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Abstract

Understanding, predicting, and generating object motions
and transformations is a core problem in artificial intelli-
gence. Modeling sequences of evolving images may pro-
vide better representations and models of motion and may
ultimately be used for forecasting, simulation, or video gen-
eration. Diagrammatic Abstract Reasoning is an avenue in
which diagrams evolve in complex patterns and one needs to
infer the underlying pattern sequence and generate the next
image in the sequence. For this, we develop a novel Con-
textual Generative Adversarial Network based on Recurrent
Neural Networks (Context-RNN-GANs), where both the gen-
erator and the discriminator modules are based on contex-
tual history (modeled as RNNs) and the adversarial discrim-
inator guides the generator to produce realistic images for
the particular time step in the image sequence. We evaluate
the Context-RNN-GAN model (and its variants) on a novel
dataset of Diagrammatic Abstract Reasoning, where it per-
forms competitively with 10th-grade human performance but
there is still scope for interesting improvements as compared
to college-grade human performance. We also evaluate our
model on a standard video next-frame prediction task, achiev-
ing improved performance over comparable state-of-the-art.

Introduction

The recent success of machine learning and neural networks
in Atari and Go (Mnih et al., 2015; Silver et al., 2016) has
sparked a renewed interest in artificial intelligence models
that can perform well at tasks which even humans find chal-
lenging. An important task in this category is abstract rea-
soning, which measures one’s lateral thinking skills or fluid
intelligence, i.e., the ability to quickly identify patterns, log-
ical rules and trends in data, integrate this information, and
apply it to solve new problems. Specifically, we address
the problem of diagrammatic abstract reasoning (DAR), a
subset of Differential Aptitude Tests (DATs), which were
introduced by (Bennett et al., 1947) to judge psychometric
proficiency. It has featured in Intelligence Assessment Sys-
tems since 1950s and has been validated by (Berdie, 1951),
who showed that proficiency in DAT-DARs were predictors
in engineering training. A DAR task involves the genera-
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Figure 1: Example abstract reasoning problem, where our
model was able to generate an image very close to the cor-
rect answer.

tion of a future diagram based on the sequential evolution of
component patterns in the given problem sequence.

Fig. 1 shows an example problem from our DAT-DAR
dataset and highlights the intricacies of the reasoning in-
volved in inferring the correct answer (i.e., the next image
in the sequence). Different pattern components on both the
sides and both the corners are changing in different and mul-
tiple ways, making it an interesting challenge to correctly
generate the next image in the sequence.1 Accurate genera-
tion models developed for such a reasoning task can be used
for general AI applications such as forecasting and simula-
tion generation. These models will also be useful for gen-
eration of real-world images and videos, a recent research
direction in computer vision and deep learning (Goodfel-
low et al., 2014; Radford et al., 2015; Denton et al., 2015;
Im et al., 2016; Mathieu et al., 2015). In this direction, we
present an application of our best models to the task of next
frame generation in Moving MNIST videos.

Our sequential generation model is a temporally recurrent
version of Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014), which we name Context-RNN-GANs2,
where context refers to the sequential history (modeled as
RNNs). This is especially well-suited to our sequential
image-based reasoning tasks. In this model, the generator

1An explanation of the ground truth is that the dashed line first
goes to the left, then to the right, and then on both sides, and also
changes from single to double, hence the ground truth should have
double dashed lines on both the sides. On the corners, the number
of slanted lines increase by one after every two images, hence the
ground truth should have four slant lines on both the corners.

2In Context-RNN-GAN, ‘context’ refers to the adversary re-
ceiving previous images (modeled as an RNN) and the generator
is also an RNN. The name distinguishes it from our simpler RNN-
GAN model where the adversary is not contextual (as it only uses
a single image) and only the generator is an RNN.
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is an RNN which tries to generate the correct next image
based on the previous sequence of images. The adversarial
discriminator (playing a minimax game with the generator)
is also an RNN which gets the previous timesteps’ images as
context and the current timestep’s image (either the one gen-
erated by the generator as a negative sample or the correct
image from the dataset for that timestep as a positive sam-
ple). In this way, the discriminator uses the images preced-
ing the current timestep as contextual information to better
distinguish whether the generator produced realistic images
for the particular timestep in the sequence (as opposed to
just producing a realistic image from the data distribution).

We also develop novel image representations using an un-
supervised Siamese Network (Chopra et al., 2005) for mod-
eling the joint representation of adjacent timesteps. This
helps bring in much more information (as input features to
the GAN model) about the temporal evolution across con-
secutive time steps. Modeling of the problem using an unsu-
pervised setting and training as a sequential image language
model on large quantities of sequences help the method to
generalize better on unseen test sequences.

