Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Neural Programming by Example

Chengxun Shu
Beihang University
Beijing 100191, China
shuchengxun@163.com

Abstract

Programming by Example (PBE) targets at automatically in-
ferring a computer program for accomplishing a certain task
from sample input and output. In this paper, we propose a
deep neural networks (DNN) based PBE model called Neu-
ral Programming by Example (NPBE), which can learn from
input-output strings and induce programs that solve the string
manipulation problems. Our NPBE model has four neural
network based components: a string encoder, an input-output
analyzer, a program generator, and a symbol selector. We
demonstrate the effectiveness of NPBE by training it end-to-
end to solve some common string manipulation problems in
spreadsheet systems. The results show that our model can in-
duce string manipulation programs effectively. Our work is
one step towards teaching DNN to generate computer pro-
grams.

Introduction

Programming by Example (PBE, also called programming
by demonstration, or inductive synthesis) (Lieberman 2001;
Cypher and Halbert 1993; Gulwani 2011) gives machines
the ability to reason and generate new programs without
substantial amount of human supervision. In PBE systems,
users (often non-professional programmers) provide a ma-
chine with input-output examples of a task they would like to
perform and the machine automatically infers a program to
accomplish the task. The concept of PBE has been success-
fully used for string manipulation in spreadsheet systems
such as Microsoft Excel (Gulwani et al. 2015), computer-
aided education (Gulwani 2014) and data extracting systems
(Le and Gulwani 2014).

As an example, if a user provides the following input and
output examples:

Jjohn@example.com = john
Jjames @ company.com = james

A PBE system should understand that the user would like to
extract the user name from the email address. It will auto-
matically synthesize a program Select(Split(x, @), 0), where
x is the input string, Split is to split a string according to a
delimiter, and Select is to select a substring from an array

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1539

Hongyu Zhang
The University of Newcastle
Callaghan, NSW 2308, Australia
hongyu.zhang @newcastle.edu.au

of strings. Given a new email address jacob@test.com, the
program will output the string jacob.

Lau et al. (2003) applied version space algebra to search
for possible programs. More recent PBE methods (Gulwani
2011) mainly adopt search technique to find a composition
of predefined functions (such as string Split and Concatena-
tion) that satisfies the input-output examples. These methods
create a Directed Acyclic Graph (DAG) and search through
the sequences of functions that can generate the output string
from a given input state. These methods can generate com-
plex string manipulation programs effectively, but require
the design of complex program synthesis algorithms.

In this paper, we propose a Deep Neural Networks (DNN)
based approach to Programming by Example. We train neu-
ral networks to automatically infer programs from input-
output examples. During the past few years, research on
DNN has achieved significant results in a variety of fields
such as computer vision (Krizhevsky, Sutskever, and Hin-
ton 2012), speech recognition (Mohamed, Dahl, and Hinton
2012), natural language processing (Collobert et al. 2011),
and API learning (Gu et al. 2016). Recently, researchers
have explored the feasibility of applying DNN to solve
programming and computation related problems (Neelakan-
tan, Le, and Sutskever 2015; Reed and de Freitas 2015;
Graves, Wayne, and Danihelka 2014; Kurach, Andrychow-
icz, and Sutskever 2015). Our work is based on the similar
idea of applying DNN to infer and execute computer pro-
grams. Different from the existing work, we target at the
PBE problem and train a neural PBE model with triples of
input, output and program.

Our approach, called NPBE (Neural Programming by Ex-
ample), teaches DNN to compose a set of predefined atomic
operations for string manipulation. Given an input-output
string pair, the NPBE model is trained to synthesize a pro-
gram - a sequence of functions and corresponding arguments
that transform the input string to the output string. The pro-
gram is generated from the atomic functions and one func-
tion may use the execution results of previous functions.
Thus the model is able to compose complex programs us-
ing only several predefined operations.

