
Deep Spatio-Temporal Residual Networks
for Citywide Crowd Flows Prediction∗

Junbo Zhang,1 Yu Zheng,1,2,3,4† Dekang Qi2,1
1Microsoft Research, Beijing, China

2School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
3School of Computer Science and Technology, Xidian University, China

4Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
{junbo.zhang, yuzheng}@microsoft.com, dekangqi@outlook.com

Abstract

Forecasting the flow of crowds is of great importance to traffic
management and public safety, and very challenging as it is
affected by many complex factors, such as inter-region traf-
fic, events, and weather. We propose a deep-learning-based
approach, called ST-ResNet, to collectively forecast the in-
flow and outflow of crowds in each and every region of a
city. We design an end-to-end structure of ST-ResNet based
on unique properties of spatio-temporal data. More specifi-
cally, we employ the residual neural network framework to
model the temporal closeness, period, and trend properties
of crowd traffic. For each property, we design a branch of
residual convolutional units, each of which models the spa-
tial properties of crowd traffic. ST-ResNet learns to dynam-
ically aggregate the output of the three residual neural net-
works based on data, assigning different weights to different
branches and regions. The aggregation is further combined
with external factors, such as weather and day of the week,
to predict the final traffic of crowds in each and every region.
Experiments on two types of crowd flows in Beijing and New
York City (NYC) demonstrate that the proposed ST-ResNet
outperforms six well-known methods.

Introduction

Predicting crowd flows in a city is of great importance to
traffic management and public safety (Zheng et al. 2014).
For instance, massive crowds of people streamed into a strip
region at the 2015 New Year’s Eve celebrations in Shanghai,
resulting in a catastrophic stampede that killed 36 people. In
mid-July of 2016, hundreds of “Pokemon Go” players ran
through New York City’s Central Park in hopes of catching
a particularly rare digital monster, leading to a dangerous
stampede there. If one can predict the crowd flow in a re-
gion, such tragedies can be mitigated or prevented by utiliz-
ing emergency mechanisms, such as conducting traffic con-
trol, sending out warnings, or evacuating people, in advance.

In this paper, we predict two types of crowd flows (Zhang
et al. 2016): inflow and outflow, as shown in Figure 1(a).
Inflow is the total traffic of crowds entering a region from

∗This research was supported by NSFC (Nos. 61672399,
U1401258), and the 973 Program (No. 2015CB352400).

†Correspondence author. This work was done when the third
author was an intern at Microsoft Research.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other places during a given time interval. Outflow denotes
the total traffic of crowds leaving a region for other places
during a given time interval. Both flows track the transition
of crowds between regions. Knowing them is very beneficial
for risk assessment and traffic management. Inflow/outflow
can be measured by the number of pedestrians, the number
of cars driven nearby roads, the number of people traveling
on public transportation systems (e.g., metro, bus), or all of
them together if data is available. Figure 1(b) presents an
example. We can use mobile phone signals to measure the
number of pedestrians, showing that the inflow and outflow
of r2 are (3, 1) respectively. Similarly, using the GPS trajec-
tories of vehicles, two types of flows are (0, 3) respectively.

(a) Inflow and outflow (b) Measurement of flows

Figure 1: Crowd flows in a region

Simultaneously forecasting the inflow and outflow of
crowds in each region of a city, however, is very challenging,
affected by the following three complex factors:

1. Spatial dependencies. The inflow of Region r2 (shown in
Figure 1(a)) is affected by outflows of nearby regions (like
r1) as well as distant regions. Likewise, the outflow of r2
would affect inflows of other regions (e.g., r3). The inflow
of region r2 would affect its own outflow as well.

2. Temporal dependencies. The flow of crowds in a region
is affected by recent time intervals, both near and far. For
instance, a traffic congestion occurring at 8am will affect
that of 9am. In addition, traffic conditions during morning
rush hours may be similar on consecutive workdays, re-
peating every 24 hours. Furthermore, morning rush hours
may gradually happen later as winter comes. When the
temperature gradually drops and the sun rises later in the
day, people get up later and later.

3. External influence. Some external factors, such as weather
conditions and events may change the flow of crowds
tremendously in different regions of a city.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1655

To tackle these challenges, we propose a deep spatio-
temporal residual network (ST-ResNet) to collectively pre-
dict inflow and outflow of crowds in every region. Our con-
tributions are four-fold:

• ST-ResNet employs convolution-based residual networks
to model nearby and distant spatial dependencies between
any two regions in a city, while ensuring the model’s pre-
diction accuracy is not comprised by the deep structure of
the neural network.

