thank Amey Karkare and Umair Z. Ahmed for provid-
ing student programs for experimentation. We also thank the
anonymous reviewers for their helpful feedback.

References

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Leven-
berg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah,
C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Tal-
war, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas,
F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu,
Y.; and Zheng, X. 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from
tensorflow.org.

Arcuri, A. 2008. On the automation of fixing software bugs.
In ICSE Companion, 1003—-1006.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

1351

Bhatia, S., and Singh, R. 2016. Automated correction for
syntax errors in programming assignments using recurrent
neural networks. arXiv preprint arXiv:1603.06129.

Cho, K.; Van Merriénboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learn-
ing phrase representations using RNN encoder-decoder for
statistical machine translation. In EMNLP, 1724-1734.

Das, R.; Ahmed, U. Z.; Karkare, A.; and Gulwani, S. 2016.
Prutor: A system for tutoring CS1 and collecting student
programs for analysis. CoRR abs/1608.03828.

Debroy, V., and Wong, W. E. 2010. Using mutation to auto-
matically suggest fixes for faulty programs. In ICST, 65-74.

Hindle, A.; Barr, E. T.; Su, Z.; Gabel, M.; and Devanbu, P.
2012. On the naturalness of software. In ICSE, 837-847.

Kingma, D., and Ba, J. 2015. Adam: A method for stochastic
optimization. In ICLR.

Le Goues, C.; N., T.; Forrest, S.; and Weimer, W. 2012.
GenProg: A generic method for automatic software repair.
IEEE Trans. Software Eng. 54 —72.

Long, F., and Rinard, M. 2016. Automatic patch generation
by learning correct code. In POPL, 298-312.

Monperrus, M. 2015. Automatic software repair: a bibliog-
raphy. Technical Report #hal-01206501, University of Lille.

Pham, V.; Bluche, T.; Kermorvant, C.; and Louradour, J.
2014. Dropout improves recurrent neural networks for hand-
writing recognition. In ICFHR, 285-290.

Piech, C.; Huang, J.; Nguyen, A.; Phulsuksombati, M.; Sa-
hami, M.; and Guibas, L. J. 2015. Learning program em-
beddings to propagate feedback on student code. In ICML,
1093-1102.

Pu, Y.; Narasimhan, K.; Solar-Lezama, A.; and Barzilay, R.
2016. sk_p: a neural program corrector for moocs. arXiv
preprint arXiv:1607.02902.

Seo, H.; Sadowski, C.; Elbaum, S.; Aftandilian, E.; and
Bowdidge, R. 2014. Programmers’ build errors: a case study
(at Google). In ICSE, 724-734.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to pre-
vent neural networks from overfitting. J. Mach. Learn. Res.
15(1):1929-1958.

Sutskever, 1.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In NIPS, 3104—
3112.

Traver, V. J. 2010. On compiler error messages: what they
say and what they mean. Advances in Human-Computer
Interaction 2010.

Vinyals, O.; Kaiser, L.; Koo, T.; Petrov, S.; Sutskever, I.; and
Hinton, G. 2015. Grammar as a foreign language. In NIPS,
2773-2781.

White, M.; Vendome, C.; Linares-Vasquez, M.; and Poshy-
vanyk, D. 2015. Toward deep learning software repositories.
In MSR, 334-345.

Xie, Z.; Avati, A.; Arivazhagan, N.; Jurafsky, D.; and Ng,
A.Y. 2016. Neural language correction with character-based
attention. arXiv preprint arXiv:1603.09727.

