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Abstract

We examine the surveying problem, where we attempt to pre-
dict how a target user is likely to respond to questions by
iteratively querying that user, collaboratively based on the
responses of a sample set of users. We focus on an active
learning approach, where the next question we select to ask
the user depends on their responses to the previous ques-
tions. We propose a method for solving the problem based
on a Bayesian dimensionality reduction technique. We em-
pirically evaluate our method, contrasting it to benchmark
approaches based on augmented linear regression, and show
that it achieves much better predictive performance, and is
much more robust when there is missing data.

Introduction

Consider the task of identifying people’s political opinions
through a poll, such as those conducted by political parties
trying to determine whether their agenda is likely to be fa-
vored by potential voters. A question in such surveys typ-
ically asks people to indicate their agreement with a cer-
tain political stance, such as: “we should improve the level
of free medical care, even at the expense of raising taxes”,
“we should have tighter gun control legislation”, “abortions
should be illegal”. Some surveys simply ask participants to
indicate whether they agree or disagree with items, whereas
others use a scale for the degree of agreement.

Asking each participant all the questions in the survey
achieves complete knowledge of the opinions of the par-
ticipants. However, this is very costly, especially when the
bank of questions is large. Given a limited budget, one pos-
sibility for lowering costs is exploiting correlations between
responses to different questions. For example, if for a large
sample of participants we observe that the response to one
question is strongly correlated with the response to another
question, we can ask further survey participants only the first
question, and use their response to predict the response to the
other question. More generally, one may choose a subset of
the questions in the bank to ask, and predict the responses to
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the remaining questions based on the responses to the asked
questions.

Asking all the participants the same set of questions may
be suboptimal. Instead, we may tailor the next question to
ask a participant based on their responses to the previous
questions. Such a design is based on the active learning
paradigm, where the learning algorithm can interactively
query users so as to best predict the responses to all ques-
tions in the bank.

The Active Surveying Problem We consider a set of d
survey questions, which can be answered by a sample of n
users. The responses form an n × d matrix. We denote the
set of possible responses to each question as L. In the case
where participants may only agree or disagree with a query
we have L = {0, 1}, but in the general case we may have L
ordinal labels: L = {0, . . . , L − 1} (representing for exam-
ple, a scale for the degree of agreement ranging from com-
pletely disagreeing to completely agreeing with the item).
Our data has the form of a matrix D ∈ Ln×d. However, the
data may be partial, with some entries in D being missing
(unobserved).

Our goal in active surveying is to minimize the predic-
tion error given a limited budget of questions we are allowed
to pose to a new survey participant. We consider the case
where the budget of questions to ask is smaller than the total
number of questions in the survey, so we need to generate
a prediction regarding multiple questions which cannot be
posed to the survey participant due to the limited question
budget. As we know the responses to the questions we ac-
tually ask the participant, we can clearly achieve zero error
on these questions, so we wish to minimize the error on the
unasked questions.

As opposed to a standard supervised learning problem,
we are allowed to decide on the next question to ask after
we have observed the participant’s response to the previous
questions. Furthermore, we are allowed to leverage knowl-
edge regarding correlations in the responses to several ques-
tions, based on the information obtained from past survey
participants. Similarly to many dimensionality-reduction-
based approaches, we represent the correlations between the
users’ responses to the various questions using a low dimen-
sional structure. We assume that a user u and a question q
can be represented as an h-dimensional vector (where h is
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Algorithm 1 Active Surveying Framework
Predict: D,x, j
Input: DatasetD ∈ Ln×d (D may be partially observed),
a partially observed vector x ∈ Ld for the target user and
an index j
Output: A prediction of the value of xj

