
 

 
 

Abstract 
Webpage classification has attracted a lot of research inter-
est. Webpage data is often multi-view and high-dimensional, 
and the webpage classification application is usually semi-
supervised. Due to these characteristics, using semi-
supervised multi-view feature learning (SMFL) technique to 
deal with the webpage classification problem has recently 
received much attention. However, there still exists room 
for improvement for this kind of feature learning technique. 
How to effectively utilize the correlation information among 
multi-view of webpage data is an important research topic. 
Correlation analysis on multi-view data can facilitate extrac-
tion of the complementary information. In this paper, we 
propose a novel SMFL approach, named semi-supervised 
multi-view correlation feature learning (SMCFL), for 
webpage classification. SMCFL seeks for a discriminant 
common space by learning a multi-view shared transfor-
mation in a semi-supervised manner. In the discriminant 
space, the correlation between intra-class samples is maxim-
ized, and the correlation between inter-class samples and the 
global correlation among both labeled and unlabeled sam-
ples are minimized simultaneously. We transform the ma-
trix-variable based nonconvex objective function of SMCFL 
into a convex quadratic programming problem with one real 
variable, and can achieve a global optimal solution. Experi-
ments on widely used datasets demonstrate the effectiveness 
and efficiency of the proposed approach. 

 Introduction   
The last several years have witnessed a rapid increase of 
information available on the World Wide Web, making it 
difficult to find web pages that contain the information in 
which one is interested. In order to make an effective and 
efficient search, we need to classify webpages. Webpage 

 a webpage 
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a class that describes its contents (Qi and Davison 2009; 
Gollapalli et al. 2013). As stated in (Jing et al. 2015), 
webpage classification has three characteristics: (1) 
Webpage is a kind of multi-view data (Wang and Zhou 
2008; Zhang et al. 2013; Xu et al. 2013; Kan et al. 2016), 
since it usually contains two or more types of data, e.g., 
text, hyperlinks and images, where each type of data can 
be regarded as a view. These multiple views describe the 
same webpage. (2) Webpage classification is a semi-
supervised application (Zhou et al. 2007; Zhu and Gold-
berg 2009), since labeled pages are harder to collect com-
pared to unlabeled pages in practice. (3) Webpage data is 
high-dimensional, since webpages usually contain much 
information. Considering these three characteristics, it is 
crucial to design effective semi-supervised multi-view fea-
ture learning (SMFL) methods for w . 
To our knowledge, two webpage classification methods 
taking these three characteristics into account have been 
developed, namely semi-paired and semi-supervised gen-
eralized correlation analysis (SSGCA) (Chen et al. 2012) 
and uncorrelated semi-supervised intra-view and inter-
view manifold discriminant (USI2MD) (Jing et al. 2015).  
 For other applications, a few SMFL methods have also 
been presented, such as multi-view metric learning with 
global consistency and local smoothness (MVML-GL) 
(Zhai et al. 2012), vector-valued reproducing kernel Hil-
bert spaces (VRKHS) (Minh et al. 2013), multi-view hy-
pergraph learning (MHL) (Hong et al. 2013), semi-
supervised multi-view canonical correlation analysis based 
on label propagation (LPbSMCCA) (Shen and Sun 2014), 
and manifold-regularized semi-supervised kernel canonical 
correlation analysis (MR-skCCA) (Volpi et al. 2014). 

Motivation and Contribution 
The correlation information from inter-view and intra-view 
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Webpage Classification 
In the last decade, several webpage classification methods 
have been presented (Du et al. 2013; Wu et al. 2014; Wang 
et al. 2015).  (Zhang et al. 2008) designs a multi-view local 
model for each example and presents a multi-view local 
learning regularization matrix method. (Kim et al. 2009) 
presents a semi-supervised learning method, which lever-
ages click logs to augment training data by propagating 
class labels to unlabeled similar documents. (Wang et al. 
2011) addresses a nonnegative matrix tri-factorization 
based dual knowledge transfer algorithm for cross-
language webpage classification. Two-view transductive 
SVM (TTSVM) (Li et al. 2012) uses sufficient unlabeled 
data and their multiple representations to improve classifi-
cation performance. (Bing et al. 2014) performs webpage 
segmentation with structured prediction for webpage clas-
sification. 
 Most of current webpage classification methods do not 
consider all three characteristics of webpage classification. 

