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Abstract 
Dictionary learning has played an important role in the suc-
cess of sparse representation, which triggers the rapid de-
velopments of unsupervised and supervised dictionary 
learning methods. However, in most practical applications, 
there are usually quite limited labeled training samples 
while it is relatively easy to acquire abundant unlabeled 
training samples. Thus semi-supervised dictionary learning 
that aims to effectively explore the discrimination of unla-
beled training data has attracted much attention of research-
ers. Although various regularizations have been introduced 
in the prevailing semi-supervised dictionary learning, how 
to design an effective unified model of dictionary learning 
and unlabeled-data class estimating and how to well explore 
the discrimination in the labeled and unlabeled data are still 
open. In this paper, we propose a novel discriminative semi-
supervised dictionary learning model (DSSDL) by introduc-
ing discriminative representation, an identical coding of un-
labeled data to the coding of testing data final classification, 
and an entropy regularization term. The coding strategy of 
unlabeled data can not only avoid the affect of its incorrect 
class estimation, but also make the learned discrimination 
be well exploited in the final classification. The introduced 
regularization of entropy can avoid overemphasizing on 
some uncertain estimated classes for unlabeled samples.
Apart from the enhanced discrimination in the learned dic-
tionary by the discriminative representation, an extended 
dictionary is used to mainly explore the discrimination em-
bedded in the unlabeled data. Extensive experiments on face 
recognition, digit recognition and texture classification 
show the effectiveness of the proposed method. 

 Introduction   
Inspired by the sparsity mechanism of human vision sys-
tem (Olshausen and Field 1996), sparse representation has 
been widely applied to many tasks, such as image 
processing (Aharon, Michael, and Alfred 2006; Elad and 
Aharon 2006) and image classification (Mairal et al. 2008; 
Wright et al. 2009; Wagner et al. 2010; Yang et al. 2009).
                                               
Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

A basic model of sparse presentation can be roughly writ-
ten as y ≈ Dx, which D is a dictionary and x is a sparse 
coding vector. The dictionary D, which should faithfully 
represent an input signal regardless of various variations,
plays an important role in the success of sparse representa-
tion (Rubinstein, Bruckstein and Elad 2010). Compared to 
the handcrafted and off-the-shelf representation bases, dic-
tionary learning has been reported leading performance in 
image denoising (Bryt and Elad 2008; Zhou et al. 2010),
image compression (Bryt and Elad 2008), face recognition 
(Wright et al. 2009; Zhang and Li 2010), and image classi-
fication (Huang and Aviyente 2006; Mairal et al. 2009; 
Pham and Svetha 2008; Yang and Zhang 2014; Mairal, 
Bach and Ponce 2012).

Unsupervised dictionary learning has been developed 
and widely applied into image denoising (Bryt and Elad 
2008; Zhou et al. 2010) and image compression (Bryt and 
Elad 2008). The desired dictionary is expected to only have 
a powerful representation ability since no class information 
is used in the unsupervised dictionary learning. One repre-
sentative unsupervised dictionary learning (DL) is the 
KSVD algorithm (Aharon, Michael and Alfred 2006),
which has achieved promising abilities in image compres-
sion and image restoration by learning an over-complete 
dictionary for local image patches.

Due to the lack of label information, unsupervised dic-
tionary learning is powerful for data reconstruction, but not 
advantageous for classification tasks. In the tasks of image 
classification with labeled training data provided, how to 
effectively explore the class information and design super-
vised discriminative dictionary becomes a hot topic in the 
fields of image classification and sparse representation.  