Empirically, we perform quantitative evaluation on the
DAT-DAR dataset by first generating the successor image
for each test sequence and then measuring similarity be-
tween the generated image and the candidate answer images,
in a multiple-choice setting of the Intelligence Quotient (IQ)
dataset. We then report the accuracy as the percentage of
correct hits. We compare several baselines, model variants,
and feature representations and find that our Context-RNN-
GAN model with Siamese CNN features performs the best.
Also, compared to human performance, we promisingly find
that our final model is competitive with 10th-grade high
school students but there is still scope for interesting im-
provements as compared to advanced engineering college
students. We also demonstrate that our Context-RNN-GAN
model can successfully model video next-frame generation
via the Moving MNIST dataset, where we achieve improved
performance over comparable state-of-the-art.

In summary, the main contributions of this paper are:
• A new abstract reasoning and image generation dataset

with more than 1500 training problems (sequences of five
images each, plus eight transformation types, leading to a
total collection of more than 60000 training images); and
an annotated evaluation test set of 100 problems.

• A novel temporally contextual, RNN-based adversarial
generation model, where the adversary has access to the
full context of previous preceding images as context for
deciding real vs fake sample for that timestep.

• A novel feature representation of temporally adjacent im-
ages using a Siamese Network.

• Strong performances on two datasets (DAR and MNIST
videos), competitive with 10th-grade humans and compa-
rable state-of-the-art.

Related Work
(Stern, 1914) introduced IQ Tests to measure the success of
an individual at adapting to a specific situation under a spe-
cific condition. Visual problems in intelligence tests have

been among the earliest and continuously researched prob-
lems in AI. It has been looked at in terms of propositional
logic beginning with (Evans, 1964) and more recently by
(Prade and Richard, 2011). Recently, there has also been
significant interest in building systems that compete with
humans on a variety of tasks such as geometry-based prob-
lems (Seo et al., 2015), physics-based problems (Novak and
Bulko, 1992), repetition and symmetry detection (Novak
and Bulko, 1992), visual question answering (Antol et al.,
2015), and verbal reasoning and analogy (Mikolov et al.,
2013; Wang et al., 2015).

Our task closely relates to the problem of Raven’s Pro-
gressive Matrices. There, the problems are more con-
strained; one of the squares of the matrix is missing and the
sequential pattern evolves along the columns and rows. This
has been addressed using a propositional logic based frame-
work (Falkenhainer et al., 1989) and via a theorem prover
based approach (Bringsjord and Schimanski, 2004). How-
ever, we focus on a novel task which involves more unre-
stricted pattern movements, bigger datasets, and does not
rely on representability in terms of propositional logic.

Our task is also closely related to the task of next frame
prediction in videos (Petrovic et al., 2006) which involves
predicting the next frame based on previous frames. How-
ever, the change across consecutive real-world video frames
is extremely small as compared to the evolving shapes
and changing spatial dynamics in our diagrammatic rea-
soning task. Hence, this poses several challenges to us
different from the task of video next-frame generation, in
which modeling optical flows plays a major role in pro-
ducing better-looking next frames. Other related work in
the video prediction direction include language modeling
based approaches (Ranzato et al., 2014), convolution-based
LSTMs (Patraucean et al., 2015), adversarial CNNs (Math-
ieu et al., 2015), context encoders (Pathak et al., 2016) and
data-conditioned GANs (Mirza and Osindero, 2014).

Lastly, generative adversarial networks (GANs) (Good-
fellow et al., 2014) have also been extended with spa-
tial (and spatio-temporal) recurrence, attention, and struc-
ture (Im et al., 2016; Gregor et al., 2015; Wang and Gupta,
2016; Vondrick et al., 2016), whereas we specifically focus
on temporal recurrence constraints for frames of a video via
RNNs. GANs have also been used for high resolution image
generation (Radford et al., 2015), image manipulation (Zhu
et al., 2016), and text-to-image synthesis (Reed et al., 2016).