We have experimentally evaluated NPBE on a large num-
ber of input-output strings for 45 string manipulation tasks
and the results are encouraging. We find that our model can
generalize beyond the training input/output strings and the

training argument settings. Our work is one of the early at-
tempts to apply DNN to the problem of Programming by
Example.

Related Work

Reed et al. (2015) developed a framework called Neural
Programmer-Interpreter to induce and execute programs us-
ing neural networks. Their method treats programs as em-
beddings and uses neural networks to generate functions and
arguments for program execution. Their model is trained
with the supervision of execution traces and can be used
in many different scenarios. However, their model cannot
be directly applied to the problem of PBE as the input to
their model is the environment encoded with the task, while
our work is dedicated to PBE and the input to our model
are input-output examples. Neural Programmer (Neelakan-
tan, Le, and Sutskever 2015) is a neural network augmented
with a set of operations that can be called over several steps.
It is trained to output the result of program execution, while
our model is trained to output the program represented by
symbols. Neural Enquirer (Yin et al. 2015) is a fully neu-
ral, end-to-end differentiable model capable of modeling
and executing table query related programs. The execution
of Neural Enquirer is “softly” on data table using neural
networks, while our work does not apply soft execution to
input-output strings. Bosnjak et al. (2016) proposed a neu-
ral implementation of an abstract machine for the language
Forth. It can learn program behaviour trained from input-
output data. However, it requires program sketches as input.

Our model is also related to the work that uses recur-
rent neural networks to solve programming and computa-
tion related problems. Graves et al. (2014) developed Neu-
ral Turing Machine which is capable of learning and exe-
cuting simple programs using an external memory. Zaremba
et al. (2015) used execution traces to train recurrent neu-
ral networks to learn simple algorithms. Ling et al. (2016)
developed a model to generate program code from natu-
ral language and structured specification. Pointer Networks
(Vinyals, Fortunato, and Jaitly 2015) uses an attentional re-
current model to solve difficult algorithmic problems.

Some machine learning methods were also proposed to
tackle PBE problems. Lau et al. (2003) applied version
space algebra to efficiently search for possible programs.
Given input-output pairs, genetic programming (Banzhaf et
al. 1998) can evolve useful programs from candidate popu-
lations. Liang et al. (2010) proposed a hierarchical Bayesian
approach to learn simple programs given only a few exam-
ples. Melon et al. (2013) used machine learning to speed
up the searching for possible programs by learning weights
related to textual features. Their method needs carefully de-
signed features to reduce search space, while our method re-
duces search space and avoids feature engineering through
learning representations using DNN.

The NPBE Model

Problem Statement: Let S denote the set of strings. For an
input string x € S and an output string y € S, our model
is to induce a function f € S9, so that y = f(x). The input

1540

to our model is the input-output pair z := (z,y) € S?, and
we wish to get the correct function f, so when the user input
another string z € S, we can generate the desired output
y = f(z) without the need of user specifying the function
explicitly.

arg

’ func, ‘ ’ arg, ’ arg, 5 ‘ ’ arg, 4 ‘ ’ arg; s ‘

Symbol

. arguments
Predictor &

embedding

history
embedding

CLTTITr) COTTITT) CITITTIT]
function /]

embedding Program /

/
Generator s
/ Fo——- t=1,...,T
transformation
embedding

input output
characters characters
embedding embedding

Input/output

(LTI TT] Analyzer CTTTTT]

[TTTTT] LLT

(TI111] (LTI

embedding embedding
String Encoder String Encoder

input string output string

Figure 1: Overall architecture of NPBE.

The proposed NPBE model (Figure 1) consists of four
modules:

e A string encoder to encode input and output strings;

e An input-output analyzer which generates the transforma-
tion embedding describing the relationship between input
and output strings;

e A program generator which produces the func-

tion/arguments embeddings over a few steps;

e A symbol selector to decode the function/arguments em-
beddings and generate human readable symbols.

