
Knowledge Transfer for Deep Reinforcement
Learning with Hierarchical Experience Replay

Haiyan Yin, Sinno Jialin Pan
School of Computer Science and Engineering
Nanyang Technological University, Singapore

{haiyanyin, sinnopan}@ntu.edu.sg

Abstract

The process for transferring knowledge of multiple reinforce-
ment learning policies into a single multi-task policy via dis-
tillation technique is known as policy distillation. When pol-
icy distillation is under a deep reinforcement learning setting,
due to the giant parameter size and the huge state space for
each task domain, it requires extensive computational efforts
to train the multi-task policy network. In this paper, we pro-
pose a new policy distillation architecture for deep reinforce-
ment learning, where we assume that each task uses its task-
specific high-level convolutional features as the inputs to the
multi-task policy network. Furthermore, we propose a new
sampling framework termed hierarchical prioritized experi-
ence replay to selectively choose experiences from the replay
memories of each task domain to perform learning on the net-
work. With the above two attempts, we aim to accelerate the
learning of the multi-task policy network while guaranteeing
a good performance. We use Atari 2600 games as testing en-
vironment to demonstrate the efficiency and effectiveness of
our proposed solution for policy distillation.

Introduction

Recently, the advances in deep reinforcement learning have
shown that policies can be learned in an end-to-end man-
ner with high-dimensional sensory inputs in many challeng-
ing task domains, such as arcade game playing (Mnih et
al. 2015; Van Hasselt, Guez, and Silver 2016), robotic ma-
nipulation (Levine et al. 2016; Finn, Levine, and Abbeel
2016), and natural language processing (Zhang et al. 2016;
Li et al. 2016; Guo 2015). As a combination of reinforce-
ment learning with deep neural networks, deep reinforce-
ment learning exploits the ability of deep networks to learn
salient descriptions of raw state inputs, and thus bypasses
the need for human experts to handcraft meaningful state
features, which always requires extensive domain knowl-
edge. One of the successful algorithms is Deep Q-Network
(DQN) (Mnih et al. 2015), which learns game playing poli-
cies for Atari 2600 games by receiving only image frames as
inputs. Though DQN can surpass human-expert level across
many Atari games, it takes a long time to fully train a DQN.
Meanwhile, each DQN is specific to play a single game.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To tackle the stated issue, model compression and multi-
task learning techniques have been integrated into deep re-
inforcement learning. The approach that utilizes distillation
technique to conduct knowledge transfer for multi-task rein-
forcement learning is referred to as policy distillation (Rusu
et al. 2016). The goal is to train a single policy network
that can be used for multiple tasks at the same time. In
general, it can be considered as a transfer learning process
with a student-teacher architecture. The knowledge is firstly
learned in each single problem domain as teacher policies,
and then it is transferred to a multi-task policy that is known
as student policy. Such knowledge transfer is conducted via
the distillation technique (Bucilu, Caruana, and Niculescu-
Mizil 2006), which uses supervised regression to train a stu-
dent network to generate the same output distribution as
taught by the teacher networks.

Though some promising results have been shown in (Rusu
et al. 2016; Parisotto, Ba, and Salakhutdinov 2016) recently,
policy distillation for deep reinforcement learning suffers
from the following three challenges. First, the existing archi-
tectures involve multiple convolutional and fully-connected
layers with a giant parameter size. This leads to a long train-
ing time for the models to converge. Second, for some task
domains, the compressed multi-task student network may
not be able to achieve comparable performances to the cor-
responding teacher networks, or even performs much worse.
This phenomenon is referred to as negative transfer (Pan and
Yang 2010; Rosenstein et al. 2005). Last but not least, to
learn from multiple teacher policy networks, the multi-task
network needs to learn from a huge amount of data from
each problem domain. Therefore, it is essential to develop an
efficient sampling strategy to select meaningful data to up-
date the network, especially for those domains where even
training a single-task policy network costs a long time.