SMFL for Webpage Classification 
To our knowledge, only two SMFL webpage classification 
methods have been addressed. SSGCA (Chen et al. 2012) 
makes as maximal correlation as possible on paired data by 
performing CCA, with preserving the global structural 
information of unlabeled data and the local discriminative 
information of labeled data. USI2MD (Jing et al. 2015) 
combines the semi-supervised intra-view and inter-view 
manifold discriminant schema with semi-supervised uncor-
relation constraint for webpage classification. 
 The differences between SSGCA, USI2MD and our ap-
proach are: USI2MD does not consider the correlation 
among multiple views and SSGCA does not explore the 
intra-view correlation information, while our SMCFL can 
effectively utilize the intra-view and inter-view discrimi-
nant correlation information. 

Semi-supervised Multi-view Correlation Fea-
ture Learning (SMCFL) 

The Objective Function of SMCFL 
Suppose that 1 2, , ,l

CX X X X  is the labeled training 
webpage sample set from C  classes, where each 

1, ,iX i C  contains webpage samples of M  views 

and 1s d
ipx  denotes the thp  webpage sample from the 

ths  view of the thi  class. Here, d  denotes the dimensional-
ity of samples. Assume that s

il  denotes the number of sam-
ples from the ths  view and the thi  class, and 

1

M s
i is

l l  

denotes the number of samples in the thi  class. Let uX  be 

the unlabeled training sample set, ,l uX X X , and N  
denote the total sample number in X . For simplicity of 
representation, we regard uX  as the 1 thC  class. 
 We aim to learn a discriminant projection transformation 
W  that can project samples from M  views to one discri-
minant common space, where the correlation between in-
tra-class samples is maximized, while the correlation be-
tween inter-class samples and the global correlation among 
both labeled and unlabeled samples are minimized simul-
taneously. We define the within-class correlation wS , be-
tween-class correlation bS  and total correlation tS  as fol-
lows: 
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Then, the objective function of SMCFL can be defined as 
1 2max w b tW

f W S r S r S ,                       (4) 

where 1 0r  and 2 0r  are weight coefficients. We set 
TH WW  and 1 , ,s

ipx i s p , where  denotes the 
l2-norm of a vector. Obviously, H  should be symmetric 
and positive semi-definite, i.e., TH H  and 0H . We 
relax (4) into the following formulation: 

1 2max

. , 0

w b tH
T

f H S r S r S

s t H H H
,                      (5) 

where wS , bS , and tS  are separately defined as follows: 
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It is noted that for the transformation from (1) to (6), a sim-
ilar transformation trick can be found in (Szedmak et al. 
2007). As a result, (5) can be further translated into 

min

. 1, , 0
FH

T

H

s t B H H H
,                     (9) 

where 
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Solution of SMCFL 
To achieve the solution of Formula (9), we design the fol-
lowing optimization scheme, which can obtain an analyti-
cal and global optimal solution. 
 We provisionally leave the constraints TH H  and 

0H  off (Note that we will show that H  is symmetric in 
the following derivation, namely in Eqs. (15) and (17); and 
we make H  positive semi-definite in Eq. (22) or (23)). 
Thus, we can simplify (9) as 

min . . 1
FH

H s t B ,                         (10) 

which can be expressed as the following convex quadratic 
programming problem  

21min . . 1
2 FH

H s t B .                       (11) 

To make the solution of (11) robust, we introduce the slack 
variable 0  to relax the corresponding constraint. With 
such a relaxation, (11) is reformulated as 

21min
2

. 1 , 0

FH
H

s t B
,                         (12) 

where  is a regularization parameter.  
 By applying the Lagrangian technique to constrained 
optimization problem, we define the Lagrange function as 

21( , , , ) ( 1 )
2 F

L H H B ,      (13) 

where  and  are Lagrangian multipliers. By making 
the derivatives with respect to H  and  equal to zeros, 
we can obtain 

0L H R
H

 and 0L ,       (14) 
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The corresponding Karush-Kuhn-Tucher (KKT) conditions 
(Chen et al. 2011) are  

1 0B , 0  and 0 .            (16) 
According to (14), we obtain 

H R .                                    (17) 
It can be easily proved that R  is a symmetric matrix, and 
thus H R  is symmetric. Then, we can get 

TB tr HR ,                                (18) 

where tr  denotes the trace of a square matrix.  
 Substituting Eqs. (14), (17) and (18) into (13), we obtain 
its Wolfe dual objective as follows 

2

( , , , )
2

TDL H tr RR .               (19) 

Hence, to get the solution of (12) is equivalent to solving 
the following optimization problem: 

2max
2
A ,                               (20) 

where TA tr RR  is positive. (20) is a convex quadratic 

programming problem. If 1 A , the solution of (20) is 
* 1 A ; otherwise, the solution is * . 