The program generator will run for a few steps, each step
it may access the outputs of previous steps, thus enables
the model to compose powerful programs using only a few
predefined atomic functions. While traditional deep learning
models try to generate the output y given and eventually fit
the function f such that y = f(x), our model learns to gener-
ate the function f directly and fits the higher-order function
g for which f = g(z,y) and f satisfies y = f(z).

String Encoder

Given a string composed of a sequence of characters
{i1,12,...,11}, the string encoder outputs a string embed-

ding and a list of character embeddings. First each charac-
ter 7j, in the sequence is mapped to the 8-dimensional raw
embeddings e(ix) via a randomly initialized and trainable
embedding matrix. To better present and attend to a char-
acter, the context of each character is fused with the char-
acter’s raw embedding to build the character embedding.
Let I(iy) denote the left context of the character iy and
r(ix) as the right context of 5. I(ix) and 7 (i) are respec-
tively calculated using Equation (1) and Equation (2) with
1(0) = (L + 1) = [0]°. In our implementation f; and f,
are the update function of LSTM (Hochreiter and Schmid-
huber 1997).

U(ix) = f1(U(ik-1), e(ix)))]
r(ix) = £, (r(ikt1), e(ix)))

The character embedding for each character is the combi-
nation of left/right contexts of character i), and e(iy) itself
as shown in Equation (3), where [-; -] means the concatena-
tion of vectors, max is the element-wise max-pooling. W,
and b, are parameter matrix and vector for building the full
character embedding.

cx = tanh(We[max(l(ix), 7(ix)); e(ir)] + be) (3)

¢y, will be used by the attention mechanism in the program
generator.

We also need a representation which can summarize the
whole string, so we can induce the transformation from
the string embeddings of input and output strings. We use
multilayer bidirectional LSTM (Graves and Schmidhuber
2005) to summarize cj. The output of forward and back-
ward LSTM at each layer are concatenated and become the
input of next layer’s forward and backward LSTM. The top-
most layer’s last hidden states of forward and backward
LSTM are merged to generate the string embedding s € R
through a final fully connected layer. The processing for in-
put and output strings is separated but shares the same neu-
ral network architecture and parameters, thus producings
cr.1,.--¢r,r,8r and co,1,...co,1,So for input and output
strings, respectively.

Input/output Analyzer

The input/output analyzer converts the input and output
string embeddings to the transformation embedding, which
describes the relationship between the input and output
strings. Let ¢ € R” denote the transformation embedding.
s; € R% sp € R® are the input and output string embed-
dings, respectively. The input/output analyzer can be repre-
sented as Equation (4). In our implementation, f;o is just a
2-layer fully connected neural network with activation func-
tion tanh.

“

t =fro([sr;sol)

Program Generator

The program generator (Figure 2) is the core of NPBE. It
generates several functions and corresponding arguments’
embeddings step by step. The function’s embedding at time
t is calculated as Equation (5), which is a fully connected

1541

’___—————~~

~
History S
Generator \\
\
\
\
\
4 : Y \
' function 4+ arguments 1
embedding embedding ‘I
Function Arguments 1
Generator Generator ,'
]
1
1
]
U
U
4
transformation v i
embedding h]:l)st((;;y
(TTTTT] embedding C
i t tput
inpu outpu
characters Dj?.jjj characters Dj?.jjj
embedding embedding
[(ITTTTT] [(ITTTTT]

Figure 2: Diagram of the program generator.

neural network taking as input the transformation embed-
ding ¢ and the execution history of the program generator
hi_1 € RT (hy = 1). Similarly, the function’s arguments
embedding at time ¢ is calculated as Equation (6). How-
ever, the function’s arguments are often very complex and
hard to predict accurately. So attention mechanism (similar
to the one used in neural machine translation models (Bah-
danau, Cho, and Bengio 2014)) is applied to refine the raw
arguments embedding a,.; with attention on input and out-
put strings. This is summarized in Equation (7). Finally, the
function embedding f;, the refined arguments embedding
a;, and the previous history embedding h,_; are merged
into the new history embedding h; as shown in Equation (8).
W}, and by, are parameter matrix and vector for generating
the new history, respectively.