• We summarize the temporal properties of crowd flows
into three categories, consisting of temporal closeness, pe-
riod, and trend. ST-ResNet uses three residual networks to
model these properties, respectively.

• ST-ResNet dynamically aggregates the output of the three
aforementioned networks, assigning different weights to
different branches and regions. The aggregation is further
combined with external factors (e.g., weather).

• We evaluate our approach using Beijing taxicabs’ trajec-
tories and meteorological data, and NYC bike trajectory
data. The results demonstrate the advantages of our ap-
proach compared with 6 baselines.

Preliminaries

In this section, we briefly revisit the crowd flows prediction
problem (Zhang et al. 2016; Hoang, Zheng, and Singh 2016)
and introduce deep residual learning (He et al. 2016).

Formulation of Crowd Flows Problem

Definition 1 (Region (Zhang et al. 2016)) There are many
definitions of a location in terms of different granularities
and semantic meanings. In this study, we partition a city into
an I×J grid map based on the longitude and latitude where
a grid denotes a region, as shown in Figure 2(a).

Figure 2: Regions in Beijing: (a) Grid-based map segmenta-
tion; (b) inflows in every region of Beijing

Definition 2 (Inflow/outflow (Zhang et al. 2016)) Let P

be a collection of trajectories at the tth time interval. For a
grid (i, j) that lies at the ith row and the jth column, the
inflow and outflow of the crowds at the time interval t are
defined respectively as

xin,i,j
t =

∑
Tr∈P

|{k > 1|gk−1 �∈ (i, j) ∧ gk ∈ (i, j)}|

xout,i,j
t =

∑
Tr∈P

|{k ≥ 1|gk ∈ (i, j) ∧ gk+1 �∈ (i, j)}|

where Tr : g1 → g2 → · · · → g|Tr| is a trajectory in P,
and gk is the geospatial coordinate; gk ∈ (i, j) means the
point gk lies within grid (i, j), and vice versa; | · | denotes
the cardinality of a set.

At the tth time interval, inflow and outflow in all I × J
regions can be denoted as a tensor Xt ∈ R

2×I×J where
(Xt)0,i,j = xin,i,j

t , (Xt)1,i,j = xout,i,j
t . The inflow matrix

is shown in Figure 2(b).
Formally, for a dynamical system over a spatial region

represented by a I × J grid map, there are 2 types of flows
in each grid over time. Thus, the observation at any time can
be represented by a tensor X ∈ R

2×I×J .

Problem 1 Given the historical observations {Xt|t =
0, · · · , n− 1}, predict Xn.

Deep Residual Learning

Deep residual learning (He et al. 2015) allows convolution
neural networks to have a super deep structure of 100 layers,
even over-1000 layers. And this method has shown state-of-
the-art results on multiple challenging recognition tasks, in-
cluding image classification, object detection, segmentation
and localization (He et al. 2015).

Formally, a residual unit with an identity mapping (He et
al. 2016) is defined as:

X(l+1) = X(l) + F(X(l)) (1)

where X(l) and X(l+1) are the input and output of the lth

residual unit, respectively; F is a residual function, e.g., a
stack of two 3×3 convolution layers in (He et al. 2015). The
central idea of the residual learning is to learn the additive
residual function F with respect to X(l) (He et al. 2016).

Deep Spatio-Temporal Residual Networks

Figure 3 presents the architecture of ST-ResNet, which
is comprised of four major components modeling tempo-

Figure 3: ST-ResNet architecture. Conv: Convolution;
ResUnit: Residual Unit; FC: Fully-connected.

1656

ral closeness, period, trend, and external influence, respec-
tively. As illustrated in the top-right part of Figure 3, we first
turn Inflow and outflow throughout a city at each time in-
terval into a 2-channel image-like matrix respectively, us-
ing the approach introduced in Definitions 1 and 2. We
then divide the time axis into three fragments, denoting re-
cent time, near history and distant history. The 2-channel
flow matrices of intervals in each time fragment are then
fed into the first three components separately to model the
aforementioned three temporal properties: closeness, period
and trend, respectively. The first three components share the
same network structure with a convolutional neural network
followed by a Residual Unit sequence. Such structure cap-
tures the spatial dependency between nearby and distant re-
gions. In the external component, we manually extract some
features from external datasets, such as weather conditions
and events, feeding them into a two-layer fully-connected
neural network. The outputs of the first three components are
fused as XRes based on parameter matrices, which assign
different weights to the results of different components in
different regions. XRes is further integrated with the output
of the external component XExt. Finally, the aggregation
is mapped into [−1, 1] by a Tanh function, which yields a
faster convergence than the standard logistic function in the
process of back-propagation learning (LeCun et al. 2012).