Supervised dictionary learning methods has been exten-
sively studied in recent years for the case that enough la-
beled training samples are available. As reviewed in Sec-
tion 2, supervised dictionary learning models usually ex-
plore the discrimination of dictionary by requiring the po-
werful classification ability of coding coefficients, the dis-
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criminative representation ability of class-specific dictio-
nary, or both. Most of supervised dictionary learning me-
thods can achieve nice performance when the labeled train-
ing samples are sufficient and training images have a good 
quality. However, the labeled training data is expensive 
and difficult to obtain due to the vast human effort in-
volved. On the other hand, there are abundant unlabeled 
images that can be collected easily from public (e.g., for 
digit recognition huge samples can be collected from pub-
lic). The above status has motivated many researchers to 
develop semi-supervised learning.  

There are mainly four popular categories in semi-
supervised learning: Co-Training (Blum and Mitchell 
1998), graph-based semi-supervised learning (Zhu 2005), 
semi-supervised support vector machines (S3VM) 
(Sindhwani and Keerthi 2006), and semi-supervised dic-
tionary learning. Due to impressive performance of sparse 
representation and dictionary learning, a variety of semi-
supervised dictionary learning methods (Pham and Svetha 
2008; Zhang, Jiang and Davis 2012; Shrivastava et al. 
2012; Mohamadabadi 2013; Wang et al 2013; Wang, Guo 
and Li 2015) have been proposed. Based on the relation-
ship between dictionary atoms and class labels, the prevail-
ing semi-supervised dictionary learning can be divided into 
two categories: semi-supervised class-specific dictionary 
learning and semi-supervised shared dictionary learning.  

Inspired by Fisher discrimination dictionary learning 
(Yang and Zhang 2011), Shrivastava et al. (Shrivastava et 
al. 2012) learnt a class-specific semi-supervised dictionary. 
By manually designing a class possibility estimation func-
tion for unlabeled data, a set of class-specific dictionaries 
are learned from labeled and unlabeled training data. How-
ever, its dictionary learning model is a little complex and 
the class probability of unlabeled training samples is artifi-
cially designed but not derived from the objective function. 

Most of semi-supervised dictionary learning methods 
aim to learn a shared dictionary. Pham et al. (Pham and 
Svetha 2008) incorporated the reconstruction error of both 
the labeled and unlabeled data with sparsity constraint into 
a joint objective function. Zhang et al. (Zhang, Jiang and 
Davis 2012) proposed an online semi-supervised dictionary 
learning model, in which the reconstruction error of both 
labeled data and unlabeled data, label consistency and the 
classification error were integrated into a joint model. In 
these two semi-supervised dictionary methods mentioned 
above, the unlabeled training data is only used to learn a 
shared dictionary, ignoring to explore the discrimination 
hidden in the unlabeled data.  

Wang et al.(Wang et al. 2013) proposed a robust dictio-
nary learning method by utilizing a new l2,0+-norm loss 
function to measure the reconstruction errors and exploit-
ing the structural sparse regularization of labeled and unla-
beled data. Recently, Wang et.al (Wang, Guo and Li 2015) 
proposed an adaptively unified semi-supervised dictionary 

learning model which integrated the reconstruction error of 
both the labeled data and unlabeled data, and classifier 
learning into a unified framework. Meanwhile, the weights 
of unlabeled samples will be assigned adaptively by a pe-
nalty function. Wang et al. (Wang et al. 2016) grouped the 
unlabeled samples by using the coefficient-based relation-
ship between the labeled and unlabeled samples. Although 
the classifier based on the coding coefficient associated to 
the shared dictionary is adopted, the powerful class-
specific representation ability cannot be used. 

Although several semi-supervised dictionary learning 
approaches have been proposed. How to effectively utilize 
the discrimination of unlabeled data and build a unified 
model of class-specific dictionary learning and class possi-
bility estimating of unlabeled data are still open. In this 
paper, we propose a novel method to learn discriminative 
dictionaries in semi-supervised manner by introducing 
discriminative representation of training data, an identical 
coding of unlabeled data to the coding of testing data in 
final classification, and an entropy regularization term. The 
coding strategy of unlabeled data can not only avoid the 
affect of incorrect class estimation, but also make the dis-
crimination of the learned dictionary be well exploited in 
the final classification. The introduced regularization of 
entropy can avoid overemphasizing on some uncertain 
estimated classes for unlabeled samples. Apart from the 
enhanced discrimination in the learned dictionary by the 
discriminative coding of labeled data, an extended dictio-
nary is used to mainly explore the discrimination embed-
ded in the unlabeled data. Experimental results on face 
recognition, digit recognition and texture classification 
clearly demonstrate that our algorithm can achieve superior 
performance in the semi-supervised classification tasks. 