(Vondrick et al., 2016) generates videos from a single
image using GANs but the discriminator judges the entire
video rather than individual frames conditioned on previ-
ous frames. (Patraucean et al., 2015) use Convolutional-
LSTMs, similar to our GRU-RNN (with Shallow-CNN fea-
tures) baseline but our final Context-RNN-GAN model with
an adversarial loss gives better results. (Mathieu et al., 2015)
predict multiscale videos using CNNs but only provide fixed
number of previous frames as context to the discriminator
which is not helpful for modeling short sequences. (Oh
et al., 2015) can generate long-term future frames in ac-
tion dependent games but the transition of frames is mostly
smooth with very similar consecutive frames, unlike our
DAR task which involves discontinuous movements in an
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evolving diagrammatic pattern.

Models

We first describe our primary Context-RNN-GAN model
and then briefly discuss two simplifications of that model,
namely RNN-GAN and a regular RNN.

The major motivation for using an adversarial loss was the
shortcomings of L-2 and L-1 losses (Fig. 3):

• When using an L-2 loss function, some of the generated
images were superimpositions of the component parts and
were too cluttered.

• When using an L-1 loss function, although it was sharper
than using an L-2 loss, it was missing some components
of the actual diagrams.

Context-RNN-GAN

Our Context-RNN-GAN model (Fig. 2) uses the sequential
structure of the diagrammatic abstract reasoning problem in
a GAN framework, i.e., to generate the next image after a se-
quence of previous context images. The basic principle un-
derlying our model is the same as that of the original GAN
model by (Goodfellow et al., 2014), which is that the dis-
criminator and generator play the following minimax game:

minβmaxθF (β, θ) = Ex∼pdata
[logpθ(y = 1|x)]+

Ex∼pβ
[logpθ(y = 0|x)] (1)

where pdata is data’s distribution, pβ is generator’s distri-
bution with β as the vector of parameters for the generator,
and pθ is discriminator’s distribution with θ as the vector
of parameters for the discriminator. The discriminator tries
to distinguish between inputs x sampled from the real data
and from the generator’s distribution by labeling them as 1
and 0 respectively. On the other hand, the generator tries
to fool the discriminator by getting its generated image also
labeled as 1 by the discriminator. A GAN model is trained
well when the discriminator cannot discriminate between the
images generated by the generator and the images from the
actual data distribution from which it is sampled. Next, in
our case, we importantly also add sequential context to both
the generator and the discriminator of the GAN model (via
RNNs) to capture the temporal sequence-of-images nature
of our task, as described in detail next.

Generator We want the generator to generate an output
image yt given the previous images (in the question) in se-
quential order x1 to xt, such that this generated image yt is
as close as possible to the correct next timestep’s image in
the sequence xt+1. Therefore, we choose the generator to be
a sequential RNN model, which generates the sequentially
next image, yt = G(x1 . . . xt), trying to fool the discrimi-
nator into believing that these actually follow their preceding
input, x1 to xt (see Fig. 2). Note that our generator model
can use LSTM-based or GRU-based or vanilla RNNs; we
choose GRUs based on empirical evaluation.

Figure 2: Context-RNN-GAN model, where the generator G
and the discriminator D (where Di represents its ith timestep
snapshot) are both RNNs. G generates an image at every
timestep while D receives all the preceding images as con-
text to decide whether the current image output by G is real
vs generated for that particular timestep. xi are the input
images.

Figure 3: Comparison of image generation quality for L-1
and L-2 loss functions (in GRU-RNN) vs our Context-RNN-
GAN model.

Discriminator We want the discriminator to be able to
decide whether a given image actually follows the previ-
ous sequence of images x1 . . . xt (and not just whether the
given image is from the real data distribution, unlike a tra-
ditional GAN model’s discriminator). For this, we inject
context into the discriminator too, by including the preced-
ing (context) images, x1 . . . xt, along with generator’s gen-
erated image, yt. It provides context for the discriminator
to decide whether the generator’s image actually follows the
previous (context) images. To model this context, we choose
the discriminator to be a sequence model as well, namely a
GRU-RNN. This sequence model is essentially a sequence-
to-label encoding model which receives the context images
as the preceding timesteps and the generator’s image (or ac-
tual image) as the last timestep (see Fig. 2). The final hidden
state is mapped on to a sigmoid predicting whether it is an
actual or fake image for that timestep.