Structures of the First Three Components

The first three components (i.e. closeness, period, trend)
share the same network structure, which is composed of two
sub-components: convolution and residual unit, as shown in
Figure 4.

(a) Convolutions

(b) Residual Unit

Figure 4: Convolution and residual unit

Convolution. A city usually has a very large size, containing
many regions with different distances. Intuitively, the flow
of crowds in nearby regions may affect each other, which
can be effectively handled by the convolutional neural net-
work (CNN) that has shown its powerful ability to hierar-
chically capture the spatial structural information (LeCun et
al. 1998). In addition, subway systems and highways con-
nect two locations with a far distance, leading to the depen-
dency between distant regions. In order to capture the spa-
tial dependency of any region, we need to design a CNN
with many layers because one convolution only accounts for
spatial near dependencies, limited by the size of their ker-

nels. The same problem also has been found in the video
sequence generating task where the input and output have
the same resolution (Mathieu, Couprie, and LeCun 2015).
Several methods have been introduced to avoid the loss of
resolution brought about by subsampling while preserving
distant dependencies (Long, Shelhamer, and Darrell 2015).
Being different from the classical CNN, we do not use sub-
sampling, but only convolutions (Jain et al. 2007). As shown
in Figure 4(a), there are three multiple levels of feature maps
that are connected with a few convolutions. We find that a
node in the high-level feature map depends on nine nodes
of the middle-level feature map, those of which depend on
all nodes in the lower-level feature map (i.e. input). It means
one convolution naturally captures spatial near dependen-
cies, and a stack of convolutions can further capture distant
even citywide dependencies.

The closeness component of Figure 3 adopts a few 2-
channel flows matrices of intervals in the recent time to
model temporal closeness dependence. Let the recent frag-
ment be [Xt−lc ,Xt−(lc−1), · · · ,Xt−1], which is also known
as the closeness dependent sequence. We first concatenate
them along with the first axis (i.e. time interval) as one ten-
sor X(0)

c ∈ R
2lc×I×J , which is followed by a convolution

(i.e. Conv1 shown in Figure 3) as:

X(1)
c = f

(
W (1)

c ∗X(0)
c + b(1)c

)
(2)

where ∗ denotes the convolution1; f is an activation func-
tion, e.g. the rectifier f(z) := max(0, z) (Krizhevsky,
Sutskever, and Hinton 2012); W (1)

c , b
(1)
c are the learnable

parameters in the first layer.
Residual Unit. It is a well-known fact that very deep convo-
lutional networks compromise training effectiveness though
the well-known activation function (e.g. ReLU) and regu-
larization techniques are applied (Ioffe and Szegedy 2015;
Krizhevsky, Sutskever, and Hinton 2012; Nair and Hinton
2010). On the other hand, we still need a very deep network
to capture very large citywide dependencies. For a typical
crowd flows data, assume that the input size is 32× 32, and
the kernel size of convolution is fixed to 3× 3, if we want to
model citywide dependencies (i.e., each node in high-level
layer depends on all nodes of the input), it needs more than
15 consecutive convolutional layers. To address this issue,
we employ residual learning (He et al. 2015) in our model,
which have been demonstrated to be very effective for train-
ing super deep neural networks of over-1000 layers.

In our ST-ResNet (see Figure 3), we stack L residual units
upon Conv1 as follows,

X(l+1)
c = X(l)

c + F(X(l)
c ; θ(l)c), l = 1, · · · , L (3)

where F is the residual function (i.e. two combinations of
“ReLU + Convolution”, see Figure 4(b)), and θ(l) includes
all learnable parameters in the lth residual unit. We also at-
tempt Batch Normalization (BN) (Ioffe and Szegedy 2015)

1To make the input and output have the same size (i.e. I×J) in
a convolutional operator, we employ a border-mode which allows a
filter to go outside the border of an input, padding each area outside
the border with a zero.