Related Work 

Supervised dictionary learning 
For supervised shared dictionary learning, discrimina-

tion of the universal dictionary was ordinarily explored by 
jointly learning a dictionary and a classifier over the cod-
ing coefficients (Zhang and Li 2010; Mairal et al. 2009; 
Mairal, Bach and Ponce 2012; Jiang, Lin and Davis 2013). 
With the learnt universal dictionary, the generated coding 
coefficient, which is expected to be discriminative, is used 
to conduct classification. For instance, Zhang and Li 
(Zhang and Li 2010) proposed a joint learning algorithm 
called discriminative KSVD (DKSVD) for face recognition, 
followed by the work proposed by Jiang et al. (Jiang, Lin 
and Davis 2013) via adding a label consistent term.  

Due to the promising performance of class-specific dic-
tionary representation reported in (Wright et al. 2009), how 
to learn a structured dictionary, in which each dictionary 

1627



 

 

atom has a unique class label, have been a hot topic in the 
field of dictionary learning. Regularizations for class-
specific dictionary, e.g., low class-particular dictionary 
coherence (Ramirez, Sprechmann and Sapiro 2010), good 
class-specific representation for some class but bad for all 
the other classes (Mairal et al. 2008; Castrodad and Sapiro 
2012), and Fisher discrimination on class-specific dictio-
nary and coding coefficient (Yang and Zhang 2014) has 
been introduced in the phase of dictionary learning.  

In order to utilize the powerful class-specific representa-
tion ability and reduce the correlation possibly existing in 
different class-specific dictionary, hybrid dictionary (Kong 
and Wang 2012; Zhou and Fan 2012; Yang et al.2014), 
including universal dictionary atoms and class-specific 
dictionary atoms, was also proposed. Due to the powerful 
discrimination of class-specific dictionary shown in pre-
vious hybrid dictionary learning work, we proposed to dis-
criminatively learn semi-supervised class-specific dictiona-
ries, without considering the universal dictionary atoms to 
reduce the complexity of dictionary learning model.  

Semi-supervised learning 
In other popular semi-supervised learning, Co-Training 

(Blum and Mitchell 1998) utilizes the multiple views of 
each sample and selects confident unlabeled samples in 
one classifier to update the other classifier.  A representa-
tive graph-based supervised learning method is label prop-
agation (LP) (Zhu 2005), which has been widely used in 
image classification. S3VM (Sindhwani and Keerthi 2006) 
attempts to regulate over original SVM framework and 
adjust decision boundaries by exploring unlabeled data.  

Discriminative semi-supervised dictionary 
learning 

To solve the issues, such as how to utilize the power of 
class-specific dictionary representation and how to esti-
mate the class possibility of unlabeled data, we propose a 
discriminative semi-supervised dictionary learning 
(DSSDL) with entropy regularization.  

Model of DSSDL with entropy regularization 
Let 1[ ,..., ,..., , ]i C=A A A A B  be the training data, where iA  
is the ith-class training data and each column of iA  is a 
training sample, and 1[ ,..., ,..., ]j NB b b b  is the N training 
samples with unknown labels from 1 to C. For the semi-
supervised learning case, the training samples without la-
bels may not belong to the C classes. However, as many 
prevailing semi-supervised methods (Pham and Svetha 
2008; Zhang, Jiang and Davis 2012; Shrivastava et al. 
2012; Mohamadabadi 2013; Wang, Guo and Li 2015) we 

focus on the case that the identity of unlabeled training 
data is between 1 and C. 