Training the Discriminator (D) For a particular timestep
(t+1), xt+1 is the correct image for the timestep and yt =
G(x1 . . . xt) is the generated image output by the generator
G. We train the discriminator D such that (x1 . . . xt, xt+1) is
classified as 1 (real) and (x1 . . . xt, yt) as 0 (fake). Therefore
the loss function we use to train D is:

LD
adv =

timesteps−1∑

t=1

Lbce(D(x1 . . . xt, xt+1), 1)

+ Lbce(D(x1 . . . xt, yt), 0)

(2)

1384



where Lbce is the binary cross entropy loss:

Lbce(Y, Ỹ ) = − Ỹ log(Y ) + (1− Ỹ )log(1− Y )

Ỹ ∈ {0, 1}, Y ∈ [0, 1]
(3)

Training the Generator (G) For a single sequence of im-
ages x1 . . . xtimesteps, keeping the weights of the discrimi-
nator D fixed, we minimize the adversarial loss:

LG
adv =

timesteps−1∑

t=1

Lbce(D(x1 . . . xt, G(x1 . . . xt)), 1)

(4)
Minimizing the above loss implies that the G tries to

adjust its weights so that the generated image yt =
G(x1 . . . xt) is as close to a ”real” image following x1 . . . xt
as judged by the current state of the discriminator. Just min-
imizing the above loss can lead to instability in training be-
cause the generator can generate images yt which are able to
fool the discriminator but the manifold might be quite differ-
ent to xt+1 which it wants to model correctly. Hence, similar
to (Mathieu et al., 2015) and (Pathak et al., 2016), we train
the model with a combination of LG

adv loss (adversarial loss)
and Lp loss, which is defined as:

Lp =

timesteps−1∑

t=1

‖xt+1 − yt‖pp (5)

The total loss to be minimized for the generator is then
LG = λadvL

G
adv + λpLp

RNN-GAN

RNN-GAN model is a simplified version of the Context-
RNN-GAN model, where the discriminator is simply a Mul-
tilayer Perceptron (i.e. a Fully Connected Network) that
only gets the generated (and real) images at the current
timestep and no previous context image. The objective of
this discriminator is to classify whether the image provided
to it is an image from the dataset’s distribution or is it gener-
ated by the generator. i.e. the discriminator is replaced from
being D(x1..xt, yt) to being just D(yt).

RNN

Finally, the simplest model is a regular RNN (again with
GRU units, similar to the generator modules above) which
just models the sequence of images by trying to predict fea-
tures of each image given the features of all the previous
images in the sequence. We have tried it with L1 and L2

loss functions.

Feed-forward Baseline

The feed-forward network baseline is simply a fully-
connected multi-layered perceptron with 2 layers, and is
trained using the first 4 images x1..xt−1 to predict the fifth
image xt; and during testing, the last 4 images x2..xt are
used to predict the features of the answer image xt+1.

Feature Representations

In this section, we discuss the various image embedding
methods that we used to create input features for the
sequence models such as Context-RNN-GAN discussed
above.
Raw Pixels As the first baseline, each of the images was re-
sized to the same dimension of 128×128 and its raw pixel
values were used as features, with row-wise stacking of the
pixel values. Features generated by each model were re-
sized to visualize the generation.
Histogram of Oriented Gradients HOG features (Dalal
and Triggs, 2005) are obtained by concatenating histograms
of occurrences of gradient orientation in each of the cells of
the images, hence capturing features corresponding to vari-
ous edge types and proving to be a good feature detector.
Autoencoder (Vincent et al., 2008) have shown the effec-
tiveness of autoencoders in reducing the dimensionality of
the data. Hence, we used an unsupervised autoencoder with
1000 hidden units in the bottleneck layer and trained it on
the images from the dataset. The activations of the bottle-
neck layer were then used as feature representations of the
images.
Pretrained CNN (OverFeat Network) We used 4096
features from the penultimate layers of an OverFeat net-
work (Sermanet et al., 2013) that won in the image local-
ization task in ILSVRC 2013. Having been pre-trained on
ImageNet dataset, it has been shown to be useful for tasks
such as sketch recognition (Yu et al., 2015). The architec-
ture consists of 7 stages, with 22 layers. Each stage consists
of convolutions, rectified linear units (ReLU), and option-
ally of max-pooling layers. We extracted the output from
the 21st layer that is the output of the fully connected layer
in the seventh stage before final classification.
Fine-tuned AlexNet model We fine-tuned an AlexNet pre-
trained on the Imagenet Challenge 2012 (Krizhevsky et al.,
2012). Labels were annotated for our DAT-DAR dataset’s
images by dividing each image into four quadrants and each
of the four feature types (horizontal/vertical lines, slanted
lines, and curved lines and the number of shaded regions)
are counted in each quadrant of the image to get 16 labels for
multioutput-multiclass classification. Counting of the fea-
tures is done using the diagram parser used in (Seo et al.,
2015). The model used Euclidean loss and produced 16 out-
puts.
Shallow CNN We trained an end-to-end shallow CNN with
only three convolutional layers (separated by ReLU and
Pooling layers) followed by a ReLU, dropout and a fully
connected layer. We trained it solely on our images’ labels
described above. The resultant features of the penultimate
layer were used. The learning rate and the kernel size was
similar to that used by (Krizhevsky et al., 2012).
Siamese CNN For the initial timesteps, regular sequential
models such as LSTMs face difficulty in generating the next
image in the sequence because of lack of sufficient context
(because initial timesteps have lesser or no previous con-
text). To resolve this, we propose to learn a joint embedding
of (temporally) adjacent images and use that as features for
our sequential RNN models.
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For this, we created a Siamese network (Chopra et al.,
2005), which uses the pair of shallow CNNs followed by
a fully connected layer on top of each of the CNNs. The
CNNs have parameters shared between them and they help
find the distance between two images in a feature plane.
The Siamese network tries to minimize the distance between
similar images and maximize the distance between dissimi-
lar images using contrastive loss (Chopra et al., 2005). Our
Siamese network was trained by initializing the two shared
CNNs with the parameters of the shallow CNN. It was then
fine-tuned on our image dataset via a contrastive loss that
uses every pair of two temporally adjacent images in a prob-
lem as similar examples and uses all other pairs of images
from different problems as dissimilar examples. The activa-
tions of the two fully connected layers of the network are fed
as features to our GAN models.