Our contributions are two-fold. First, a new multi-task
policy distillation architecture is proposed. Instead of as-
suming all the task domains share the same statistical base
at the pixel level, we adopt task-specific convolutional fea-
tures as inputs to construct the multi-task network. It not
only reduces the overall training time, but also demonstrates
performance with considerable tolerance towards negative
transfer. Second, we propose hierarchical prioritized experi-
ence replay to enhance the benefit of prioritization by reg-
ularizing the distribution of the sampled experiences from

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1640



each domain. With the proposed experience replay, the over-
all learning for multi-task policy is accelerated significantly.

Related Work

This work is mainly related to policy distillation for deep re-
inforcement learning, and prioritized experience replay. Pol-
icy distillation is motivated by the idea of model compres-
sion in ensemble learning (Bucilu, Caruana, and Niculescu-
Mizil 2006) and its application to deep learning, which
aims to compress the capacity of a deep network via effi-
cient knowledge transfer (Hinton, Vinyals, and Dean 2014;
Ba and Caruana 2014; Tang et al. 2015; Li et al. 2014;
Romero et al. 2015). It has been successfully applied to
deep reinforcement learning problems (Rusu et al. 2016;
Parisotto, Ba, and Salakhutdinov 2016). In previous stud-
ies, multiple tasks are assumed to share the same statis-
tical base for pixel-level state inputs so that the convolu-
tional filters are shared by all the tasks to retrieve gener-
alized features from all tasks. Due to the sharing part, it
takes a long training time for the resultant models to con-
verge. Meanwhile, in the Atari 2600 games domain, the
pixel-level inputs for different games differ a lot. Sharing
the convolutional filters among tasks may result in ignorance
of some important task-specific features, and thus lead to
negative transfer for certain task(s). Therefore, in this work,
we propose a new architecture for multi-task policy net-
work. Different from the existing methods (Rusu et al. 2016;
Parisotto, Ba, and Salakhutdinov 2016), we remain the con-
volutional filters as task-specific for each task, and train a
set of fully-connected layers with a shared output layer as
the multi-task policy network.

Besides the architecture, we also propose a new sampling
approach, termed hierarchical prioritized experience replay,
to further accelerate the learning of the multi-task policy net-
work. Numerous studies have shown that prioritizing the up-
dates of reinforcement learning policy in an appropriate or-
der could make the algorithm learn more efficiently (Moore
and Atkeson 1993; Parr 1998). One common approach to
measure these priorities is using the Temporal Difference
(TD) error (Seijen and Sutton 2013). The scale of TD er-
ror tells how ‘surprising’ the experience is to the underlying
policy. Such prioritization has also been used in deep rein-
forcement learning (Schaul et al. 2016), resulting in faster
learning and increased performance in the Atari 2600 bench-
mark suite.

Different from training a DQN for a single task do-
main (Schaul et al. 2016), to train a multi-task policy net-
work with policy distillation, instead of using the TD error,
the scale of gradient value for the distillation loss function is
used to measure the priority for each experience, which tells
how well the underlying student network could deal with the
experiences. Furthermore, instead of purely sampling based
on the prioritization, we additionally wish the sampled ex-
periences to preserve the original distribution. To this end,
we keep track of a state visiting distribution for each task
domain to regularize the sampled experiences, which is esti-
mated based on the state values predicted by the correspond-
ing teacher networks. There are a number of studies on DQN

that have used the state values to account for the state visit-
ing distribution of DQN, e.g., (Zahavy, Zrihem, and Mannor
2016; Mnih et al. 2015).

Background

Deep Q-Networks

A Markov Decision Process is a tuple (S,A,P, R, γ), where
S is a set of states, A is a set of actions, P is a state tran-
sition probability matrix, where P(s′|s, a) is the probabil-
ity for transiting from state s to s′ by taking action a, R
is a reward function mapping each state-action pair to a re-
ward in R, and γ ∈ [0, 1] is a discount factor. The agent
behavior in an MDP is represented by a policy π, where
the value π(a|s) represents the probability of taking action
a at state s. The Q-function Q(s, a), also known as the
action-value function, is the expected future reward start-
ing from state s by taking action a following policy π, i.e.,
Q(s, a)=E

[∑T
t=0 γ

trt|s0=s, a0=a
]
, where T represents

a finite horizon and rt is the reward obtained at time t. Based
on the Q-function, the state-value function is defined as:

V (s) = max
a

Q(s, a). (1)