Different from supervised dictionary learning, we divide 
the desired dictionary into two parts 1[ ,..., ,..., ]i C=D D D D  
and 1[ ,..., ,..., ]i C=E E E E , where iD  is an ith-class super-
vised dictionary that can be initialized with iA  , while iE  
is an ith-class  extended dictionary that mainly explore the 
discrimination of unlabeled training data. Both iD  and iE  
are associated to class i, and they are required to well 
represent ith-class data but with a bad representation ability 
for all the other classes.  

Let ,i jP  indicate the relationship between the jth unla-
beled training samples and ith class. Then the proposed 
discriminative semi-supervised dictionary learning 
(DSSDL) with entropy regularization is formulated as 

2 2
11

2
, 11 1

, ,1 1

min || [ ] || || || || ||

|| [ ] || || ||

log

s.t. Code_Classify ,

C i i i
i i i i F i i i Fi

N C i i
i j j i i j F jj i

N C
i j i jj i

j j

 

                   + P   

                  P P   

          =

D,E,P,X
A D E X X X M

b D E y y

y b D ,1
, , 1C

i ji
P     E

 (1) 

where i
iX  and i

jy are the coding coefficient matrix of iA  
and unlabeled data jb  on the class-specific dictionary
[ ]i i D E , respectively. The coding of unlabeled data, i.e., 
Code_Classify(bj, D, E), is identical to the coding of test-
ing data in the final classification. For simplicity, we make 
the regularization terms of both labeled coding vectors and 
unlabeled coding vectors share the same parameter of , 
which can make labeled data and unlabeled data share the 
same contribution for the model. All the parameters in 
Eq.(1) will be discussed in Section 5 “ Experiments”. 

Analysis of DSSDL 
a) discriminative representation  
For the labeled training data, a discriminative representa-
tion term, i.e., 2|| [ ] ||i

i i i i FA D E X and a discriminative coef-
ficient term, i.e., 2

2|| ||i
i iX M are introduced, where iM  is 

the mean coefficient matrix with the same size as i
iX  and 

takes the mean column vector of i
iX  as its column vectors. 

Since both iD  and iE are associated with ith class, iA  
should be well represented by [ ]i iD E and the column vec-
tors of i

iX  should be similar to each other. Because we 
want to enforce sparse representation for all class data, we 
should minimize the sum of 1|| ||i

iX .  
For the unlabeled training data, a probability weighted 

data representation term for each class is required. For in-
stance, a large Pi,j (e.g., 1) indicates the jth unlabeled train-
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ing samples from ith class, and the desired class-specific 
dictionary, i.e., [Di, Ei] , should well represented the jth 
unlabeled training samples. 

 
b) Identical coding of unlabeled data to final classification  
In most of dictionary learning model, the coding strategy in 
training phase may not be consistent with that in the final 
classification, which cannot ensure enough discrimination 
of learned dictionary for the final classification. In our pro-
posed DSSDL, we require that the coding strategy of unla-
beled training data is the same to that of testing data in 
classification. Thus the discrimination learned in the train-
ing phase can be easily exploited in the final classification. 

Different coding models of testing data are preferred, 
e.g., collaborative representation for face recognition and 
texture classification and local representation for digit rec-
ognition. To be identical to the coding in final classifica-
tion,  the collaborative representation coefficient of bj is 

2
1

Code_Classify , ,

arg min || [ ] || || ||
j

j

j j F jy

b D E

b D E y y
          (2) 

where [D E] = [D1, E1, ..., Di, Ei, ..., DC, EC] and
1[ ;... ;...; ]i C

j j j jy y y y .   
The local representation of unlabeled training data is 

2

1

Code_Classify , ,

arg min [ ] || ||i
j

j

i i
j i i j jF

i
y

b D E

b D  E y y
   (3) 

We can observe that in the coding phase of unlabeled 
training data, the coding coefficient is only related to the 
desired dictionary. That can avoid the impact of an incor-
rect estimation of P. 