Experimental Setup
Dataset We collected the data from several IQ test books
and online resources (Aggarwal, 2016), (Sijwali and Sijwali,
2016), (Gupta, 2016) and (Jha and Siddiquee, 2011). We
collected about 1500 training problems (15000 images) and
an annotated test set of 100 problems, and then we used
transforms such as rotation and mirror reflections across the
axes to increase the data by eight times, leading to a total
of 12000 problem sequences to train on, each containing a
sequence of 5 diagrams. Each test problem consists of five
figures for the input sequence question and five as the an-
swer choices, i.e., in a multiple-choice setup to allow eas-
ier quantitative evaluation. All the proposed models have
been trained only on the five figures from the question part,
i.e. the training set consisting of 12000x5 images was used,
whereas the (sixth) correct answer figure was not used for
training. The models were validated (tuned) using the first
50% of the answer figure set and tested on the remaining
unseen 50% of the answer figure set from the test/validation
set of 100 questions.
Training Details The best (validated) hyperparameters for
the Context-RNN-GAN was a GRU with two layers of 400
hidden units each for the generator and a GRU with a single
layer and 500 hidden units for the discriminator. The best
(validated) hyperparameters for the RNN-GAN model was
a GRU with two layers of 400 hidden units each for the gen-
erator and a mulilayered perceptron (MLP). The final mod-
els of Context-RNN-GAN and the RNN-GAN models use
λadv = 0.05, λp = 1, and they use p = 1 for the DAT-DAR
task and p = 2 for the next-frame prediction task, similar
to (Mathieu et al., 2015) and based on empirical evidence
from experiments. The best hyperparameters of the regular
RNN was a GRU with one hidden layer of 1000 hidden units
for both L1 and L2 based loss functions; adding more layers
or more hidden units did not help. The best hyperparam-
eters for the feedforward baseline was 2 layers with 1000
hidden units each for both L1 and L2 based loss functions
and adding more layers or hidden units didn’t help. In all
of the above models a dropout of 0.50 was applied for each
hidden layer. All of the models were trained using the Adam
Optimizer (Kingma and Ba, 2014).
Evaluation Metrics In addition to qualitative evaluation

College-grade 10th-grade
Age range 20-22 14-16
#Students 21 48

Mean 44.17% 36.67%
Std 16.67% 17.67%
Max 66.67% 75.00%
Min 8.33% 8.33%

Table 1: Human performance on our DAR task.

via visualizations of the generated images, we importantly
also perform quantitative evaluation by matching the gen-
erated image embedding with the embeddings of each of
the five candidate answer images (based on cosine distance),
and returning the closest matching image. The accuracy is
then determined by the number of correct choices made by
the model with respect to the total test set size.

Results and Analysis

Human Performance on DAR

To test the proficiency of humans on our DAT-DAR dataset,
we conducted a set of experiments on two sets of individuals.
The problems were divided into sets of 12 problems each
and they were given as much time as required to complete
all the questions. They were also first given an example of a
problem with an explanation of the answer.
Advanced college students: 21 senior students from the
computer science department of a premier university took
part in the first experiment.
10th-grade high school students: 48 students from the 10th
grade of a reputed high school took part in the second exper-
iment.