1657

that is added before ReLU. On top of the Lth residual unit,
we append a convolutional layer (i.e. Conv2 shown in Fig-
ure 3). With 2 convolutions and L residual units, the output
of the closeness component of Figure 3 is X(L+2)

c .
Likewise, using the above operations, we can construct

the period and trend components of Figure 3. Assume that
there are lp time intervals from the period fragment and
the period is p. Therefore, the period dependent sequence
is [Xt−lp·p,Xt−(lp−1)·p, · · · ,Xt−p]. With the convolutional
operation and L residual units like in Eqs. 2 and 3, the out-
put of the period component is X

(L+2)
p . Meanwhile, the

output of the trend component is X
(L+2)
q with the input

[Xt−lq·q,Xt−(lq−1)·q, · · · ,Xt−q] where lq is the length of
the trend dependent sequence and q is the trend span. Note
that p and q are actually two different types of periods. In the
detailed implementation, p is equal to one-day that describes
daily periodicity, and q is equal to one-week that reveals the
weekly trend.

The Structure of the External Component

Traffic flows can be affected by many complex external
factors, such as weather and event. Figure 5(a) shows that
crowd flows during holidays (Chinese Spring Festival) can
be significantly different from the flows during normal days.
Figure 5(b) shows that heavy rain sharply reduces the crowd
flows at Office Area compared to the same day of the lat-
ter week. Let Et be the feature vector that represents these
external factors at predicted time interval t. In our imple-
mentation, we mainly consider weather, holiday event, and
metadata (i.e. DayOfWeek, Weekday/Weekend). The details
are introduced in Table 1. To predict flows at time interval
t, the holiday event and metadata can be directly obtained.
However, the weather at future time interval t is unknown.
Instead, one can use the forecasting weather at time interval
t or the approximate weather at time interval t−1. Formally,
we stack two fully-connected layers upon Et, the first layer
can be viewed as an embedding layer for each sub-factor
followed by an activation. The second layer is used to map
low to high dimensions that have the same shape as Xt. The
output of the external component of Figure 3 is denoted as
XExt with the parameters θExt.

Mon Tue Wed Thu Fri Sat Sun
0

100

200

300

400

Time

In
flo
w

Normal
Holiday

(a) Feb 8-14 (red), Feb 15-21
(green), 2016

Sat Sun Mon
0

100

200

300

400

Time

In
flo
w

Thunderstom

(b) Aug 10-12 (red), Aug 17-
19 (green), 2013

Figure 5: Effects of holidays and weather in Office Area of
Beijing (the region is shown in Figure 2(a)).

Fusion

In this section, we discuss how to fuse four components of
Figure 3. We first fuse the first three components with a
parametric-matrix-based fusion method, which is then fur-
ther combined with the external component.

Figures 6(a) and (d) show the ratio curves using Beijing
trajectory data presented in Table 1 where x-axis is time gap
between two time intervals and y-axis is the average ratio
value between arbitrary two inflows that have the same time
gap. The curves from two different regions all show an em-
pirical temporal correlation in time series, namely, inflows
of recent time intervals are more relevant than ones of dis-
tant time intervals, which implies temporal closeness. The
two curves have different shapes, which demonstrates that
different regions may have different characteristics of close-
ness. Figures 6(b) and (e) depict inflows at all time inter-
vals of 7 days. We can see the obvious daily periodicity in
both regions. In Office Area, the peak values on weekdays
are much higher than ones on weekends. Residential Area
has similar peak values for both weekdays and weekends.
Figures 6(c) and (f) describe inflows at a certain time inter-
val (9:00pm-9:30pm) of Tuesday from March 2015 and June
2015. As time goes by, the inflow progressively decreases in
Office Area, and increases in Residential Area. It shows the
different trends in different regions. In summary, inflows of
two regions are all affected by closeness, period, and trend,
but the degrees of influence may be very different. We also
find the same properties in other regions as well as their out-
flows.