 
C) Entropy regularization  

The last term of Eq. (1) is an entropy regularization on 
the estimated class possibility of unlabeled data. Based on 
quite limited labeled training data, it is impossible to cor-
rectly estimate the identity of all unlabeled samples. Only 
minimizing 2

,1
|| [ ] ||C i

i j j i i j Fi
P  b D E y  would make Pi,j=1 

if unlabeled sample jb has the minimal reconstruction resi-
dual in ith-class, which, however, may be a wrong estima-
tion in practice. In order to reduce the risk of making the 
learned dictionary worse and worse, we introduce an en-
tropy regularization on the estimated class probability of 
unlabeled training sample to better reflect the relationship 
between estimated class and unlabeled training data. 

Optimization of DSSDL 
The DSSDL objective function in Eq. (1) can be divided 
into two sub-problems by doing class estimation of unla-
beled data and discriminative dictionary learning alterna-

tively: updating P by fixing D, E and X, and updating D, E 
and X by fixing P. 
Class estimation of unlabeled data 
By fixing the class-particular dictionary and the coding 
coefficient (i.e., D, E, X and y), the DSSDL model of Eq. 
(1) becomes 

2
,1 1

,
1, ,1 1

|| [ ] ||
min s.t. 1

log

N C i
Ci j j i i j Fj i

i jN C
ii j i jj i

P  
 P  

P P
P

b D E y
  (4) 

We update P sample by sample because the class estima-
tion of unlabeled training data is independent to each other. 
Let 2|| [ ] ||

j

i i
j i i j Fb D E y . After some derivations illu-

strated in the supplementary material, and the class proba-
bility of the jth unlabeled training data is 

, 1
exp{ / }/ exp{ / }Ci i

i j j ji
P =          (5) 

Discriminative Dictionary learning 
After the updating of probability matrix P, more unlabeled 
training samples are chosen to train the discriminative dic-
tionary. If we maintain the atom number of learnt dictio-
nary, the discrimination of our dictionary cannot be fully 
utilized. Thus an extended dictionary atom iE need to be 
initialized and added to sub-dictionary iD in each iteration. 
Initialization: Let ˆ

iD denote the learnt ith-class dictionary 
(i.e., include Di and Ei) in the last iteration. After some 
derivations in supplementary material, Ei  is initialized as  

(:, )i= nE U                                   (6) 
where n is the atom number of the extended dictionary. 

,1 1 , ,
ˆ[ , , ] svd([( ), , ..., , ..., ])i i i i

i i i i i j j i N N= P P PU S V A D X ξ ξ ξ  and 
ˆi i

j j i j=ξ b D y  . 
Dictionary updating: After obtaining the new extended 

dictionary (i.e., E), the discriminative dictionary learning 
(i.e., updating D, E and X) in the DSSDL model of Eq. (1) 
becomes 

2
, 11 1

2 2
11

min || [ ] || || ||

|| [ ] || || || || ||

N C i i
i j j i i j F jj i

C i i i
i i i i F i i i Fi

P  

 

D,E,X b D E y y

A D E X X X M
    (7)                     

In the discriminative dictionary learning, the representa-
tion coefficient and dictionary are alternatively updated. 
When the dictionaries, D and E, are known, the coding 
coefficient of labeled training data (e.g., for i-th class) can 
be easily updated via 

2 2
1min || [ ] || || || || ||i i i

i i i i F i i i F X A D E X X X M     (8)   
In our paper, we update i

iX  for ith-class data by using the 
coding method in (Yang and Zhang 2014). 