Jo =T runc(t, hi1) &)
Qr ¢ = fargs(t7 ht—l) (6)
a; = fo(ars, cr,...cr,0,€0,1,-.-Co,L) @)
hi = tanh(Wh[fi; ar; hy—1] + bp) ®)

Functions f ¢, and {44, can be multilayer fully connected
neural networks, and in our experiment we just use one
layer neural network. The function f,;; in Equation (7) is
implemented by attending to the input and output strings as
follows:

Function Name | Arguments Return Type | Description

Split (String str, Char delim) String|[] Split string using delim as a delimiter, return an array of strings
Join (String[] strs, Char delim) | String Join an array of strings using delim as a delimiter, return a string
Select (String[] strs, Int index) String Select an element of a string array, return a string

ToLower (String str) String Turn a string str into lower case

ToUpper (String str) String Turn a string str into upper case

Concatenate (String str or Charc, ...) String Concatenate a sequence of strings or characters into a string
GetConstString | (null) String Special function indicating a constant string

NoFunc (null) null Special symbol indicating no more function is needed

Table 1: Atomic functions.

up; =wv] tanh(Wier; + Waayy) i€ (1,...,L) (9)

al ; = softmax(u, ;) ic(1,..,L) (10)
£ ,

are =Y ajcr (1)
=1

uby; = vb tanh(Waco s + Waars) i€ (1,...,L) (12)

ap ; = softmax(ug, ;) ie(1,..,L) (13)
L

aoi =Y ap,co.i (14)
=1

W1, Ws, vy and W3, Wy, vo are parameters for attending to
the input and output strings, respectively. Note that the at-
tention architecture for input and output strings are the same
but with different parameters. The final arguments embed-
ding is generated by combining attention over input, output
and the raw arguments embedding:

a; = tanh(Woy[ag i ars; ao] + basr) (15)

where W1 and b4+ are parameters for combining.

Symbol Selector

The symbol selector uses the function embedding f; and
the arguments embedding a; generated by the program
generator to select a proper function and the correspond-
ing arguments of that function. The probability distribution
Qfunct € [0,1]F over P atomic functions is produced by
Equation (16), where Uy € RP*!" is the matrix storing the
representations of the atomic functions. The arguments em-
bedding a; (representing the summary of the arguments) is
decoded by a RNN (Cho et al. 2014), which is conditioned
on its previous output and a;, as shown in Equation (17).
8¢,0,..-8¢,i—1 are hidden states of LSTM with s; g = [0].
In this way, the sequence of arguments is generated by the
RNN. The probability distribution of the ¢-th argument at
time ¢ over () possible arguments, ctgyg.i.¢ € [0, 1]9, is pro-
duced using Equation (18), where U, € R?*4 is the matrix
storing the representations of possible arguments.

O fyne,t = softmax(Uy fr) (16)
a;; = LSTM(s;i—1,asi-1,a:) an
Qqrg.it = softmax(Ugay;) (18)

Constant Type Constant

Delimiter “(space)”, “(newline)”, .7, <, “\”,
Integer 0,1,2,3,-1,-2,-3

Special Symbol x,01,02,03,04, NoArg

Table 2: Constant symbols of our model.

Training
We train the NPBE model end-to-end using input-output
string pairs { Z;, %} as well as the programs represented as
a sequence of functions and corresponding arguments. Each
program &; : {f} a},....f] al'} can transform Z; to %,
where ¢ means the ¢’th training example. For every input-
output pair we can generate a sequence of 7' functions and
every function has an argument list a € A", where A is
the set of possible arguments, M is the maximum number
of arguments one function can take. In our implementation,
T=5M=5.

The training is conducted by directly maximizing the log-
likelihood of the correct program &2 given { 2", % }:

0* = argmax Z log P(2\2,%;0)
O (o

19)

where 6 is the parameters of our model. Random Gaussian
noise (Neelakantan et al. 2015) is injected into the transfor-
mation embedding and the arguments embedding to improve
the generalization ability and stability of NPBE.