0 5 10 15 20 25
0

1

2

3

Time Gap (half hour)

R
at

io

(a) Closeness of Office Area

0 5 10 15 20 25
0

1

2

3

Time Gap (half hour)

R
at

io

(d) Closeness of Residential Area

Mon Tue Wed Thu Fri Sat Sun
0

100

200

300
In

flo
w

(b) Period of Office Area

Mon Tue Wed Thu Fri Sat Sun
0

100

200

300

In
flo

w

(e) Period of Residential Area

Mar 3 Mar 31 Apr 28 May 26 Jun 23
100

200

300

400

In
flo

w

(c) Trend of Office Area

Mar 3 Mar 31 Apr 28 May 26 Jun 23
50

100

150

200

In
flo

w

(f) Trend of Residential Area

Figure 6: Temporal dependencies (Office Area and Residen-
tial Area are shown in Figure 2(a))

Above all, the different regions are all affected by close-
ness, period and trend, but the degrees of influence may
be different. Inspired by these observations, we propose a
parametric-matrix-based fusion method.
Parametric-matrix-based fusion. We fuse the first three
components (i.e. closeness, period, trend) of Figure 3 as fol-
lows

XRes = Wc◦X(L+2)
c +Wp◦X(L+2)

p +Wq ◦X(L+2)
q (4)

where ◦ is Hadamard product (i.e., element-wise multipli-
cation), Wc, Wp and Wq are the learnable parameters that
adjust the degrees affected by closeness, period and trend,
respectively.

1658

Fusing the external component. We here directly merge the
output of the first three components with that of the exter-
nal component, as shown in Figure 3. Finally, the predicted
value at the tth time interval, denoted by X̂t, is defined as

X̂t = tanh(XRes +XExt) (5)

where tanh is a hyperbolic tangent that ensures the output
values are between -1 and 1.

Our ST-ResNet can be trained to predict Xt from three
sequences of flow matrices and external factor features by
minimizing mean squared error between the predicted flow
matrix and the true flow matrix:

L(θ) = ‖Xt − X̂t‖22 (6)

where θ are all learnable parameters in the ST-ResNet.

Algorithm and Optimization

Algorithm 1 outlines the ST-ResNet training process. We
first construct the training instances from the original se-
quence data (lines 1-6). Then, ST-ResNet is trained via back-
propagation and Adam (Kingma and Ba 2014) (lines 7-11).

Algorithm 1: ST-ResNet Training Algorithm
Input: Historical observations: {X0, · · · ,Xn−1};

external features: {E0, · · · , En−1};
lengths of closeness, period, trend sequences: lc, lp, lq;
peroid: p; trend span: q.

Output: Learned ST-ResNet model
// construct training instances

1 D ←− ∅
2 for all available time interval t(1 ≤ t ≤ n− 1) do
3 Sc = [Xt−lc ,Xt−(lc−1), · · · ,Xt−1]
4 Sp = [Xt−lp·p,Xt−(lp−1)·p, · · · ,Xt−p]
5 Sq = [Xt−lq ·q,Xt−(lq−1)·q, · · · ,Xt−q]

// Xt is the target at time t
6 put an training instance ({Sc,Sp,Sq, Et},Xt) into D

// train the model
7 initialize all learnable parameters θ in ST-ResNet
8 repeat
9 randomly select a batch of instances Db from D

10 find θ by minimizing the objective (6) with Db

11 until stopping criteria is met

Experiments

Settings

Datasets. We use two different sets of data as shown in Ta-
ble 1. Each dataset contains two sub-datasets: trajectories
and weather, as detailed as follows.

• TaxiBJ: Trajectoriy data is the taxicab GPS data and me-
teorology data in Beijing from four time intervals: 1st Jul.
2013 - 30th Otc. 2013, 1st Mar. 2014 - 30th Jun. 2014,
1st Mar. 2015 - 30th Jun. 2015, 1st Nov. 2015 - 10th Apr.
2016. Using Definition 2, we obtain two types of crowd
flows. We choose data from the last four weeks as the test-
ing data, and all data before that as training data.

• BikeNYC: Trajectory data is taken from the NYC Bike
system in 2014, from Apr. 1st to Sept. 30th. Trip data in-
cludes: trip duration, starting and ending station IDs, and
start and end times. Among the data, the last 10 days are
chosen as testing data, and the others as training data.

Table 1: Datasets (holidays include adjacent weekends).
Dataset TaxiBJ BikeNYC

Data type Taxi GPS Bike rent
Location Beijing New York

Time Span
7/1/2013 - 10/30/2013
3/1/2014 - 6/30/2014 4/1/2014 -
3/1/2015 - 6/30/2015 9/30/2014

11/1/2015 - 4/10/2016
Time interval 30 minutes 1 hour
Gird map size (32, 32) (16, 8)

Trajectory data
Average sampling rate (s) ∼ 60 \

taxis/bikes 34,000+ 6,800+
available time interval 22,459 4,392

External factors (holidays and meteorology)
holidays 41 20

Weather conditions 16 types (e.g., Sunny, Rainy) \
Temperature / ◦C [−24.6, 41.0] \
Wind speed / mph [0, 48.6] \

Baselines. We compare our ST-ResNet with the following 6
baselines:
• HA: We predict inflow and outflow of crowds by the av-

erage value of historical inflow and outflow in the cor-
responding periods, e.g., 9:00am-9:30am on Tuesday, its
corresponding periods are all historical time intervals
from 9:00am to 9:30am on all historical Tuesdays.