Acquire: D,x
Input: D and x as for Predict
Output: An index of the next element of x that should be
acquired

some low dimension), vu ∈ R
h for the user and vq ∈ R

h

for the question, so that the user’s response to the question,
Du,q , is determined mostly by the dot product between these
vectors, vTu vq . Thus we assume there exist latent matrices
U ∈ R

h×d and V ∈ R
h×n, so thatDi = UTVi+μ+ε, where

Di and Vi are the i-th columns ofD and V , respectively, rep-
resenting the i-th user; μ ∈ R

d is the (latent) model bias and
ε ∼ N (

0, σ2I
)

is the (latent) model noise.
We focus on the task of actively determining the responses

of a target user. We examine algorithms that query the target
user for their responses to questions, one at a time, as long as
the budget allows. After observing a response, and based on
the responses of other users, the algorithm must predict the
responses of the target user to each of the as yet unobserved
questions, and decide which response to acquire next (i.e.,
choose the next question to pose to the target). Formally,
given a new partially-observed response vector for the target
user, x = (x1, . . . , xd) ∈ Ld, where xj’s value is observed
only if j ∈ O for some O ⊂ [d], the algorithm must predict
the values of xj for j /∈ O, and choose the next element of
x to acquire.

Our active surveying framework is given in Algorithm 1.
Every method for our active surveying problem must imple-
ment the predict and acquire procedures.

Differences Between Active Surveying and Collaborative
Filtering We note that the active surveying problem we
pose here has some resemblance to collaborative filtering-
based recommender systems. Such systems attempt to rec-
ommend items to a user. In the collaborative filtering ap-
proach, the system identifies users who are “similar” to the
target user in the sense that they have bought similar items to
theirs in the past; the system then recommends items that the
target user has not yet examined, but that many users similar
to the target have bought.

A key difference between active surveying and collabo-
rative filtering-based recommender systems is that in active
surveying we are interested in how the target is likely to re-
spond to all the questions, and not just in locating a few
items that the target user is very likely to rate highly. More
specifically, in a collaborative filtering scenario, the system
does not need to obtain information regarding items that are
likely to have low ratings—if the target user is not likely
to give high ratings to items a and b, there is no point in
determining whether a is better than b or vice versa. Thus,
collaborative filtering can be designed to focus its attention

and obtain very accurate ratings for items that highly match
the user’s preferences, and not waste effort or questions on
items that are already known not to match the user’s prefer-
ences (Mitzenmacher, Pagh, and Pham 2014).

In contrast, in active surveying our goal is to predict the
user’s responses to all the unobserved questions. It is thus
not sufficient to simply locate a few items with which the
user is very likely to agree—we need to have as reliable an
estimate as we can to how the user is likely to rate each of
the remaining questions.

Our Contribution We propose an approach for solving
the active surveying problem using a Bayesian active learn-
ing framework. We use a probabilistic graphical model,
called DRAL (Dimensionality Reduction Active Learning)
akin to various forms of Bayesian matrix factorization, rep-
resenting each participant and question as a vector in a low-
dimensional space, so that the prediction regarding the re-
sponse of a participant to a question depends on the inner
product between the user and question vectors. Given the
responses of users to questions, and given the partial re-
sponses of the target user to some questions, we use DRAL
to obtain posterior distributions for the low-dimensional user
and question vectors, and can thus predict the target’s re-
sponses to the remaining questions. Given these distribu-
tions we can also estimate the reduction in uncertainty we
expect to achieve by any possible next query, allowing us to
select the next best question to ask.

We empirically evaluate our model on a dataset consist-
ing of the responses of participants to political questions,
contrasting it with alternative approaches based on linear re-
gression and PCA. We show that DRAL achieves a better
tradeoff between prediction quality and the number of user
queries, allowing us to significantly reduce the number of
questions we ask survey participants. Furthermore, we show
that as opposed to these alternative approaches, DRAL is a
robust method that is resistant to a loss in data: while the
performance of the alternatives drops quickly as some re-
sponses are missing, DRAL still achieves high-quality pre-
dictions even when large proportions of the data are missing.

Solving the Active Surveying Problem

We now discuss several methods for active surveying. We
begin with baseline approaches based on linear regression,
considering both the setting where there is complete data,
and the setting where there is missing data. We then present
our Bayesian approach, based on the probabilistic graphical
model DRAL, and discuss several alternatives for the Ac-
quire step, based on the model’s inferred posterior distribu-
tions.