The optimal Q-function Q∗(s, a) is the maximum Q-
function over all policies, which can be decomposed using
the Bellman equation as follows,

Q∗(s, a) = Es′
[
r + γmax

a′
Q∗(s′, a′|s, a)

]
. (2)

Once the optimal Q-function is known, the optimal policy
can be derived from the learned action-values. To learn the
Q-function, the DQN algorithm (Mnih et al. 2015) uses a
deep neural network to approximate the Q-function, which
is parameterized by θ as Q(s, a; θ). The deep neural network
can be trained by iteratively minimizing the following loss
function,

L(θi) = Es,a[(r + γmax
a′ Q(s′, a′; θi−1)−Q(s, a; θi))

2], (3)

where θi are the parameters from the i-th iteration. In the
Atari 2600 games domain, it has been shown that DQN is
able to learn the Q-function with low-level pixel inputs in an
end-to-end manner (Mnih et al. 2015).

To train a DQN, a technique known as experience re-
play (Lin 1992) is adopted to break the strong correlations
between consecutive state inputs during the learning. Specif-
ically, at each time-step t, an experience is defined by a tuple
et = {st, at, rt, st+1}, where st is the state input at time t,
at is the action taken at time t, rt is the received reward at
t, and st+1 is the next state transited from st after taking at.
Recent experiences are stored to construct a replay mem-
ory D = {e1, ..., eN}, where N is the memory size. Learn-
ing is performed by sampling experiences from the replay
memory to update the network parameters, instead of using
online data in the original order. To balance between explo-
ration and exploitation, given an estimated Q-function, DQN
adopts the ε-greedy strategy to generate the experiences.

1641



Policy Distillation

Policy distillation aims to transfer policies learned by one
or several teacher Q-network(s) to a single student Q-
network via supervised regression. To utilize the knowledge
of teacher networks during the transfer, instead of using the
DQN loss derived from Bellman error as shown in (3) to up-
date the student Q-network, the output distribution generated
by the teacher networks is used to form a more informative
target for the student to learn from. Suppose there is a set
of m source tasks, S1, ..., Sm, each of which has trained a
teacher network, denoted by QTi

, where i = 1, ...,m. The
goal is to train a multi-task student Q-network denoted by
QS . For training, each task domain Si keeps its own replay
memory D(i) = {e(i)k ,q

(i)
k }, where e

(i)
k is the k-th expe-

rience in D(i), and q
(i)
k is the corresponding vector of Q-

values over output actions generated by QTi . The values
q
(i)
k serve as a regression target for the student Q-network

to learn from. Rather than matching the exact values, it has
been shown that training the student Q-network by match-
ing the output distributions between the student and teacher
Q-networks using KL-divergence is more effective (Rusu et
al. 2016). To be specific, the parameters of the multi-task
student Q-network θS are optimized by minimizing the fol-
lowing loss:

LKL

(
D(i)

k , θS

)
= f

(
q
(i)
k

τ

)
· ln

⎛
⎝f

(
q
(i)
k /τ

)
f
(
q
(S)
k

)
⎞
⎠ , (4)

where D(i)
k is the k-th replay in D(i), f(·) is the softmax func-

tion, τ is the temperature to soften the distribution, and · is
the dot product.

Proposed Multi-task Policy Distillation

Architecture

In this paper, we propose a new multi-task policy distillation
architecture as shown in Figure 1. In the new architecture,
each task preserves its own convolutional filters to gener-
ate task-specific high-level features. Each task-specific part
consists of three convolutional layers with each followed by
a rectifier layer. The outputs of the last rectifier layer are
used as the inputs to the multi-task policy network. A set
of fully-connected layers are defined as the shared multi-
task policy layers. Knowledge from the teacher Q-networks
is transferred to the student Q-network through the shared
policy layers. The final output of the student network is a
set of all the available actions (e.g., 18 control actions for
Atari). Instead of using gated actions to separate the actions
for each task, the proposed architecture shares the final out-
puts, so that the shared actions go through the same path.
For example, if two games both consist of the action fire, as
their inputs are forwarded towards fire along the same path,
the weights will be shared by both games in the forward
path and being updated by both games in the backward path.
Therefore, as the shared policy layers are trained by multiple
source tasks, they can learn a generalized reasoning about
when to issue what action under different circumstances.