• ARIMA: Auto-Regressive Integrated Moving Average
(ARIMA) is a well-known model for understanding and
predicting future values in a time series.

• SARIMA: Seasonal ARIMA.
• VAR: Vector Auto-Regressive (VAR) is a more advanced

spatio-temporal model, which can capture the pairwise re-
lationships among all flows, and has heavy computational
costs due to the large number of parameters.

• ST-ANN: It first extracts spatial (nearby 8 regions’ val-
ues) and temporal (8 previous time intervals) features,
then fed into an artificial neural network.

• DeepST (Zhang et al. 2016): a deep neural network
(DNN)-based prediction model for spatio-temporal data,
which shows state-of-the-art results on crowd flows pre-
diction. It has 4 variants, including DeepST-C, DeepST-
CP, DeepST-CPT, and DeepST-CPTM, which focus on
different temporal dependencies and external factors.

Preprocessing. In the output of the ST-ResNet, we use tanh
as our final activation (see Eq. 5), whose range is between -1
and 1. Here, we use the Min-Max normalization method to
scale the data into the range [−1, 1]. In the evaluation, we
re-scale the predicted value back to the normal values, com-
pared with the groundtruth. For external factors, we use one-
hot coding to transform metadata (i.e., DayOfWeek, Week-
end/Weekday), holidays and weather conditions into binary

1659

vectors, and use Min-Max normalization to scale the Tem-
perature and Wind speed into the range [0, 1].
Hyperparameters. The python libraries, including Theano
(Theano Development Team 2016) and Keras (Chollet
2015), are used to build our models. The convolutions of
Conv1 and all residual units use 64 filters of size 3 × 3,
and Conv2 uses a convolution with 2 filters of size 3 × 3.
The batch size is 32. We select 90% of the training data for
training each model, and the remaining 10% is chosen as
the validation set, which is used to early-stop our training
algorithm for each model based on the best validation score.
Afterwards, we continue to train the model on the full train-
ing data for a fixed number of epochs (e.g., 10, 100 epochs).
There are 5 extra hyperparamers in our ST-ResNet, of which
p and q are empirically fixed to one-day and one-week, re-
spectively. For lengths of the three dependent sequences, we
set them as: lc ∈ {3, 4, 5}, lp ∈ {1, 2, 3, 4}, lq ∈ {1, 2, 3, 4}.
Evaluation Metric: We measure our method by Root Mean
Square Error (RMSE) as

RMSE =

√
1

z

∑
i

(xi − x̂i)2 (7)

where x̂ and x are the predicted value and ground thuth, re-
spectively; z is the number of all predicted values.

Results on TaxiBJ

We first give the comparison with 6 other models on Tax-
iBJ, as shown in Table 2. We give 7 variants of ST-ResNet
with different layers and different factors. Taking L12-E for
example, it considers all available external factors and has
12 residual units, each of which is comprised of two con-
volutional layers. We observe that all of these 7 models are
better than 6 baselines. Comparing with the previous state-
of-the-art models, L12-E-BN reduces error to 16.69, which
significantly improves accuracy.

Table 2: Comparison among different methods on TaxiBJ
Model RMSE
HA 57.69
ARIMA 22.78
SARIMA 26.88
VAR 22.88
ST-ANN 19.57
DeepST 18.18

ST-ResNet [ours]
L2-E 2 residual units + E 17.67
L4-E 4 residual units + E 17.51
L12-E 12 residual units + E 16.89
L12-E-BN L12-E with BN 16.69
L12-single-E 12 residual units (1 conv) + E 17.40
L12 12 residual units 17.00
L12-E-noFusion 12 residual units + E without fusion 17.96

Effects of Different Components. Let L12-E be the com-
pared model.
• Number of residual units: Results of L2-E, L4-E and L12-

E show that RMSE decreases as the number of residual
units increases. Using residual learning, the deeper the
network is, the more accurate the results will be.

