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Abstract

We propose a novel approach, called FeaBoost, to image se-
mantic segmentation with only image-level labels taken as
weakly-supervised constraints. Our approach is motivated
from two evidences: 1) each superpixel can be represented
as a linear combination of basic components (e.g., predefined
classes); 2) visually similar superpixels have high probability
to share the same set of labels, i.e., they tend to have com-
mon combination of predefined classes. By taking these two
evidences into consideration, semantic segmentation is for-
mulated as joint feature and label refinement over superpix-
els. Furthermore, we develop an efficient FeaBoost algorithm
to solve such optimization problem. Extensive experiments
on the MSRC and LabelMe datasets demonstrate the superior
performance of our FeaBoost approach in comparison with
the state-of-the-art methods, especially when noisy labels are
provided for semantic segmentation.

Introduction

Image semantic segmentation (Arbelaez et al. 2012; Car-
reira et al. 2012) is one of the most fundamental challenges
in computer version. This task consists of two parts, image
segmentation and superpixel annotation (see Figure 1), that
is, grouping pixels into superpixels and then assigning each
superpixel to one of the predefined classes. In fact, the solu-
tions of these two subproblem can boost each other. On one
hand, we can extract the features of superpixels and train
a classifier to predict superpixel-level labels. On the other
hand, the segmentation results can be upgraded using the
results of superpixel annotation, since superpixels with the
same label can be assembled into a complete region.

Recently, some methods have shown promising results in
image semantic segmentation (Shotton et al. 2006; Yang,
Meer, and Foran 2007; Kohli, Torr, and others 2009; Rus-
sell et al. 2009; Ladicky et al. 2010; Lucchi et al. 2012;
Tighe and Lazebnik 2010; Long, Shelhamer, and Darrell
2015; George 2015). Most of these works concentrate on the
fully supervised setting, where each pixel in the training im-
ages need to be annotated in advance. However, it is hard to
widely apply fully supervised methods in real-world appli-
cations because collecting pixel-level labels costs enormous
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Figure 1: Top Left: original image, top right: ground truth,
bottom left: oversegmented superpixels, bottom right: the re-
sult of semantic segmentation.

time and labour. For this reason, recent works start to focus
on the weakly supervised setting, where only image-level
labels are available for training (Verbeek and Triggs 2007;
Vezhnevets and Buhmann 2010; Vezhnevets, Ferrari, and
Buhmann 2011; 2012; Liu et al. 2013; Zhang et al. 2013).
Since lots of users share their photos with tags on social
websites (e.g., Flickr), collecting plenty of images along
with image-level labels can be made automatic for weakly
supervised methods.

Although extracting weak supervision form social images
is less time-consuming, image-level labels provided by so-
cial users may be incorrect or incomplete (Tang et al. 2009).
Hence, semantic segmentation with noisy labels becomes
challenging, which has been rarely considered by most of
weakly supervised methods. Some latest works (Li et al.
2015; Niu et al. 2015) start to focus on this challenging prob-
lem and achieve promising results. Although we also focus
on semantic segmentation with noisy labels, our later ex-
perimental results show that our approach obviously outper-
forms (Li et al. 2015; Niu et al. 2015).

In this paper, we focus on proposing a novel framework
for semantic segmentation, which is motivated from two ev-
idences. Firstly, each superpixel can be represented as a lin-
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Figure 2: The flowchart of our FeaBoost approach to semantic segmentation.

ear combination of basic components (predefined classes are
considered here). Secondly, visually similar superpixels tend
to share the same set of labels (i.e., have common combina-
tion of predefined classes). By considering these two evi-
dences together, we formulate the problem of semantic seg-
mentation as joint feature and label refinement over super-
pixels. Hence, the proposed framework includes two main
components with respect to superpixels: (1) oversegmenta-
tion and feature extraction; (2) joint feature and label re-
finement (see Figure 2). Specifically, each image is over-
segmented into multiple superpixels, and their R-CNN (Gir-
shick et al. 2014) features are extracted at both global and lo-
cal levels. We further develop an efficient algorithm for joint
feature and label refinement. In this algorithm, the Lapla-
cian regularization is used to guarantee that visually simi-
lar superpixels share common combination of classes, and
the L1-norm constraint is used for noise reduction. In ad-
dition, several one-vs-all SVM classifiers are trained using
LIBLINEAR (Fan et al. 2008) to further improve the results
of semantic segmentation.