Figure 1: Multi-task policy distillation architecture

Overall, the new architecture concatenates a set of task-
specific convolutional layers and shared multi-task fully-
connected layers. The task-specific parts are available from
the single-task teachers, but the multi-task fully-connected
layers are trained from scratch. Using task-specific high-
level features as the inputs to the multi-task architecture is
crucial for the proposed policy distillation approach which
involves end-to-end training. Studies over the state repre-
sentation learned by multi-task deep policy network have
shown that the low-level state representation is quite game-
specific due to the diversity of pixel-level inputs, but the em-
bedding over higher-level state representation shows higher
within-game variance, which means that the games are more
mixed out (Rusu et al. 2016). Therefore, sharing the convo-
lutional filters among tasks may result in losing important
task-specific information. Thus, we use task-specific high-
level features to prevent negative transfer effect. Meanwhile,
sharing the entire layers makes the model difficult to en-
corporate useful pre-trained knowledge. The proposed ap-
proach utilizes the existing knowledge from the convolu-
tional filters, which helps to significantly improve the time
efficiency for training the proposed architecture.

Hierarchical Prioritized Experience Replay

In this section, we introduce hierarchical prioritized experi-
ence replay to sample experiences from the replay memo-
ries of multiple task domains to train the multi-task student
Q-network. The proposed approach is motivated by the de-
sign of replay memory for DQN and the prioritized experi-
ence replay approach proposed for a single DQN by Schaul
et al. (2016). In a standard DQN, instead of using online
generated data in original order, experiences are first stored
in a replay memory, and then sampled uniformly for updat-
ing the network. This is to break the correlation between
consequent states from online data, and benefit DQN by
searching through the potentially huge state space more ef-
ficiently (Mnih et al. 2015).

The experiences stored at the replay memory form a dis-
tribution. For some games, such distribution varies a lot
through the training time, as the ability of the policy net-
work changes. For instance, in the game Breakout, DQN will
not visit the state shown in Figure 2(a) unless the agent has
learned how to dig a tunnel. Histograms over the state dis-
tributions generated by three Breakout policy networks with
different playing abilities are also shown in Figure 2(b). The

1642



(a) An example state (b) State statistics

Figure 2: DQN state visiting for Breakout.

playing ability increases from Net-1 to Net-3. The state dis-
tribution is computed according to the state value predicted
by a fully-trained teacher network based on (1). The entire
range of state values is evenly divided into 10 bins. It is in-
teresting to find out that as the ability of the policy network
increases, the distribution shifts towards visiting higher val-
ued states more frequently. When performing sampling, it is
important to preserve the state distribution in order to bal-
ance the learning of the policy network.

To improve the sampling efficiency for DQN, Schaul
et al. (2016) proposed prioritized experience replay, which
samples experiences according to the magnitude of their
TD error (Sutton and Barto 1998). The higher the error is,
the probability for the experience to be sampled becomes
larger. By referring to TD error-based prioritization on expe-
riences, prioritized replay intends to select more meaningful
data to update the network. It turns out that such prioriti-
zation could accelerate the learning of policy network and
lead DQN to a better local optima. However, prioritized re-
play introduces distribution bias to the sampled experiences,
which means that the original state distribution cannot be
preserved. Though importance sampling weights are post-
processed to the sampled experiences for correcting the bias
of updates on the network parameters in (Schaul et al. 2016),
breaking the balance between learning from known knowl-
edge and unknown knowledge may not be a good choice.

Therefore, directly applying the TD-based prioritized ex-
perience replay to multi-task policy distillation is not ideal.
First, as described, the multi-task student network is updated
using the distillation technique by minimizing the loss (4)
between the output distributions of the student and teacher
networks, rather than using the Q-learning algorithm. Thus,
policy distillation requires for a new prioritization scheme.
Second, the experience samples generated by solely using
prioritized experience replay are not representative to pre-
serve the global population of experiences for each domain.