Experiments
Experimental Design

The NPBE model is required to induce a program consist-
ing of a sequence of functions based on only one input-
output string pair. In this section, we describe our evaluation
of the NPBE model. In our experiments, we define 7 ba-
sic string manipulation functions and 1 null function as the
atomic functions (Table 1). For simplicity, each program is
allowed to be composed by 5 functions at most. We define a
set of constant symbols (Table 2) from which our model can
choose as arguments. The constant symbols include integers
and delimiters. The integers are used by the Select function
as index to an array of strings. The negative integers are used
to access array elements from the tail. The design of integer
symbols supports the access to an array of at most 7 ele-
ments. The delimiters are used by Split and Join to split a

Input-output Pair t Function Argument 1 | Argument 2 | Argument 3 | Argument 4 | Argument 5
Input string: 1 | GetConstString — — — — —
john@company.com | 2 | GetConstString — — — — —
Output string: 3 Split X “@” — — —
Hello john, have fun! | 4 Select o3 0 — — —
5 Concatenate ol o4 02 — —
Input string: 1 Split X “r — — —
17/apr/2016 2 Select ol 0 — — —
Output string: 3 Select ol 1 — — —
APR-17 4 ToUpper o3 — — — —
5 Concatenate o4 “. 02 — —
Input string: 1 Split X “r — — —
/home/foo/file.cpp 2 Select ol -1 — — —
Output string: 3 Split 02 “r — — —
file 4 Select 03 0 — — —

Table 3: Examples of input-output pairs for NPBE. The corresponding programs (from top

to bottom) are: 1) Concate-

nate(“Hello 7, Select(Split(x, “@”), 0), “, have fun!”); 2) Concatenate(ToUpper(Select(Split(x, “/”), 1)), “-”, Select(Split(x,
“/”), 0)); and 3) Select(Split(Select(Split(x, “/”), -1), “.”), 0). Note that GetConstString is a placeholder, and the first one is

evaluated to “Hello ”, the second one is evaluated to “, have fun!”.

string or join an array of strings by a delimiter. We also de-
fine some special symbols. For example, the symbol z refers
to the input string, o1, 02, 03 and o4 are used to refer to the
output of the first, second, third and fourth operation, re-
spectively. The NoArg symbol indicates that no arguments
is expected at the current position. Note that although in our
experiments, we give some constraints to the functions and
arguments in a program, our model can be easily extended
to support new functions and arguments.

To obtain training data, we first generate programs at vari-
ous levels of complexity according to 45 predefined tasks. A
task is a sequence of function in a specific order, but the
arguments of each function are not fixed. The reason for
defining tasks is that we want the program generated by our
model being syntactically correct and meaningful. The 45
tasks range from simple ones such as the concatenation of
input to some constant string, to more complex ones com-
prising Split, Join, Select, ToUpper and Concatenate func-
tions. For example, the task of Split, Join is to first split the
input string by a delimiter, then join the split strings array
using another delimiter. A program derived from this task
could be Join(Split(x,“/”), “:”), which splits the input string
x according to the delimiter “/” and then joins the resulting
substrings using the delimeter “:”. The average number of
functions for accomplishing a task is 3.5.

For all the tasks, we generate a total number of around
69,000 programs for training. For each program &; we gen-
erate a random input string 2;, which should be an valid
input to the program &7;. Next, we apply the program &;
on Z; by actually running the Python program implement-
ing &; and get the output string %;. We constrain Z; and %;
to be at most 62 characters long. After that, we use { 27, % }
as the input data to our model, and &7; as the training target.
The program is generated in such a way that if there are mul-
tiple programs that can result in the same %; given Z;, only
one specific program is chosen. Therefore, there is no am-
biguity for the model to predict the desired program. Given
the program &;, the input string 2 is always generated

1543

dynamically and randomly to decrease overfitting. Table 3
gives some concrete input-output examples for our model.