To evaluate the performance of our approach, we conduct
extensive experiments on the MSRC (Shotton et al. 2006)
and LabelMe (Liu, Yuen, and Torralba 2011) datasets. The
proposed approach is shown to achieve best results than
the state-of-the-art methods under weakly supervised set-
ting, and even outperform some fully supervised methods.
In addition, plenty of experiments are conducted with noisy
labels on the LabelMe dataset to evaluate the robustness of
our approach. The experimental results demonstrate that our
approach can make a good balance between nice semantic
segmentation and effective noise reduction.

The main contributions of our work include:

• We have proposed a robust approach to semantic segmen-
tation with noisy labels, which has been rarely considered
in the literature.

• We have made the first attempt to formulate the problem
of semantic segmentation as joint feature and label refine-
ment over superpixels.

• We have developed an efficient algorithm to solve the
joint feature and label refinement problem.

Related Work

Fully supervised semantic segmentation: In the past years,
most of related works focus on the fully supervised set-
ting for image semantic segmentation. (Shotton et al. 2006)
used a Conditional Random Field (CRF) model to incor-
porate shape, texture, color, location and edge cues into a
single unified model. Based on this typical method, lots of
extensions are proposed to modify the CRF model. (Kohli,
Torr, and others 2009) employed higher order potentials de-
fined over image segments based on color, location, texture,
and smoothness. (Russell et al. 2009) proposed a hierarchi-
cal random field model that allows integration of features
computed at different levels of the quantization hierarchy.
(Ladicky et al. 2010) further considered label co-occurrence
statistics. However, these fully supervised methods heavily
rely on pixel-level annotations, which are time-consuming
and labor-sensitive to collect.
Weakly supervised semantic segmentation: Different
from fully supervised methods, weakly supervised methods
for semantic segmentation just require image-level labels
for training. (Verbeek and Triggs 2007) presented a model
by combining the global label coupling of Probabilistic La-
tent Semantic Analysis (PLSA) with local Markov Random
Field (MRF) label interactions. (Vezhnevets and Buhmann
2010) used Semantic Texton Forest as the basic framework
and extended it for the multiple instance learning setting.
Furthermore, appearance similarity of superpixels were con-
sidered in their extended works (Vezhnevets, Ferrari, and
Buhmann 2011; 2012). (Liu et al. 2013) proposed a coher-
ent framework to cluster superpixels and assign a suitable
label to each cluster. (Xu, Schwing, and Urtasun 2014) pro-
posed a graphical model to encode the presence and absence
of a class as well as the assignments of semantic labels to
superpixels. Based on this work, (Xu, Schwing, and Urtasun
2015) proposed a unified approach that incorporates image-
level tags, bounding boxes, and partial labels.
Semantic segmentation with noisy labels: The above
weakly supervised methods for semantic segmentation as-
sume that image-level labels are correct and complete in the
training stage. However, in real-world applications, labels of
social images provided by users may be incorrect or incom-
plete. Meanwhile, it is impracticable to clean image-level la-
bels manually. Recently, some weakly supervised methods
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start to focus on how to exploit noisy labels of images for
semantic segmentation. (Li et al. 2015) extended the stan-
dard Restricted Boltzmann Machines (RBM) to a weakly
supervised version by considering the weak supervision of
image-level labels and the similarity of superpixels. (Niu
et al. 2015) proposed a weakly supervised approach from
a low-rank matrix factorization viewpoint for direct noise
reduction over superpixel-level labels.

In this paper, we also focus on image semantic seg-
mentation with noisy labels. The main difference between
the present work and the latest works (Li et al. 2015;
Niu et al. 2015) is that we have made the first attempt to
formulate semantic segmentation as joint feature and label
refinement over superpixels. Furthermore, the refined labels
of superpixels can be used to train another typical classifier
(e.g., SVM) over superpixels to further improve the seman-
tic segmentation results.