To address the above two issues, we propose hierarchi-
cal prioritized experience replay, whereby a sampling deci-
sion is made in a hierarchical manner: which part from the
distribution to sample, followed by which experience from
that part to sample. To this end, each replay memory is first
divided into several partitions, with each partition storing
the experiences from a certain part of the state distribution.
Within each partition, there is a priority queue to store the
experiences according to their priorities. The partition sam-
pling is done uniformly. This helps to make the sampled ex-

periences preserve the global state visiting distribution for
each task domain. Within a sampled partition, experiences
are further sampled according their priorities, and impor-
tance sampling is performed to correct the bias of updates
for student network parameters.

Uniform Sampling on Partitions For each problem do-
main Si, a state visiting distribution is created according
to the state values for each experience, which is com-
puted by the teacher network QTi

following (1). The range
for each state distribution is measured by generating some
playing experiences by the teacher network in the prob-
lem domain, which is denoted as [V

(i)
min, V

(i)
max]. Then each

state distribution range is evenly divided into p partitions,
{[V (i)

1 , V
(i)
2 ], (V

(i)
2 , V

(i)
3 ], ...(V

(i)
p , V

(i)
p+1]}. For each parti-

tion, a prioritized memory queue is created to store the expe-
riences. Therefore, for each task domain Si, there are p pri-
oritized queues, with the j-th queue storing the experience
samples whose state values fall into the range (V

(i)
j , V

(i)
j+1].

At runtime, the program keeps track of the exact number
of experiences assigned to each partition j for each task
Si within a time window, denoted by N

(i)
j . When selecting

which partition to sample from, uniform sampling is per-
formed. Therefore, for task domain Si, the probability for

partition j to be selected is: P (i)
j =

N
(i)
j

∑p
k=1 N

(i)
k

.

Prioritization within Each Partition After a partition is
selected for a task domain, e.g., partition j is selected for
task Si, all the experiences in the partition are prioritized
based on the absolute gradient value of KL-divergence be-
tween the output distributions of the student network QS and
the teacher network QTi

w.r.t. q(S)
j[k]

:

|δ(i)j[k]
| = 1

|ATi
|

∥∥∥∥∥∥f
⎛
⎝q

(i)
j[k]

τ

⎞
⎠− f

(
q
(S)
j[k]

)∥∥∥∥∥∥
1

, (5)

where |ATi
| is the number of actions for the i-th source task,

j[k] is the index of the k-th experience in the j-th partition,
and |δ(i)j[k]

| is the priority score assigned to that experience.
Within the j-th partition for task domain Si, the probability
for an experience k to be selected is defined as:

P
(i)
j[k]

=

(
σ
(i)
j (k)

)α

∑N
(i)
j

t=1

(
σ
(i)
j (t)

)α
, (6)

where σ
(i)
j (k) = 1

rank(i)

j (k)
with rank(i)j (k) denoting the

ranking position of experience k in partition j determined
by |δ(i)j[k]

| in descending order, and α is a scaling factor. The
reason why we use the ranking position of an experience
rather than proportion of its absolute gradient value to de-
fine probabilities is that prioritization on experience using
rank-based information has been shown to be more robust
for learning a single DQN (Schaul et al. 2016).

1643



Bias Correction via Importance Sampling Consider ex-
perience k in partition j of the replay memory D(i). Then
the overall probability for the experience to be sampled is

P
(i)
j (k) = P

(i)
j × P

(i)
j[k]

. (7)

Though the sampling on partitions is uniform, the sampling
on particular experiences within a partition is based on their
priorities. As a result, the overall sampling still introduces
bias to the updates of the student network parameters. Here,
we introduce importance sampling weights to correct the
bias brought by each experience,

w
(i)
j (k) =

⎛
⎝ 1

∑p
t=1 N

(i)
t

P
(i)
j × P

(i)
j[k]

⎞
⎠

β

=

⎛
⎝ 1

N
(i)
j

× 1

P
(i)
j[k]

⎞
⎠

β

, (8)

where β is a scaling factor. For stability reason, the weights
are normalized by dividing max

k,j
w

(i)
j (k) from the mini-

batch, denoted by ŵ
(i)
j (k). Thus, the final gradient used for

mini-batch gradient update is ŵ(i)
j (k)×δ

(i)
j[k]

.
In summary, with hierarchical prioritized experience re-

play, uniform sampling is performed over the partition se-
lection to make the sampled experiences preserve a global
structure of the original data distribution, while prioritiza-
tion on experiences within each partition utilizes the gradi-
ent information to select more meaningful data to update the
network. Though there is a requirement for a trained teacher
network to perform partition sampling as an additional step,
as policy distillation naturally falls into a student-teacher ar-
chitecture where a teacher is already trained for single-task
in advance, the requirement for teacher network should not
be considered as a big external cost.