To train NPBE, we choose RMSProp (Tieleman and Hin-
ton 2012) as the optimizer and set the mini-batch size to 200.
We set the dimensionality of the transformation embedding ¢
and the history embedding h to 256, the function embedding
f to 16, and the arguments embedding a to 64. The actual
training process relies on an adaptive curriculum (Reed and
de Freitas 2015) in which the frequency of one specific task
being trained is proportional to its error rates over test. Every
10 epochs we estimate the prediction errors. We use softmax
with adequate temperature over error rates to sample the fre-
quency of each task that will be trained during the next 10
epochs. So tasks with the higher error rates will be sampled
more frequently than tasks with the lower error rates during
the next 10 epochs.

The evaluation of NPBE is conducted to answer the fol-
lowing research questions:

RQ1: What is the accuracy of NPBE in generating pro-
grams? In this RQ, we use randomly generated input-
output strings to evaluate the accuracy of NPBE in gener-
ating programs. For example, given a random input-output
pair: 25/11/16 and 25:11:16 (which does not appear in the
training data), we would like to test if the correct program
Join(Split(x, “/”), “:”) can be still generated. To answer this
RQ, we generate random input-output strings for each task
1000 times and apply the trained NPBE model. A program
produced by NPBE is regarded correct only if the model
predicts all the five functions (if less than five, padded with
the NoF'unc symbol) and all the arguments of the functions
(also padded with the NoArg symbol) correctly (thus a total
of 5+ 5 x 5 = 30 positions). We also compare our model
with the RNN encoder-decoder models (Cho et al. 2014) im-
plemented using LSTM and LSTM with attention mecha-
nism, which all have similar total number of parameters to
our model.

RQ2: Can NPBE generate programs with previously un-
seen arguments? In this RQ, we test the generalization

Task LSTM | LSTM-A | NPBE-Topl | NPBE-Top3 | NPBE-Top5
Case Change 100.0% | 100.0% 100.0% 100.0% 100.0%
Duplicate Input String 9.4% 9.8% 99.1% 99.1% 99.1%
Case Change and Concatenate with Input String 9.4% 9.3% 99.9% 99.9% 99.9%
Concatenate with Constant 83.1% 67.5% 88.4% 88.4% 88.4%
Split, Select, Case Change 8.7% 12.8% 92.3% 96.4% 97.3%
Split, Join, Select, Case Change, Concatenate 0.1% 0.1% 92.4% 96.6% 97.8%
GetConstString, Split, Select, Case Change, Concatenate | 2.9% 5.2% 81.2% 85.6% 86.7%
GetConstString x 2, Split, Select, Concatenate 0.1% 0.1% 24.7% 54.4% 68.1%
Split, Select, Select, Concatenate 0.1% 0.1% 9.8% 46.4% 82.0%
Split, Select, Select, Case Change, Concatenate 0.1% 0.2% 35.8% 73.2% 94.0%
Split, Select, Split, Select 0.1% 0.1% 31.2% 64.3% 72.2%
Average over All 45 Tasks 20.4% 22.0% 74.1% 85.8% 91.0%

Table 4: Results of generating programs.

Task Seen | Unseen
Split, Join 93.6% | 93.9%
GetConstString, Split, Join, Concatenate | 91.4% | 91.5%
Split, Join, Concatenate 95.0% | 94.9%
Split, Join, Select, Concatenate 90.8% | 89.5%
Split, Select, Select, Concatenate 82.0% | 82.1%
Average over 19 Tasks 87.6% | 87.4%

Table 5: Results with seen and unseen program arguments.

ability of NPBE. We evaluate our model using programs
whose argument settings do not appear in the training set.
For example, if the program Join(Split(x, “/”), “:”) appears
in the training set, we would like to know if NPBE can work
for the program Join(Split(x, “@”), “-”) , which does not
appear in the training set. To answer this RQ, we design a
test set consisting of around 19,000 programs with previ-
ously unseen arguments. The experiment is conducted on
19 selected tasks that have complex argument combinations
(for simple tasks there are few arguments to choose so we
skip them).