The Proposed Framework

In this paper, we propose a novel framework to solve the
problem of image semantic segmentation. As shown in Fig-
ure 2, the proposed framework consists of several compo-
nents. Firstly, Blobworld method (Carson et al. 2002) is
adopted to automatically oversegment each image into su-
perpixels, and extract their R-CNN features at both local and
global levels. We will introduce this component in detail in
Section 5. Secondly, the features and labels of superpixels
are jointly refined for semantic segmentation. Finally, sev-
eral one-vs-all SVM classifiers are trained with the refined
labels of superpixels to further improve the semantic seg-
mentation results. In this section, we focus on joint feature
and label refinement, also called FeaBoost.

Initial Label Estimation

Since pixel-level labels are unknown under the weakly su-
pervised setting, we first infer the superpixel-level labels
from the annotations of all the images (the annotations of
test images can be predicted in advance). Supposed that all
the images have been oversegmented into N superpixels, we
extract a M -dimensional feature vector of each superpixel
and obtain a set of feature vectors X = {x1, x2, . . . , xN} ∈
RM×N . Let Y = {y1, y2, . . . , yN}T ∈ RN×C represent
the initial labels of superpixels, where C denotes the num-
ber of predefined classes. For any superpixel si belonging
to an image I , if I is annotated with label j, then yij = 1,
otherwise yij = 0. We further smooth Y by the area of su-
perpixels. Let ρi denote the ratio of superpixel si occupying
image I , then we define the smoothed labels of superpixels
Ỹ = {ỹ1, ỹ2, . . . , ỹN}T as

ỹij = ρiyij

which means that larger superpixels play an more impor-
tant role in semantic segmentation. The smoothing proce-
dure can sufficiently decrease the effect of tiny superpixels.

Feature Refinement

The main evidence of feature refinement is that each su-
perpixel can be regarded as a linear combination of ba-

sic components, here predefined classes are used. The fea-
ture vector set of predefined classes is denoted as U =
{u1, u2, . . . ,uC} ∈ RM×C . For any superpixel si, the lin-
ear combination can be represented as

xi ≈
C∑

k=1

ukvik (1)

where
∑C

k=1 ukvik denotes the refined feature vector of si,
and vi = {vi1, vi2, . . . , viC} denotes the coefficient vector.
For example, a superpixel si from “tree” can be represented
as the combination of “tree”, “grass” and “sky”. It is ob-
vious that “tree” is quite different from “sky” visually, but
looks alike to “grass” from color. This means “grass” de-
notes more than “sky” to represent the feature of si, but
much less than “tree” from texture and position. Since the
coefficient of “tree” is maximal in the vector vi, this super-
pixel can be annotated with label “tree”. We further repre-
sent Eq. (1) in matrix form as X ≈ UV T , and define the
feature refinement term as

‖X − UV T ‖2F (2)

where the Frobenius-norm constraint guarantees that the re-
fined features UV T should not change too much from X .

Label Refinement

The set of superpixels is modeled as a graph G = {V,W},
with the vertex set V being defined as X and the similarity
matrix W = {wij}N×N . The element of W can be calcu-
lated based on the Gaussian kernel as

wij =

{
exp(−‖xi−xj‖22

σ2 ) , xj ∈ Nk(xi)
0 , otherwise

where Nk(x) denotes the k-nearest set of superpixel x.
Based on the graph model, we define the Laplacian matrix L
of the graph as L = D−W , where D is an N ×N diagonal
matrix with Dii =

∑N
j=1 wij .

The evidence of label refinement is that visually similar
superpixels have higher probability to share the same set of
labels. We thus define a Laplacian regularization term as

1

2

N∑
i,j=1

wij ‖vi − vj‖22 = tr(V TLV ) (3)

which means that similar superpixels should share common
combination of predefined classes. In addition, we define a
L1-norm fitting constraint term as

‖V − Ỹ ‖1 (4)

which can perform direct noise reduction over Ỹ due to L1-
norm regularization (Elad and Aharon 2006; Mairal, Elad,
and Sapiro 2008; Wright et al. 2009).