For the unlabeled training data, collaborative representa-
tion of Eq.(2) or local representation or Eq.(3) is con-
ducted , depending on the specific classification task.  
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By fixing the coding coefficient, the dictionary can be 
updated class by class.  the ith-class dictionary is updated as  

2 2
,1

min || [ ] || || [ ] ||
i i

Ni i
i i i i F i j j i i j Fj

 + P  D ,E A D E X b D E y  (9) 

 The dictionary updating of [Di, Ei] can be easily solved 
by using Metaface (Yang et al. 2010) with updating dictio-
nary atom by atom.  
Classification model of DSSDL 

When the structured dictionary [ , ]i iD E has been learnt 
for all classes, the classification procedure of DSSDL are 
described as follows. 

1. Sparsely code the test image, b, on the dictionary 
1 1[ ] [ , ,..., , ,..., , ]i i C C=D E D E D E D E via collaborative re-

presentation of Eq.(2) or local representation of Eq.(3). Let 
the coding coefficient be 1 2[ ; ; ; ]C; ]Cy y y y  and iy  is the 
coefficient vector associated with class i. 

2. Classify b via 
identity arg min{ }ii

eb                 (10) 

where 2
2=|| [  ] ||i

i i ie b D E y . 

Experiments 
We evaluate our approach on two face databases: Extended 
YaleB database (Lee, Jeffrey and David 2005), and LFW 
face database (Wolf,  Hassner and Taigman 2009), two 
handwritten digit datasets: MNIST (LeCun et al. 1998) and 
USPS(Hull 1994) and an object category database: Tex-
ture(Lazebnik, Schimid and Ponce 2005) for the tasks of 
face recognition, digit recognition and texture classifica-
tion, respectively. The competing methods include several 
representative supervised dictionary learning methods: 
SRC (Wright et al. 2009), M-SVM (Yang et al. 2009), 
FDDL(Yang and Zhang 2011), DKSVD(Zhang and Li 
2010), LCKSVD(Jiang, Lin and Davis 2013), SVGDL(Cai 
et al. 2014), and semi-supervised dictionary learning me-
thods: S2D2(Shrivastava 2012), JDL(Pham and Svetha 
2008), OSSDL(Zhang, Jiang and Davis 2012), SSR-
D(Wang et al. 2013), USSDL (Wang, Guo and Li 2015), 
and recently proposed SSP-DL(Wang et al. 2016) algo-
rithm. As FDDL (Yang and Zhang 2011), the coding of 
unlabeled training data and testing data in the proposed 
DSSDL adopts local representation for digit recognition 
and collaborative representation for other experiments. 
Parameter selection 
There are three parameters, γ, λ, and β, in the model of 
DSSDL (i.e., Eq. (1)). γ is a parameter of sparse coding 
coefficient,  λ is a parameter of discriminative coding coef-
ficient term, and β is a parameter of maximum entropy. In 
our all experiments, we set γ=0.001 and λ=0.01 based on 
our experimental experience. 

Parameter β is related to the weight of entropy. It cannot 
be too big since a strong entropy regularization makes the 
probabilities of unlabeled samples in different class similar, 
which leads to a poor classification performance. By the 
experimental experience, we set β=0.01 to suitably lower 
the weight of the unlabeled samples classified wrongly, 
while utilize the discrimination of learnt dictionary better.  
Face recognition 

The Extended YaleB database (Lee, Jeffrey and David 
2005) consists of 2414 frontal face images of 38 individu-
als taken under varying illumination conditions. Each indi-
vidual has 64 images and we randomly select 20 images as 
training set and use the rest as testing set. We follow the 
same experimental setting adopt in (Wang, Guo and Li 
2015). And we randomly select {2, 5, 10} samples from 
each class in the training set as labeled data, and the re-
maining as the unlabeled data. The image samples are re-
duced to 300 dimension by PCA. The experiment were 
repeated 10 times to calculate the mean accuracy and stan-
dard deviation. Table 1 lists the face recognition results.  
 