Experimental Results

RQ1: What is the accuracy of NPBE in generating pro-
grams? Table 4 gives the evaluation results of NPBE on
predicting programs. The average Topl accuracy achieved
by NPBE is 74.1%, which means that for 74.1% of input-
output pairs in test, NPBE successfully generates the corre-
sponding program. We found that the model prediction er-
rors most likely to occur on the integer argument of Select
because neural networks are not good at counting. So we
also let the model to give 3 or 5 predictions when it tries to
predict the integer arguments of Select. The average Top3
and Top5 accuracy results are 85.8% and 91.0%, which
means that for 85.8% and 91.0% of input-output pairs in
test, NPBE successfully returns the corresponding program
within the top 3 and top 5 results respectively. The results
show that the NPBE model can generate correct programs
for most tasks.

As an example, given the input string “17/apr/2016” and
output string “APR-17”, our model needs to induce a pro-
gram comprising Split, Select, Select, Case Change, Con-
catenate. For this task, our model gives completely correct

1544

program in 35.8% cases. If we allow the model to give 3 or 5
predictions for the integer argument of Select, the accuracy
is increased to 73.2% or 94.0%.

The results about LSTM and LSTM with attention mech-
anism (denoted to as LSTM-A) are also shown in Table 4.
Note that the Top1, Top3 and Top5 accuracy for LSTM and
LSTM-A are almost the same, so only the Top1 accuracy is
reported. We found that the ordinary encoder-decoder model
can solve the simplest tasks but cannot tackle harder tasks.
The results show that NPBE significantly outperforms the
ordinary encoder-decoder model.

RQ2: Can NPBE generate programs with previously
unseen arguments? We test the generalization ability of
NPBE on the programs with previously unseen argument
settings. The average Top5 accuracy results are given in Ta-
ble 5. The results shows that for seen and unseen argument
settings the accuracies achieved by our model have no big
difference. For example, the task of Split, Join first splits an
input string by a delimiter (such as *“/”’) and then concate-
nates the resulting substrings by the other delimiter (such as
“:). This task achieves 93.6% accuracy on the training set.
For different arguments (e.g., first split the input string by
“@” then join the resulting substrings by “-”) that do not
exist in the training set, NPBE can still get 93.9% accuracy.
The results show that NPBE can be generalized to unseen
program arguments without over-fitting to particular argu-
ment combinations.

Discussions and Future Work

The intention behind NPBE is to make the model learn re-
lated features from input-output strings automatically and
use the learned features to induce correct programs. The pur-
pose of this paper is not to directly compete with the exist-
ing PBE systems. Instead, we show that the use of DNN can
recognize features in string transformations and can learn
accurate programs through input-output pairs.

Currently, NPBE cannot be generalized to completely un-
seen tasks (such as Split, Join, Join, Concatenate) that never
appeared in the training set. In our future work, we will try
to build the model that really “understands” the meaning of
atomic functions to make it possible to generalize to the un-
seen tasks.

Conclusion

In this paper, we propose NPBE, a Programming by Exam-
ple (PBE) model based on DNN. NPBE can induce string
manipulation programs based on simple input-output pairs
by inferring a composition of functions and corresponding
arguments. We have shown that the novel use of DNN can
be successfully applied to develop Programming By Exam-
ple systems. Our work also explores the way of learning
higher-order functions in deep learning, and is one step to-
wards teaching DNN to generate computer programs.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

Banzhaf, W.; Nordin, P.; Keller, R. E.; and Francone, F. D.
1998. Genetic programming: an introduction. Morgan
Kaufmann Publishers San Francisco.

Bosnjak, M.; Rocktischel, T.; Naradowsky, J.; and Riedel,
S. 2016. Programming with a differentiable forth interpreter.
arXiv preprint arXiv:1605.06640.