Experiments

Experimental Setting

To evaluate the efficiency and effectiveness of the pro-
posed multi-task architecture, a multi-task domain is cre-
ated with 10 popular Atari games: Beamrider, Breakout, En-
duro, Freeway, Ms.Pacman, Pong, Q*bert, Seaquest, Space
Invaders, and River Raid. To evaluate the impact of hierar-
chical prioritized experience replay on each single domain,
we used a subset of 4 games from the multi-task domain:
Breakout, Freeway, Pong and Q*bert.

The network architecture used to train the single-task
teacher DQN is identical to (Mnih et al. 2015). For stu-
dent network, we used the proposed architecture as shown
in Figure 1, where the convolutional layers from teacher
networks are used to generate task-specific input features
with a dimension size of 3,136. Moreover, the student net-
work has two fully connected layers, with each consisting of
1,028 and 512 neurons respectively, and an output layer of
18 units. Each output corresponds to one control action in
Atari games. Each game uses a subset of outputs and differ-
ent games may share the same outputs as long as they con-
tain the corresponding control actions. During training, the
outputs that are excluded in the game domain are discarded.

There is a separate replay memory to store experiences
for each game domain. All the experiences are generated by
an ε-greedy strategy following the student Q-network. The
value for ε linearly decays from 1 to 0.1 within first 1 million
steps. At each step, a new experience is generated for each
game domain. The student performs one mini-batch update
by sampling experience from each teacher’s replay memory
at every 4 steps of playing. When using hierarchical prior-
itized experience replay, the number of partitions for each
replay memory is set to be 5. Each partition can store up
to 200,000 experiences. When using uniform sampling, the
replay memory capacity is set to be 500,000. Overall, the
experience size for hierarchical experience replay is greater
than uniform sampling. But this size has neutral effect on the
learning performance empirically.

During the training, the network is evaluated once after
every 25,000 times of mini-batch updates on each game do-
main have been performed. To avoid the agent from mem-
orizing the steps, a random number of null operations (up
to 30) are generated at the start of each episode. For each
evaluation, the agent plays for 100,000 control steps, where
the behavior of the agent follows an ε-greedy strategy with
ε set as 0.05 (a default setting for DQN evaluation (Rusu et
al. 2016)). The average episodic rewards over all the com-
pleted episodes during evaluation are recorded to report the
performance of each policy network.

Evaluation on Architecture

The proposed architecture is compared with two baseline
architectures. The first baseline is proposed by Rusu et
al. (2016), denoted by DIST, where a set of shared con-
volutional layers is concatenated with a task-specific fully-
connected layer and an output layer. The second baseline
is the Actor-Mimic Network (AMN) proposed by Parisotto,
Ba, and Salakhutdinov (2016), which shares all the convolu-
tional, fully-connected and the output layer.

During evaluation, a policy network is created according
to each architecture on the multi-task domain. To make a
fair comparison on the architectural effectiveness, all net-
works adopt uniform sampling for experience replay and
use the same set of teacher networks. The RMSProp algo-
rithm (Tieleman and Hinton 2012) is used for optimization.
For statistical evaluation, we run each approach with three
random seeds and report the averaged results. The networks
under each architecture are trained for up to 4 million steps.
A single optimization update on the DIST architecture takes
the longest time. With modern GPUs, the reported results for
DIST consumes approximately 250 hours of training time
without taking into account of the evaluation time.

The performance for the best multi-task networks under
each architecture for each task domain is shown in Table 1.
For the multi-task networks, the performance value is eval-
uated as the percentage of the corresponding teacher net-
work’s score. For all the task domains, the proposed archi-
tecture could stably yield to performance at least as good as
the corresponding teacher DQN. Therefore, it demonstrates
considerable tolerance towards negative transfer. However,
for DIST, the performance of the multi-task student network
falls far behind the single-task teacher networks (<75%) in

1644



games Beamrider and Breakout. AMN does not learn well
in Beamrider compared to its single-task teacher network,
either. Moreover, the results in Table 1 demonstrate that the
knowledge sharing among multiple tasks from the proposed
architecture brings significant positive effect to the game En-
duro, where a performance increase of >15% is shown.