Table 1: The recognition rates (%)on Extended YaleB database. 
Methods 2  5  10 
SRC 
M-SVM 
FDDL 
LC-KSVD 
SVGDL 
S2D2 
JDL 
USSDL 
DSSDL 

47.8±2.9 
38.0±2.6 
52.4±2.5 
48.5±2.8 
53.4±2.2 
53.4±2.1 
55.2±1.8 
60.5±2.1 
62.1±3.0 

79.9±1.9 
66.6±1.1 
82.3±0.7 
69.6±3.6 
81.1±1.0 
76.1±1.3 
77.4±2.8 
86.5±2.1 
87.5±0.3 

90.0±0.5 
83.8±0.8 
92.1±0.3 
84.6±3.8 
91.7±5.8 
83.2±1.9 
85.3±1.6 
93.6±0.8 
94.5±0.3 

 
From the Table 1, it is clear that our proposed method 

achieves the highest recognition rates among the compet-
ing schemes. Especially when a small number of labeled 
samples are involved, the DSSDL performs crucially better 
than the supervised dictionary methods which are depen-
dent on the number of the labeled samples. For example, 
when there are 2 labeled samples per class, DSSDL 
achieves about 10% higher recognition rate than FDDL, 
which is a state-of-the-art discriminative supervised dictio-
nary learning method. 

LFW (Wolf, Hassner and Taigman 2009) is a large-scale 
database, which contains variations of pose, illumination, 
expression, misalignment and occlusion. The 143 subjects 
with no less than 11 samples per subject are chosen (4174 
images in total). For each person the first 10 samples are 
used for training data with the remaining samples for test-
ing. We randomly select {3,5,7} samples from each class 
in the training set as labeled data, with the remaining traing 
data as unlabeled data. Histogram of Uniform-LBP is ex-
tracted via dividing a face image into 10 8 patches. Then 
we use PCA to reduce the histogram dimension to 500.  

1630



 

 

Table 2 illustrates the comparison of all methods (The 
performance of USSDL is not included in Table 2 since the 
code of USSDL is not publicly available). It can be seen 
that the mean recognition rate of DSSDL outperforms all 
the other semi-supervised methods by at least 2%. When 
there are only 3 labeled samples, 3% improvements are 
achieved by DSSDL compared to the supervised methods. 

 
  Table 2: The recognition rates (%) on LFW database. 
Methods 3  5  7  
SRC 
DKSVD 
LC-KSVD 
FDDL 
SVGDL 
JDL 
S2D2 
DSSDL 

42.7±0.6 
39.6±0.8 
41.8±1.0 
44.0±0.7 
45.5±0.9 
45.8±1.2 
46.2±1.8 
48.3±1.3 

55.2±1.9 
50.3±0.7 
49.2±0.9 
59.0±1.7 
58.3±1.3 
59.8±1.7 
61.0±1.8 
63.8±1.1 

62.2±2.7 
56.7±1.8 
58.6±1.3 
66.1±1.5 
66.8±1.3 
64.8±2.1 
65.4±2.1 
67.5±1.2 

 
Digit classification 
We evaluate the performance on both the MNIST dataset 
and USPS dataset with the same experimental setting as 
(Wang et al. 2016). In the MNIST dataset, there are 10 
classes and the training sets have 60,000 handwritten digi-
tal images and test sets have about 10,000 images. We ran-
domly select 200 samples from each class. Then we select 
randomly 20 images as the labeled samples, 80 as the un-
labeled samples and the rest used for testing. For USPS 
data sets, there are 9298 digital images consisting of 10 
classes and we randomly select 110 images from each class. 
Then we randomly select 20 images as the labeled samples, 
40 images as the unlabeled samples and 50 images as the 
testing samples. We use the whole image as the feature 
vector, and normalize the vector to have unit l2-norm.  

All relevant results for ten independent tests are listed in 
Table 3. It can be seen that the proposed DSSDL can effec-
tively utilize information of the unlabeled samples, and the 
classification accuracy is at least 2.4% higher obviously 
than other dictionary methods. With the additional unla-
beled training samples involved, the size of the dictionary 
is enlarged adaptively to better utilize the discrimination of 
the unlabeled samples. That is also why we can achieve 
better performance than other semi-supervised dictionary 
methods mentioned in the Table 3. 