 Finally, substituting  into (17), we can get H . To 
obtain the projective transformation matrix W , H  is eig-
en-decomposed as 

TH U U ,                                 (21) 
where  is a diagonal eigenvalue matrix of H , and U  is 
an orthogonal matrix whose columns correspond to the 
eigenvectors of H . 
 If H  is positive semi-definite, we can obtain W  by 

W U .                                (22) 
When H  is not positive semi-definite, namely some ei-
genvalues of H  are negative, like the solution trick in (Ma 
et al. 2007), we select the positive eigenvalues and corre-
sponding eigenvectors to construct a new diagonal matrix 

 (
T

) and a new orthogonal matrix U , 

respectively. Then we can obtain W  by 
W U .                              (23) 

 Let 1 2, , , My y y  be M  views of a given query sample 
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and 1 2
ˆ ˆ ˆ, , , MX X X  be M  views of labeled training sam-

ples, where each ˆ 1, ,sX s M  contains C  classes. With 
the obtained transformation matrix W , we achieve the 
projected features of training sample set and query sample 
separately by ˆX T

s sZ W X  and y T
s sZ W y  for each view. 

Then, we use the following strategy to fuse these features: 
 1 2, , ,

TX XT XT XT
MZ Z Z Z  and 1 2, , ,

Ty yT yT yT
MZ Z Z Z . (24) 

Finally, we use the nearest neighbor classifier with the co-
sine distance to classify yZ . 
 Algorithm 1 summarizes the proposed SMCFL approach.  
 
Algorithm 1. SMCFL 
Input: Training sample sets lX  and uX , test sample y . 
Output: Class label of y . 
Step 1. Calculate  according to (20). 
Step 2. Calculate H  according to (17). 
Step 3. Calculate W  according to (22) or (23). 
Step 4. Obtain the projected test sample yZ  and the project-

ed labeled training sample set XZ . 
Step 5. Use the nearest neighbor classifier with the cosine 

distance to classify yZ  according to XZ .  

Time Complexity Analysis 
The main computational burden of SMCFL consists of the 
matrix calculation for R  and the eigen-decomposition 
problem in (21). Thus, the time complexity of SMCFL is 

3 2O d N d . As reported in (Jing et al. 2015; Volpi et al. 
2014), the time complexities of representative SMFL 
methods including MVML-GL, VRKHS, MR-skCCA, 
SSGCA and USI2MD are 23

l lO N Md N , 
3 2 2O MN M N d , 3 2O N d N , 3 2O Md MN d and 

3 2 2O Md M N d , respectively. Here, lN  represents the 

number of labeled training samples. 
 It is obvious that the time complexity of our SMCFL 
approach is smaller than those of SSGCA and USI2MD. 
Whether the time complexity of our approach is lower than 
those of MVML-GL, VRKHS or MR-skCCA is mainly 
determined by the values of lN , N  and d . 

Experiments 

Data Set 
In this paper, we evaluate our approach on two widely used 
datasets, namely WebKB (Chen et al. 2012) and Internet 
advertisements (Kushmerick 1999). 
 The WebKB dataset contains 1051 webpages from two 
classes (230 pages in the course class and 821 pages in the 

non-course class). Each webpage is characterized by the 
page view and the link view. We use a preprocessed 
version of this dataset, where 3000-dimensional and 1840-
dimensional original features are extracted from the page 
view and link view of a webpage, respectively.  
 The Internet advertisements (AD for short) dataset in-
cludes 3279 samples containing 458 advertisements and 
2821 non-advertisement samples. Like in (Jing et al. 2015), 
we utilize a preprocessed version of this dataset, where 
each sample is regarded as a binary vector with quite large 
sparsity and consists of 1558 original features. Three views 
that have similar numbers of features are used for experi-
ment, including 495 base URL features, 472 destination 
URL features and 457 image URL features. 

Compared Methods and Experimental Settings 
In experiment, we compare our SMCFL with six state-of-
the-art related methods, including three SMFL methods, 
i.e., MVML-GL (Zhai et al. 2012), VRKHS (Minh et al. 
2013) and MR-skCCA (Volpi et al. 2014); and three 
webpage classification methods, i.e., SSGCA (Chen et al. 
2012), TTSVM (Li et al. 2012) and USI2MD (Jing et al. 
2015). We also compare SMCFL with a representative 
unsupervised multi-view feature learning method, i.e., mul-
ti-view canonical correlation analysis (MCCA) (Li et al. 
2009). Expectation Maximization (EM) based algorithm is 
an important kind of the semi-supervised learning method 
(Nigam et al. 2000; McLachlan and Krishnan 2007; Saluja 
et al. 2012; Zhao et al. 2016). Here, we also compare our 
SMCFL with EM (Nigam et al. 2006). And the view with 
the best classification accuracy (Jing et al. 2015) is used 
for EM. 
 For each dataset, we randomly select 50% samples per 
class to construct the training set and use the remaining 
samples for testing. We further randomly select a certain 
percentage of the training samples as the labeled samples 
and regard the remaining training samples as unlabeled 
ones for semi-supervised learning. For the unsupervised 
method MCCA, we use all training samples (both labeled 
and unlabeled samples) for its training. For SSGCA and 
TTSVM, we utilize two views with the best classification 
accuracy for them in the AD dataset, since these two 
methods only apply to two views based learning problem. 
 Like in (Jing et al. 2015), we employ the PCA method 
(Turk and Pentland 1991) to reduce the samples’ dimen-
sionalities of different views to 1050 for WebKB and 456 
for AD. For our SMCFL, the parameters 1r  and 2r  in (5) 
and  in (12) are determined by using 5-fold cross valida-
tion technique on training data. Concretely, we set 