Teacher DIST AMN Proposed
(score) (% of teacher)

Beamrider 6510.47 62.7 60.3 104.5

Breakout 309.17 73.9 91.4 106.2

Enduro 597.00 104.7 103.9 115.2

Freeway 28.20 99.9 99.3 100.4

Ms.Pacman 2192.35 103.8 105.0 102.6
Pong 19.68 98.1 97.2 100.5

Q*bert 4033.41 102.4 101.4 103.9

Seaquest 702.06 87.8 87.9 100.2

Space Invaders 1146.62 96.0 92.7 103.3

River Raid 7305.14 94.8 95.4 101.2

Geometric Mean 92.41 93.5 103.8

Table 1: Performance scores for policy networks with differ-
ent architectures in each game domain.

The proposed architecture also demonstrates significant
advantage in terms of time efficiency for the learning.
Among the 10 Atari games, Breakout, Enduro, River Raid
and Space Invaders take longer time to train than others, as
the proposed architecture converges within 1 million mini-
batch steps in all other domains but those four. We show
the learning curves for different architectures on those four
games in Figure 3. Even in those games which require for
long training time, the proposed architecture could converge
significantly faster than the other two architectures. For all
of the 10 games, it could converge within 1.5 million steps,
while the other two architectures require at least 2.5 million
steps to get all games converge.

Evaluation on Hierarchical Prioritized Replay

To evaluate the efficiency of the proposed hierarchical pri-
oritized replay, denoted by H-PR, we compare it with two
other sampling approaches: uniform sampling, denoted by
Uniform, and rank-based prioritized replay (Schaul et al.
2016), denoted by PR. The four games are chosen so that
the impact of sampling on games with both slow conver-
gence (Breakout and Q*bert) and fast convergence (Freeway
and Pong) could be shown. Note that when p= 1, H-PR is
reduced to as PR, and when p is set to be the size of the re-
play memory, H-PR is reduced to as Uniform. All sampling
approaches are implemented with the proposed architecture.

The performance of the policy networks learned with dif-
ferent sampling approaches is shown in Figure 4. The games
Freeway and Pong are very easy to train. Therefore, H-
PR does not show significant advantage on these two tasks.
However, for Breakout and Q*bert which require a relatively

1Thanks for the comments from anonymous reviewer. We rerun
this baseline with three random seeds and report averaged result.

long time to converge, the advantage for H-PR is more obvi-
ous. Especially for Breakout, as the overall state visiting dis-
tribution for that game is changing quite dynamically during
the learning phase, the effect of H-PR is large. For Breakout
and Q*bert, H-PR only requires for approximately 50% of
the steps taken by Uniform to reach a performance level of
scoring over 300 and 4,000 respectively.

Sensitivity of Partition Size Parameter To investigate
the impact of the partition size parameter, p, on the learn-
ing performance of the multi-task policy network, H-PR is
implemented on the proposed architecture with varying par-
tition size, 5, 10 and 15. From the results shown in Figure
5, we observe that with different values of p, H-PR shows
obvious acceleration impact on the learning. This indicates
that the partition size parameter has a moderate impact on
the learning performance for H-PR. However, when the ca-
pacity of each partition remains to be the same, the memory
consumption increases with the partition size. Therefore, we
chose 5 as the default value.

Conclusion

In this work, we investigate knowledge transfer for deep re-
inforcement learning. On one hand, we propose a new ar-
chitecture for policy network, which introduces significant
reduction in terms of training time, and yields to perfor-
mance surpasses single-task teacher DQNs over all the task
domains. On the other hand, we propose hierarchical pri-
oritized experience replay to further accelerate the learning
of multi-task policy network, especially for those tasks that
even take very long time for single-task training. A direc-
tion of future work is to further accelerate the learning by
incorporating efficient exploration strategy.