 
Table 3: The recognition rates (%)  on USPS and Mnist. 
Methods USPS Mnist 
SRC 
DKSVD 
FDDL 
LC-KSVD 
OSSDL 
S2D2 
SSR-D 
SSP-DL 
DSSDL 

68.6±2.7 
67.5±1.8 
85.2±1.2 
76.9±1.3 
80.8±2.8 
86.6±1.6 
87.2±0.5 
87.8±1.1 
90.2±0.9 

72.9±2.3 
71.4±1.7 
82.5±1.3 
73.0±1.3 
73.2±1.8 
77.6±0.8 
83.8±1.2 
85.8±1.2 
88.3±1.5 

Object classification 
In this section, we take experiment on Texture-25 data set 
which contains 25 texture categories, 40 samples each. We 
use the low-level features (Boix, Roig, and Gool 2014; Dai 
and Gool 2013), including PHOG (Bosch, Zisserman and 
Munoz 2007), GIST (Oliva, Hospital and Ave 2001) and 
LBP (Ojala, Matti and Maenpaa 2002). Same to the expe-
rimental setting in (Wang, Guo and Li 2015), PHOG is 
computed with a 2-layer pyramid in 8 directions. GIST is 
computed on the rescaled images of 256 × 256 pixels, in 4, 
8 and 8 orientations at 3 scales from coarse to fine. As for 
LBP, the uniform LBP is used. All the features are conca-
tenated into a single 119-dimensional vector. In this expe-
riment, 13 images are randomly selected for testing and 
randomly select {2, 5, 10, 15} samples from each class in 
the training set as labeled samples. The average accuracies 
together with the standard deviation in five independent 
tests are presented in Table 4.  

It can be seen that DSSDL achieves at least 2% higher 
recognition rate than other all dictionary learning methods. 
When there are 15 labeled samples per class, the DSSDL 
achieves a better recognition rate close to 10% than 
USSDL, which gains the second best results. That is main-
ly because the powerful discrimination has been learned in 
the class-specific dictionary of DSSDL. JDL, which only 
uses the reconstruction error of both the labeled and unla-
beled data, does not perform well.  

Table 4. The recognition rates (%) on Texture25 database. 
Methods 2 5  10 15 
M-SVM 
FDDL 
LCKSVD 
SVGDL 
S2D2 
JDL 
USSDL 
DSSDL 

24.9±3.4 
31.4±4.0 
28.0±4.1 
29.8±3.9 
31.7±2.3 
27.6±2.1 
34.2±3.7 
36.8±3.4 

41.6±1.7 
48.9±1.7 
38.2±1.3 
37.9±1.3 
43.8±1.4 
39.2±1.9 
51.1±2.2 
55.3±3.6 

52.9±2.7 
52.6±3.1 
48.6±2.9 
40.3±2.3 
47.9±2.4 
43.3±0.8 
54.6±1.6 
64.3±3.7 

55.3±1.2 
56.7±1.4 
54.1±2.9 
56.8±1.3 
50.9±1.7 
50.3±0.8 
57.7±1.6 
68.2±1.6 

Conclusions 
In this paper we proposed a discriminative semi-supervised 
dictionary learning model with an entropy regularization. 
The discrimination of labeled and unlabeled training data is 
explored by requiring discriminative representation resi-
dual and coefficients. For class estimation of unlabeled 
data, an entropy term is used to regularize their estimated 
probabilities. Meanwhile, an identical coding of unlabeled 
data to that of testing data is also required to ensure the 
learned discrimination suitable for classification. Extensive 
experiments on face recognition, digit recognition, and 
texture classification have shown its advantage over super-
vised dictionary learning methods and other semi-
supervised dictionary learning approaches.  
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