Cho, K.; Merrienboer, B. V.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder-decoder for statis-
tical machine translation. arXiv preprint arXiv:1406.1078.

Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learning
Research 12(Aug):2493-2537.

Cypher, A., and Halbert, D. C. 1993. Watch what I do:
programming by demonstration. MIT press.

Graves, A., and Schmidhuber, J. 2005. Framewise phoneme
classification with bidirectional Istm and other neural net-
work architectures. Neural Networks 18(5-6):602—-10.

Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural
turing machines. arXiv preprint arXiv:1410.5401.

Gu, X.; Zhang, H.; Zhang, D.; and Kim, S. 2016. Deep
API learning. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engi-

neering, FSE 2016, 631-642. New York, NY, USA: ACM.

Gulwani, S.; Hernandez-Orallo, J.; Kitzelmann, E.; Mug-
gleton, S. H.; Schmid, U.; and Zorn, B. 2015. Inductive
programming meets the real world. Communications of the
ACM 58(11):90-99.

Gulwani, S. 2011. Automating string processing in spread-
sheets using input-output examples. In ACM SIGPLAN No-
tices, volume 46, 317-330. ACM.

Gulwani, S. 2014. Example-based learning in computer-
aided stem education. = Communications of the ACM
57(8):70-80.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8):1735-1780.

1545

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097-1105.

Kurach, K.; Andrychowicz, M.; and Sutskever, I.
2015. Neural random-access machines. arXiv preprint
arXiv:1511.06392.

Lau, T.; Wolfman, S. A.; Domingos, P.; and Weld, D. S.
2003. Programming by demonstration using version space
algebra. Machine Learning 53(1-2):111-156.

Le, V., and Gulwani, S. 2014. Flashextract: a framework
for data extraction by examples. In ACM SIGPLAN Notices,
volume 49, 542-553. ACM.

Liang, P; Jordan, M. I.; and Klein, D. 2010. Learning pro-
grams: A hierarchical bayesian approach. In Proceedings
of the 27th International Conference on Machine Learning

(ICML-10), 639-646.

Lieberman, H. 2001. Your wish is my command: Program-
ming by example. Morgan Kaufmann.

Ling, W.; Grefenstette, E.; Hermann, K. M.; Kocisky, T.;
Senior, A.; Wang, F.; and Blunsom, P. 2016. Latent
predictor networks for code generation. arXiv preprint
arXiv:1603.06744.

Menon, A. K.; Tamuz, O.; Gulwani, S.; Lampson, B. W.;
and Kalai, A. 2013. A machine learning framework for
programming by example. ICML (1) 28:187-195.

Mohamed, A.-r.; Dahl, G. E.; and Hinton, G. 2012. Acoustic
modeling using deep belief networks. IEEE Transactions on
Audio, Speech, and Language Processing 20(1):14-22.

Neelakantan, A.; Vilnis, L.; Le, Q. V.; Sutskever, 1.; Kaiser,
L.; Kurach, K.; and Martens, J. 2015. Adding gradient noise
improves learning for very deep networks. arXiv preprint
arXiv:1511.06807.

Neelakantan, A.; Le, Q. V.; and Sutskever, I. 2015. Neu-
ral programmer: Inducing latent programs with gradient de-
scent. arXiv preprint arXiv:1511.04834.

Reed, S., and de Freitas, N. 2015. Neural programmer-
interpreters. arXiv preprint arXiv:1511.06279.

Tieleman, T., and Hinton, G. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning
4(2).

Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. In Advances in Neural Information Processing
Systems, 2692-2700.

Yin, P; Lu, Z.; Li, H.; and Kao, B. 2015. Neural en-
quirer: Learning to query tables with natural. arXiv preprint
arXiv:1512.00965.

Zaremba, W.; Mikolov, T.; Joulin, A.; and Fergus, R. 2015.

Learning simple algorithms from examples. arXiv preprint
arXiv:1511.07275.