Joint Feature and Label Refinement

Now the features and labels of superpixels can be jointly
refined by considering Eqs. (2-4) together. Specifically, the
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objective function of joint feature and label refinement is de-
fined as follows:

F(U, V, F ) = ‖X − UV T ‖2F + λ1tr(V
TLV )

+ λ2‖V − F‖2F + λ3‖F − ˜Y ‖1 (5)

where λ1, λ2 and λ3 are positive hyperparameters, and
U ≥ 0, V ≥ 0, F ≥ 0. Here, we define F as an intermediate
representation of V for fast optimization. Since the above
objective function is not convex over U , V and F simulta-
neously, we will develop an efficient algorithm for solving
minU,V,F F(U, V, F ) in Section 4.

Efficient FeaBoost Algorithm
To minimize the objective function F(U, V, F ) in Eq. (5),
we divide it into two subfunctions:

F1(U, V, F ) = ‖X − UV T ‖2F + λ1tr(V
TLV )

+ λ2‖V − F‖22 (6)

F2(V, F ) = λ2‖V − F‖2F + λ3‖F − ˜Y ‖1 (7)

The optimization problem minU,V,F F(U, V, F ) can be
solved in two alternate steps as follows:

U∗, V ∗ = argmin
U,V

F1(U, V, F
∗) (8)

F ∗ = argmin
F

F2(V
∗, F ) (9)

with F ∗ being initialized as Ỹ . We first focus on how to
minimize F1(U, V, F

∗), which can be rewritten as:

F1 = tr((X − UV T )(X − UV T )T ) + λ1tr(V
TLV )

+ λ2tr((V − F ∗)(V − F ∗)T ) (10)

= tr(XXT )− 2tr(XV UT ) + tr(UV TV UT )

+ λ1tr(V
TLV ) + λ2tr(V V T )− 2λ2tr(V F ∗T )

+ λ2tr(F
∗F ∗T ) (11)

Updating U , V : Inspired by (Cai et al. 2011), let A =
{αik}M×C and B = {βjk}N×C denote the Lagrange mul-
tipliers for uik ≥ 0 and vik ≥ 0, and the Lagrange L1 can
be written as:

L1 = tr(XXT )− 2tr(XV UT ) + tr(UV TV UT )

+ λ1tr(V
TLV ) + λ2tr(V V T )− 2λ2tr(V F ∗T )

+ λ2tr(F
∗F ∗T ) + tr(AUT ) + tr(BV T ) (12)

The partial derivatives of L1 with respect to U and V are:

∂(L1)

∂(U)
= −2XV + 2UV TV +A (13)

∂(L1)

∂(V )
= −2XTU + 2V UTU + 2λ1LV

+ 2λ2V − 2λ2F
∗ +B (14)

Considering the KKT conditions αikuik = 0 and βjkvjk =

Algorithm 1: FeaBoost
Input: The feature matrix X , the initial labels of

superpixels Ỹ , the Laplacian matrix L
Output: The refined labels V ∗

1 Initialize F ∗ = Ỹ ;
2 repeat
3 repeat

4 uik ← uik
(XV )ik

(UV TV )ik
,

5 vjk ← vjk
(XTU+λ1WV+λ2F

∗)jk
(V UTU+λ1DV+λ2V )jk

;
6 until The best U∗ and V ∗ are found;
7 F ∗ = soft thr(V ∗, Ỹ , λ3/λ2)
8 until The convergence criterion is satisfied;
9 return V ∗;

0, we can get the following equations

− (XV )ikuik + (UV TV )ikuik = 0 (15)

− (XTU)jkvjk + (V UTU)jkvjk + λ1(LV )jkvjk

+ λ2Vjkvjk − λ2F
∗
jkvjk = 0 (16)

Now the best U∗ and V ∗ can be obtained using the following
updating rules:

uik ← uik
(XV )ik

(UV TV )ik
(17)

vjk ← vjk
(XTU + λ1WV + λ2F

∗)jk
(V UTU + λ1DV + λ2V )jk

(18)

Updating F : As a basic L1-norm optimization problem,
Eq.(9) has an explicit solution as:

F ∗ = soft thr(V ∗, Ỹ , γ) (19)

where γ = λ3/λ2. Here, z = soft thr(x, y, γ) is a soft-
thresholding function:

z =

{
z1 = max(x− γ, y) , f1 ≤ f2
z2 = max(0,min(x+ γ, y)) , f1 > f2

where f1 = (z1 − x)2 + 2γ|z1 − y| and f2 = (z2 − x)2 +
2γ|z2 − y|. The complete FeaBoost algorithm for semantic
segmentation is outlined in Algorithm 1.