• Internal structure of residual unit: We attempt three dif-
ferent types of residual units. L12-E adopts the standard
Residual Unit (see Figure 4(b)). Compared with L12-E,
Residual Unit of L12-single-E only contains 1 ReLU fol-
lowed by 1 convolution, and Residual Unit of L12-E-BN
added two batch normalization layers, each of which is
inserted before ReLU. We observe that L12-single-E is
worse than L12-E, and L12-E-BN is the best, demonstrat-
ing the effectiveness of batch normalization.

• External factors: L12-E considers the external factors, in-
cluding meteorology data, holiday events and metadata.
If not, the model is degraded as L12. The results indicate
that L12-E is better than L12, pointing out that external
factors are always beneficial.

• Parametric-matrix-based fusion: Being different with
L12-E, L12-E-noFusion donot use parametric-matrix-
based fusion (see Eq. 4). Instead, L12-E-noFusion use
a straightforward method for fusing, i.e., X

(L+2)
c +

X
(L+2)
p + X

(L+2)
q . It shows the error greatly increases,

which demonstrates the effectiveness of our proposed
parametric-matrix-based fusion.

Results on BikeNYC

Table 3 shows the results of our model and other baselines
on BikeNYC. Being different from TaxiBJ, BikeNYC con-
sists of two different types of crowd flows, including new-
flow and end-flow (Hoang, Zheng, and Singh 2016). Here,
we adopt a total of 4-residual-unit ST-ResNet, and consider
the metadata as external features like DeepST (Zhang et al.
2016). ST-ResNet has relatively from 14.8% up to 37.1%
lower RMSE than these baselines, demonstrating that our
proposed model has good generalization performance on
other flow prediction tasks.

Table 3: Comparisons with baselines on BikeNYC. The re-
sults of ARIMA, SARIMA, VAR and 4 DeepST variants are
taken from (Zhang et al. 2016).

Model RMSE
ARIMA 10.07
SARIMA 10.56
VAR 9.92
DeepST-C 8.39
DeepST-CP 7.64
DeepST-CPT 7.56
DeepST-CPTM 7.43
ST-ResNet [ours, 4 residual units] 6.33

Related Work

Crowd Flow Prediction. There are some previously pub-
lished works on predicting an individual’s movement based
on their location history (Fan et al. 2015; Song et al. 2014).
They mainly forecast millions, even billions, of individuals’
mobility traces rather than the aggregated crowd flows in
a region. Such a task may require huge computational re-
sources, and it is not always necessary for the application

1660

scenario of public safety. Some other researchers aim to pre-
dict travel speed and traffic volume on the road (Abadi, Ra-
jabioun, and Ioannou 2015; Silva, Kang, and Airoldi 2015;
Xu et al. 2014). Most of them are predicting single or mul-
tiple road segments, rather than citywide ones. Recently, re-
searchers have started to focus on city-scale traffic flow pre-
diction (Hoang, Zheng, and Singh 2016; Li et al. 2015). Both
work are different from ours where the proposed methods
naturally focus on the individual region not the city, and they
do not partition the city using a grid-based method which
needs a more complex method to find irregular regions first.
Deep Learning. CNNs have been successfully applied to
various problems, especially in the field of computer vision
(Krizhevsky, Sutskever, and Hinton 2012). Residual learn-
ing (He et al. 2015) allows such networks to have a very
super deep structure. Recurrent neural networks (RNNs)
have been used successfully for sequence learning tasks
(Sutskever, Vinyals, and Le 2014). The incorporation of long
short-term memory (LSTM) enables RNNs to learn long-
term temporal dependency. However, both kinds of neural
networks can only capture spatial or temporal dependen-
cies. Recently, researchers combined above networks and
proposed a convolutional LSTM network (Xingjian et al.
2015) that learns spatial and temporal dependencies simulta-
neously. Such a network cannot model very long-range tem-
poral dependencies (e.g., period and trend), and training be-
comes more difficult as depth increases.

In our previous work (Zhang et al. 2016), a general pre-
diction model based on DNNs was proposed for spatio-
temporal data. In this paper, to model a specific spatio-
temporal prediction (i.e. citywide crowd flows) effectively,
we mainly propose employing the residual learning and a
parametric-matrix-based fusion mechanism. A survey on
data fusion methodologies can be found at (Zheng 2015).