As can be seen in Table 1, our diagrammatic abstract rea-
soning task is quite challenging even for humans, with the
best performance of strong undergraduate college students
being roughly 44% and of 10th-grade students achieving
37% accuracy.

Model Performance on DAR

We next report the model results obtained via our proposed
context-RNN-GAN model and its several simpler variants
(specified in Models section), combined with the various
feature representation methods (specified in Feature Repre-
sentations section). In Table 2, we first show baseline results
for a regular RNN trained on different features. The shal-
low CNN, Siamese CNN, and HOG features perform best
here. Next, we try these best feature settings (and the raw
features) on our novel context-RNN-GAN model (and its
simpler RNN-GAN variant). As shown in Table 2, our pri-
mary context-RNN-GAN model, combined with our novel
Siamese CNN features, obtains the best results, even com-
petitive with the performance of 10th-grade human perfor-
mance. However, there is still a lot of scope for interesting
model and feature improvements compared to college-level
human performance (and beyond), making this a new chal-
lenging task and dataset for the community.
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Figure 4: Visualizations of image generation. In each of the four problems, the first five images are the question sequence, the
second-last column is the ground-truth, and the last column is our model generation.

Features Accuracy

RNN
L2 L1

Raw Pixels 26.0% 28.4%
HOG Features 28.0% 29.6 %
Autoencoder 11.6% 18.7 %
Image Labels 21.1% 20.4 %

Pretrained CNN 18.6% 18.4 %
Fine-tuned AlexNet 22.3% 20.3%

Shallow CNN 28.6% 31.2 %
Siamese CNN 28.6% 30.8 %

Feedforward Baseline
Raw Pixels 20.8% 21.9%

HOG 22.3 % 23.8 %
Shallow CNN 24.2 % 23.6 %
Siamese CNN 24.6 % 24.1 %

RNN-GAN
Raw Pixels 28.1%

HOG 30.1%
Shallow CNN 30.6%

Siamese CNN 31.2%
Context-RNN-GAN

Raw Pixels 30.3%
HOG 34.1%

Shallow CNN 33.0%
Siamese CNN 35.4%

Table 2: Primary DAR results of Context RNN-GAN and its
variants using several feature representations.

Model CE SE

LSTM 341.2 208.1
AE-Conv-LSTM (w/o optical flow) 262.6 -

Context-RNN-GAN 241.8 167.9

Table 3: Results on Moving-MNIST videos. CE: cross-
entropy error, SE: squared error. LSTM: Srivastava et al.
(2015), AE-Conv-LSTM: Patraucean et al. (2015).

Next-Frame Generation on Moving-MNIST Videos We
also tested our Context-RNN-GAN model on the popular
Moving-MNIST task introduced by (Srivastava et al., 2015)
and show results compared to their methods as well as the
convolution-based LSTM model of (Patraucean et al., 2015).
For fair comparison, we report their results of the AE-Conv-
LSTM model which does not model the optical flow. As
shown in Table 3, we perform better than such comparable
state-of-the-art of multiple metrics, CE (cross entropy error)
and SE (squared error on image patches).

Qualitiative Generation Visualization

We also present quantitative evaluation via visualizations
of the images generated by our model for both the DAR

Figure 5: Visualizations for Moving MNIST. First five im-
ages: question sequence, second-last column: ground-truth,
last column: our model generation.

(Fig. 4) and the Moving-MNIST (Fig. 5) tasks. We show
cases where the generated image corresponds closely to
the correct answer image. For example, in the DAR task
(Fig. 4), the model is able to correctly infer and gener-
ate next-sequence diagrams with changing arrow directions,
number and type of lines in different corners and sides, mul-
tiple shapes interacting in different ways, etc. Similarly, for
the MNIST task (Fig. 5), our model is able to correctly gen-
erate digits moving in different amounts and directions.

Conclusion

We presented a novel Context-RNN-GAN model that can
generate images for sequential reasoning scenarios such as
our task of diagrammatic abstract reasoning. When com-
bined with useful feature representations such as those from
Siamese CNNs, our model performs competitively with
10th-grade humans but there is still scope for interesting
improvements as compared to college-level human perfor-
mance, making this a novel challenging task for the genera-
tion community. Our sequential GAN model is also general
enough to be useful for tasks such as next frame genera-
tions in a video (where we also achieve strong results on the
Moving-MNIST dataset) and other similarly important AI
tasks such as forecasting and simulation.
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