Oversegmentation and Feature Extraction

In Section 3, we assume that all the images have been over-
segmented into multiple superpixels in advance. In this sec-
tion, we will introduce how to oversegment each image into
multiple superpixels and then extract the features of each su-
perpixel for our FeaBoost algorithm.

The Blobworld method (Carson et al. 2002) is first
adopted to group pixels within an image into superpixels.
Specifically, we extract a 6-dimensional feature vector of
color and texture for each pixel, and then model each image
as a Gaussian mixture model. During grouping all the pix-
els, the number of superpixels can be automatically detected

1477



Figure 3: Example results obtained by our approach on the MSRC dataset. Black regions are unlabeled in ground truth.

by a model selection principle. To ensure the oversegmenta-
tion, the original Blobworld method is slightly modified: 1)
the number of superpixels is initially set to a relatively large
value; 2) model selection is made to be less important during
oversegmentation. After oversegmentation, we will focus on
feature extraction over superpixels.

For each superpixel, we extract the local and global R-
CNN features (Girshick et al. 2014) just as (Xu, Schwing,
and Urtasun 2015). Specifically, we first capture a 8,192-
dimensional feature of each superpixel within the bound-
ing box as well as the masked box, containing local texture
and shape information. In addition, the bounding box is ex-
panded to the whole image as well as the masked box to take
the global context, superpixel size and location information
into consideration. This gives another 8,192-dimensional
feature vector. Totally, we obtain a 16,384-dimensional fea-
ture vector for each superpixel.

Experimental Evaluation

In this section, the performance of our approach is evalu-
ated on two datasets: MSRC (Shotton et al. 2006) and La-
belMe (Liu, Yuen, and Torralba 2011). Two group of exper-
iments are conducted for performance evaluation: semantic
segmentation with predicted labels, and semantic segmenta-
tion with noisy labels.

Experimental Setup

The MSRC dataset consists of 591 images and 21 classes.
This dataset is standardly split into into 276 training images
and 256 test images. Experiments are also conducted on a
more challenging dataset - LabelMe (also called as SIFT
Flow). The LabelMe dataset contains 2,688 outdoor images
with 33 outdoor classes, including sky, tree, grass, building,

Table 1: Comparison to the state-of-the-art methods for se-
mantic segmentation on the MSRC dataset.

Methods Supervision Accuracy (%)
(Shotton et al. 2008) FS 67
(Russell et al. 2009) FS 75
(Lucchi et al. 2012) FS 76
(Yao et al. 2012) FS 79

(Zhang et al. 2013) WS 69
(Liu et al. 2013) WS 71
(Xie et al. 2014) WS 73
(Niu et al. 2015) WS 71
(Xu et al. 2015) WS 73

Ours (FeaBoost) WS 77
Ours (FeaBoost+SVM) WS 78

and the standard split of 2,488 training images and 200 test
images is used for this dataset. We totally obtain about 7,000
superpixels for the MSRC dataset and 33,000 superpixels for
the LabelMe dataset by oversegmentation.

It should be noted that only image-level labels of the train-
ing set are known, and the annotations of the test images are
unseen during the training and test stages. To infer the anno-
tations of the test images, a 4,096-dimensional CNN feature
is extracted from each image, and C one-vs-all SVM clas-
sifiers are trained using LIBLINEAR for prediction. Since
the pixel-level labels are unknown under the weakly super-
vised setting, it is impossible to select the hyperparameters
by cross-validation. In this paper, the hyperparameters are
uniformly set as k = 30, λ1 = 900, λ2 = 1 and λ3 = 0.15
for the two datasets.
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Table 2: Comparison to the state-of-the-art methods for se-
mantic segmentation on the LabelMe dataset.