Conclusion and Future Work

We propose a novel deep-learning-based model for fore-
casting the flow of crowds in each and every region of
a city, based on historical trajectory data, weather and
events. We evaluate our model on two types of crowd
flows in Beijing and NYC, achieving performances
which are significantly beyond 6 baseline methods, con-
firming that our model is better and more applicable
to the crowd flow prediction. The code and datasets
have been released at: https://www.microsoft.com/en-
us/research/publication/deep-spatio-temporal-residual-
networks-for-citywide-crowd-flows-prediction.

In the future, we will consider other types of flows (e.g.,
taxi/truck/bus trajectory data, phone signals data, metro card
swiping data), and use all of them to generate more types of
flow predictions, and collectively predict all of these flows
with an appropriate fusion mechanism.

References
Abadi, A.; Rajabioun, T.; and Ioannou, P. A. 2015. Traffic
flow prediction for road transportation networks with limited traf-
fic data. IEEE Transactions on Intelligent Transportation Systems
16(2):653–662.
Chollet, F. 2015. Keras. https://github.com/fchollet/keras.

Fan, Z.; Song, X.; Shibasaki, R.; and Adachi, R. 2015. Citymo-
mentum: an online approach for crowd behavior prediction at a
citywide level. In ACM UbiComp, 559–569. ACM.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep residual learn-
ing for image recognition. In IEEE CVPR.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Identity mappings in
deep residual networks. In ECCV.
Hoang, M. X.; Zheng, Y.; and Singh, A. K. 2016. Forecasting
citywide crowd flows based on big data. In ACM SIGSPATIAL.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. In
ICML, 448–456.
Jain, V.; Murray, J. F.; Roth, F.; Turaga, S.; Zhigulin, V.; Briggman,
K. L.; Helmstaedter, M. N.; Denk, W.; and Seung, H. S. 2007.
Supervised learning of image restoration with convolutional net-
works. In ICCV, 1–8. IEEE.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. ImageNet
classification with deep convolutional neural networks. In NIPS.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proceedings of
the IEEE 86(11):2278–2324.
LeCun, Y. A.; Bottou, L.; Orr, G. B.; and Müller, K.-R. 2012. Effi-
cient backprop. In Neural networks: Tricks of the trade. Springer.
Li, Y.; Zheng, Y.; Zhang, H.; and Chen, L. 2015. Traffic prediction
in a bike-sharing system. In ACM SIGSPATIAL.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convolutional
networks for semantic segmentation. In IEEE CVPR, 3431–3440.
Mathieu, M.; Couprie, C.; and LeCun, Y. 2015. Deep multi-
scale video prediction beyond mean square error. arXiv preprint
arXiv:1511.05440.
Nair, V., and Hinton, G. E. 2010. Rectified linear units improve
restricted boltzmann machines. In ICML, 807–814.
Silva, R.; Kang, S. M.; and Airoldi, E. M. 2015. Predicting traffic
volumes and estimating the effects of shocks in massive transporta-
tion systems. Proceedings of the National Academy of Sciences
112(18):5643–5648.
Song, X.; Zhang, Q.; Sekimoto, Y.; and Shibasaki, R. 2014. Pre-
diction of human emergency behavior and their mobility following
large-scale disaster. In ACM SIGKDD, 5–14. ACM.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to se-
quence learning with neural networks. In NIPS, 3104–3112.
Theano Development Team. 2016. Theano: A Python framework
for fast computation of mathematical expressions. arXiv e-prints
abs/1605.02688.
Xingjian, S.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-k.; and
WOO, W.-c. 2015. Convolutional lstm network: A machine learn-
ing approach for precipitation nowcasting. In NIPS, 802–810.
Xu, Y.; Kong, Q.-J.; Klette, R.; and Liu, Y. 2014. Accurate and
interpretable bayesian mars for traffic flow prediction. IEEE Trans-
actions on Intelligent Transportation Systems 15(6):2457–2469.
Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; and Yi, X. 2016. DNN-based
prediction model for spatial-temporal data. In ACM SIGSPATIAL.
Zheng, Y.; Capra, L.; Wolfson, O.; and Yang, H. 2014. Urban com-
puting: concepts, methodologies, and applications. ACM Transac-
tions on Intelligent Systems and Technology (TIST) 5(3):38.
Zheng, Y. 2015. Methodologies for cross-domain data fusion: An
overview. IEEE transactions on big data 1(1):16–34.

1661