Linear Regression-Based Methods

Given the data D for a sample of users, one can use lin-
ear regression to predict the responses of a target user. First,
consider the case where D is fully observed, and a target
user x. Denote by O the entries that we have observed for
the target user (i.e., O contains the indices of the questions
for which we have already queried the target’s responses).
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Algorithm 2 Linear Regression— Fully Observed Dataset
Predict: D,x, j
O = the set of observed indexes of x
Solve argminbj ,wk,j∑n

i=1

(
bj +

∑
k∈O wk,j · Di,k −Di,j

)2
return bj +

∑
k∈O wk,j · xk

Acquire: D,x
O = the set of observed indexes of x
for j /∈ O in do
ej = training error for predicting xj

end for
return argmax ej

As the questions are believed to be correlated with one an-
other, using D we can train a linear regression model for
each of the variables that are not in O, and predict x’s re-
sponses using these models. More precisely, for an unob-
served entry of x we apply linear regression and approxi-
mate xj = bj+

∑
k∈O wk,j ·xk for j /∈ O, when the weights

bj and wk,j are the least-square estimators learned from D.
A plausible way to choose the next question to ask the tar-

get is acquiring the element about which the model is most
uncertain, with the greatest training error on the data from
D. We note that this method for selecting the next query (the
Acquire procedure) works for any prediction method (lin-
ear regression or otherwise). The pseudocode for this simple
linear regression-based active surveying is given in Algo-
rithm 2.

Handling Missing Data So far we only considered the
case where we observe all the entries for the sample users,
and only have missing data for the target user. How should
we augment the linear regression-based method to handle
missing entries in D? When predicting the unobserved en-
tries for x, we might assume that the linear relations between
x’s entries still resemble the relations observed for the sam-
ple users of D, so a reasonable solution is to apply adap-
tations of linear regression for missing variables. We briefly
review two existing methods for linear regression with miss-
ing data: the Complete Case Method (CCM) and the Missing
Indicator Method (MIM) (Jones 1996).

The Complete Case Method (CCM) CCM simply ex-
cludes from D any column that is not completely ob-
served (Jones 1996). However, in many settings there may
not even exist a single sample user for which we observe
all the responses. Given a partially observed vector for the
target x, we wish to predict the xj’s for j /∈ O, trying to lin-
early approximate xj = bj +

∑
k∈O wk,j · xk. As we train

models based only on the features (questions) O (observed
for the target x), we can include a sample user s if all the
responses in O ∪ {j} are observed for s (even if there are
missing entries for some question q /∈ O). Still, even this
relaxed criterion may leave us with no users.

Given a parameter K, we seek for a subset of questions
Õ ⊂ O such that there are at least K sample users for which
we have observed the responses of all of these |Õ| questions

Algorithm 3 The Complete Case Method
Predict: D,x, j, K
O = the set of observed indexes of x
Find a maximal Õ ⊂ O, such that there is I ⊂ [n], |I| ≥
K and for every i ∈ I , k ∈ Õ ∪ {j}: Di,k is observed.
Solve argminbj ,wk,j∑

i∈I

(
bj +

∑
k∈Õ wk,j · Di,k −Di,j

)2
return bj +

∑
k∈Õ wk,j · xk

Algorithm 4 Missing Indicator Method
Predict: D,x, j
qi,k equals to 1 iff Di,k is observed
Solve argminbj ,wk,j∑

i:qi,k=1

(
bj +

∑
k �=j wk,j · Di,k · qik

+
∑

k �=j w̃k,j · Di,k · (1− qik)−Di,j

)2

return xj = bj +
∑

k∈O wk,j · xk +
∑

k/∈O w̃k,j

(i.e., none are missing). After locating such sample users, we
simply apply the linear regression active surveying method
for full data. The pseudocode for the CCM active survey-
ing method is given in Algorithm 3 (Predict), while the pro-
cedure for Acquire remains as in the full data case (Algo-
rithm 2).