1 2 0.01r r  and 1  for WebKB, and 1 2 0.1r r  and 
1  for AD. The evaluation measures including classifi-

cation accuracy (CA) (Jing et al. 2015) and F-measure 
(Banerjee and Pedersen 2003) are used to evaluate the 
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classification performances. 

Evaluation of Classification Results 
We evaluate the classification results of our SMCFL ap-
proach with the percentage of labeled training samples 
increasing from 10% to 90%. Figs. 2 and 3 separately illus-
trate the average classification accuracies and F-measure 
values of all compared methods across 20 random running 
on two datasets. Table 1 reports the average results (across 
9 percentages) corresponding to Figs. 2 and 3. From Fig. 2, 
SMCFL significantly outperforms all the other competing 
methods with regard to classification accuracy in all cases. 
On average, SMCFL improves the classification accuracy 
at least by 12.47% on WebKB and 9.15% on AD. Accord-
ing to Fig. 3, SMCFL always obtains better F-measure 

results than other methods. On average, SMCFL improves 
the F-measure value at least by 0.08 on WebKB and 0.07 
on AD. This illustrates that SMCFL can well balance the 
classification effects of positive (minority) class and nega-
tive (majority) class. The main reason for the obvious 
improvement lies in that SMCFL fully and effectively 
utilizes the intra-view and inter-view discriminant cor-
relation information. 
 To statistically analyze the classification results shown 
in Figs. 2 and 3, we conduct a statistical test, i.e., 
Mcnemar’s test (Yambor et al. 2002), at the confidence 
level of 95%. If the p-value is below 0.05, the performance 
difference between two compared methods is statistically 
significant. Table 2 shows the p-values between SMCFL 
and other methods on two measures. According to the table, 

    
Figure 2. Average classification accuracies of compared methods on two datasets. 

Figure 3. Average F-measure values of compared methods on two datasets. 
 

Table 1. Average performances of all compared methods on two datasets. 
Dataset Measure EM MCCA MVML-GL VRKHS MR-skCCA SSGCA TTSVM USI2MD SMCFL 

WebKB CA 61.11 61.62 74.14 78.63 80.41 68.75 71.09 80.80 93.27 
F-measure 0.56 0.55 0.66 0.70 0.74 0.61 0.63 0.76 0.84 

AD CA 48.33 48.88 69.28 73.93 75.58 65.96 68.62 76.25 85.40 
F-measure 0.38 0.37 0.47 0.47 0.50 0.43 0.46 0.51 0.58 

 
Table 2. P-values between SMCFL and other methods on measures of classification accuracy and F-measure. 

Dataset Measure EM MCCA MVML-GL VRKHS MR-skCCA SSGCA TTSVM USI2MD 

WebKB CA 2.74×10-13 5.86×10-13 4.81×10-9 1.27×10-6 7.38×10-6 1.13×10-9 2.64×10-8 4.55×10-6 
F-measure 4.55×10-10 2.83×10-9 3.45×10-10 9.05×10-8 1.13×10-7 2.08×10-11 5.98×10-10 2.71×10-5 

AD CA 7.29×10-12 4.07×10-11 8.59×10-7 1.30×10-4 5.79×10-4 3.26×10-9 2.40×10-7 4.46×10-4 
F-measure 3.10×10-10 1.29×10-7 2.33×10-6 2.08×10-6 4.17×10-5 1.08×10-14 3.20×10-8 3.26×10-8 

 
Table 3. Average training time (seconds) of all compared methods on two datasets. 

Dataset EM MCCA MVML-GL VRKHS MR-skCCA SSGCA TTSVM USI2MD SMCFL 
WebKB 0.26 0.12 0.38 5.97 1.72 5.18 - 4.89 0.45 

AD 4.50 4.12 4.87 154.72 21.45 13.83 - 29.86 5.58 
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