Acknowledgments

This work is supported by the NTU Singapore Nanyang As-
sistant Professorship (NAP) grant M4081532.020.

References

Ba, J., and Caruana, R. 2014. Do deep nets really need to
be deep? In NIPS, 2654–2662.
Bucilu, C.; Caruana, R.; and Niculescu-Mizil, A. 2006.
Model compression. In SIGKDD, 535–541. ACM.
Finn, C.; Levine, S.; and Abbeel, P. 2016. Guided cost learn-
ing: Deep inverse optimal control via policy optimization.
arXiv preprint arXiv:1603.00448.
Guo, H. 2015. Generating text with deep reinforcement
learning. arXiv preprint arXiv:1510.09202.
Hinton, G.; Vinyals, O.; and Dean, J. 2014. Distilling the
knowledge in a neural network. In NIPS Workshop on Deep
Learning and Representation Learning.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016.
End-to-end training of deep visuomotor policies. JMLR
17(39):1–40.
Li, J.; Zhao, R.; Huang, J.-T.; and Gong, Y. 2014. Learn-
ing small-size dnn with output-distribution-based criteria. In
Interspeech, 1910–1914.

1645



(a) Breakout (b) Enduro (c) River Raid (d) Space Invaders

Figure 3: Learning curves for different architectures on the 4 games that requires long time to converge.

(a) Breakout (b) Freeway

(c) Pong (d) Q*bert

Figure 4: Learning curves for the multi-task policy networks
with different sampling approaches.

Li, J.; Monroe, W.; Ritter, A.; and Jurafsky, D. 2016.
Deep reinforcement learning for dialogue generation. arXiv
preprint arXiv:1606.01541.
Lin, L.-J. 1992. Reinforcement Learning for Robots Using
Neural Networks. Ph.D. Dissertation, Pittsburgh, PA, USA.
UMI Order No. GAX93-22750.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; a Rusu, A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; Petersen, S.; C. Beattie, A. S.;
Antonoglou, I.; H. King, D. K.; Wierstra, D.; Legg, S.; and
Hassabis, D. 2015. Human-level control through deep rein-
forcement learning. Nature.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning 13(1):103–130.
Pan, S. J., and Yang, Q. 2010. A survey on transfer learn-
ing. IEEE Transactions on Knowledge and Data Engineer-
ing 22(10):1345–1359.
Parisotto, E.; Ba, J.; and Salakhutdinov, R. 2016. Actor-
mimic deep multitask and transfer reinforcement learning.
In ICLR.

(a) Breakout (b) Q*bert

Figure 5: Learning curves for H-PR with diff. partition sizes.

Parr, D. A. N. F. R. 1998. Generalized prioritized sweeping.
In NIPS.
Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta,
C.; and Bengio, Y. 2015. Fitnets: Hints for thin deep nets.
In ICLR.
Rosenstein, M. T.; Marx, Z.; Kaelbling, L. P.; and Dietterich,
T. G. 2005. To transfer or not to transfer. In NIPS Workshop
on Inductive Transfer: 10 Years Later.
Rusu, A. A.; Colmenarejo, S. G.; Gulcehre, C.; Desjardins,
G.; Kirkpatrick, J.; Pascanu, R.; Mnih, V.; Kavukcuoglu, K.;
and Hadsell, R. 2016. Policy distillation. In ICLR.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2016.
Prioritized experience replay. In ICLR.
Seijen, H. V., and Sutton, R. S. 2013. Planning by prioritized
sweeping with small backups. In ICML, 361–369.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. Cambridge, MA, USA: MIT Press, 1st
edition.
Tang, Z.; Wang, D.; Pan, Y.; and Zhang, Z. 2015. Knowl-
edge transfer pre-training. arXiv preprint arXiv:1506.02256.
Tieleman, T., and Hinton, G. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In AAAI, 2094–
2100.
Zahavy, T.; Zrihem, N. B.; and Mannor, S. 2016. Graying
the black box: Understanding dqns. In ICML, 1899–1908.
Zhang, M.; McCarthy, Z.; Finn, C.; Levine, S.; and Abbeel,
P. 2016. Learning deep neural network policies with contin-
uous memory states. In ICRA, 520–527. IEEE.

1646