Methods Supervision Accuracy (%)
(Liu et al. 2011) FS 24
(Myeong et al. 2012) FS 32
(Tighe et al. 2014) FS 39
(Yang et al. 2014) FS 49
(Long et al. 2015) FS 51

(Vezhnevets et al. 2012) WS 22
(Liu et al. 2013) WS 26
(Niu et al. 2015) WS 33
(Li et al. 2015) WS 41
(Xu et al. 2015) WS 41

Ours (FeaBoost) WS 39
Ours (FeaBoost+SVM) WS 42

Semantic Segmentation with Predicted Labels

An overview of the semantic segmentation results is given in
comparison with the state-of-the-art in Tables 1 and 2, and
some example results are also shown in Figure 3. Here, two
main settings are considered: FS means the fully supervised
setting with pixel-level labels, and WS means the weakly su-
pervised setting with image-level labels. The typical quanti-
tative measure is average per-class accuracy, i.e., computing
the percentage of correctly classified pixels for each class
and then averaging over all the classes. For fair comparison,
the released results of the compared methods are directly
cited. In addition, to further improve our FeaBoost, C one-
vs-all SVM classifiers are trained using LIBLINEAR with
the refined labels of superpixels.

We first make observations on MSRC according to Ta-
ble 1. Our approach is shown to achieve at least 5% rela-
tive improvements over the other weakly supervised meth-
ods (Zhang et al. 2013; Liu et al. 2013; Xie, Peng, and Xiao
2014; Niu et al. 2015; Xu, Schwing, and Urtasun 2015), and
even perform better than most of fully supervised methods
(Shotton, Johnson, and Cipolla 2008; Russell et al. 2009;
Lucchi et al. 2012). On the more challenging LabelMe
dataset, our approach is also shown to be competitive to the
state-of-the-art (Li et al. 2015; Xu, Schwing, and Urtasun
2015) (see Table 2). Note that only image-level labels of the
training set are taken as weakly supervision, and infer the
annotations of the test set, different from (Li et al. 2015)
that exploits the ground-truth labels of all the images for se-
mantic segmentation.

Semantic Segmentation with Noisy Labels

To verify the robustness of our approach, extensive exper-
iments are further conducted on the LabelMe dataset with
noisy image-level labels. Specifically, we randomly select
p ∈ {20, 40, . . . , 100} percents of images and add r ∈
{1, 2, 3} random labels to each selected image, which is
mostly related to (Li et al. 2015; Niu et al. 2015). Since each
image in the LabelMe dataset is annotated with average 4.4
labels according to the ground-truth, the randomly added la-
bels means strong noise in semantic segmentation.

Table 3: Comparison with different percentages p of images
with r noisy tags per-image on the LabelMe dataset.

Methods r
Noise ratio p (%)

0 20 40 60 80 100

Ours
1 47 43 42 41 38 35
2 47 42 36 33 29 24
3 47 37 35 32 26 20

(Li et al. 2015)
1 41 40 37 34 32 30
2 41 36 33 30 25 21
3 41 35 31 27 22 18

(Niu et al. 2015)
1 33 31 30 29 28 27
2 33 30 28 26 24 21
3 33 28 26 23 22 18

For fair comparison, we exploit the ground-truth labels of
all the images for the clean setting (p = 0), just as (Li et
al. 2015; Niu et al. 2015). The comparison results are pre-
sented in Table 3, and we can make several observations as
follows. Firstly, our approach achieves 47% accuracy with
none noisy tags, 6% higher than (Li et al. 2015) and 14%
higher than (Niu et al. 2015). This observation gain verifies
the effectiveness of our approach in the clean setting. Sec-
ondly, with the noise ratio increasing, all the three methods
encounter the performance degradation as expected, but our
approach always performs the best in all cases. This obser-
vation confirms that our approach is the most effective in
noise reduction. Thirdly, our approach achieves 35% accu-
racy with one noisy label added into all the images, even
better than (Niu et al. 2015) with none noisy labels. Finally,
our approach with 3 noisy tags even performs slightly better
than (Li et al. 2015) with 2 noisy tags under different noise
ratios. These observations show that our approach can make
a good balance between nice semantic segmentation and ef-
fective noise reduction.

Conclusion

In this paper, we propose a novel framework FeaBoost for
image semantic segmentation under weakly supervised set-
ting. A new approach is provided to semantic segmentation
by jointly refining the features and labels of superpixels. The
extensive experiments on two benchmark datasets demon-
strate the promising performance of our approach. In addi-
tion, the experimental results with noisy labels show the ro-
bustness of our approach. In the future work, we will extend
our approach to other challenging problems (e.g., image an-
notation) for joint feature and label refinement.
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