The Missing Indicator Method (MIM) The MIM
method augments the original data with a “survival” indi-
cator variable per each original variable (Jones 1996). We
denote by qi,k the survival indicator of Di,k, defined as
qi,k = 1 if Di,k is observed, and 0 otherwise. We now ap-
proximate xj = bj +

∑
k∈O wk,j · xk +

∑
k/∈O w̃k,j . The

weights bj , wk,j and w̃k,j are the least-square estimators
learned from D̃ = {zi ∈ D̃ : qij = 1}.

Using MIM for active surveying simply requires making
predictions using MIM linear regression (Algorithm 4), and
using the Acquire procedure for full data (of Algorithm 2).

We also compared our approach (DRAL) to PCA-based
methods. As our approach outperforms PCA even when
comparing PCA on the full data against our method in the
75% missing data case, and due to lack of space, we elabo-
rate on that in the full version of the paper.

The Dimensionality Reduction Active Learning
(DRAL) Model

The model we use is called Dimensionality Reduction for
Active Learning (DRAL). DRAL is a probabilistic graph-
ical model resembling other Bayesian matrix factorization
models (Agarwal and Chen 2010; Porteous, Asuncion, and
Welling 2010; Stern, Herbrich, and Graepel 2009).

Graphical models were introduced by Pearl (2014), and
we use the more general framework of factor graphs (see,
e.g., (Koller and Friedman 2009)) in order to describe the
factored structure of the assumed joint probability distribu-
tion among the variables. Once the graphical model is de-
fined and the values of the observed variables are set, in-
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ference algorithms (such as approximate message-passing
methods) can be used in order to infer the marginal probabil-
ity distribution of the unknown variables (Koller and Fried-
man 2009).

Our model assumes that the users and questions can be
characterized by h underlying “traits”. The number of di-
mensions h of the model, i.e., the size of the user and ques-
tion trait vectors, is determined prior to the construction of
the model. We model the process by which a user produces
a response r to a question using the inner product between
two h dimensional vectors of unobserved (latent) variables,
one for the user and one for the question. Thus we assume
that: a) every user has a latent trait vector and a latent bias
(this bias captures the fact that some participants, on aver-
age, give higher response labels); and b) each question has a
latent trait vector and a latent bias. Information such as the
latent vector and bias of the users and questions are mod-
eled as unobserved variables, whereas the given responses
to a question by a user is modeled as an observed variable.

The data for DRAL is a (partially observed) matrix D ∈
Ln,d, and the partially observed response vector for the tar-
get user x ∈ Ln. We denote by Di,j the response that user
i gives to question j, so the model identifies each row of D
and x as users, and the columns of D are the questions.

DRAL associates with every user i a latent user trait vec-
tor si ∈ R

h and a latent bias parameter bsi ∈ R. Similarly, it
associates with every question j a latent question trait vec-
tor tj ∈ R

h and a latent bias parameter btj ∈ R. In addition,
for each user DRAL maintains user-specific threshold vec-
tor θi ∈ R

L+1, which divides the latent rating axis into L
consecutive intervals representing an ordinal scale (θi,0 and
θi,L are fixed to −∞ and +∞, respectively). For Boolean
responses, this is simply a single threshold (reflecting the
boundary between negative and positive prediction).

The response that the i-th user gives to the j-th ques-
tion is modeled as: Di,j = r ⇐⇒ N (

sTi tj + b, β2
) ∈

[θi,r, θi,r+1], where N denotes a Gaussian distribution and
b = bsi + btj is the bias of the user and the question and β
is the standard deviation of the observation noise.

To do inference on the model, we first define prior dis-
tributions for variables of interest. We assume independent
Gaussian distributions for the user vector traits p (si,k) =
N (si,k;μs, σ

2
s) and bias p (bsi) = N (bsi ;μs, σ

2
s), and

question vector traits p (tj,k) = N (tj,k;μt, σ
2
t ), and bias

p
(
btj

)
= N (btj ;μs, σ

2
t ). The Gaussian prior allows us to

specify a range of values using two parameters, and to admit
simple approximate inference.

The joint distribution of all the variables factorizes as:

p (si, tj , bs, bt, r̃, r) = p (r|r̃) · p (r̃|si, tj , bs, bt) ·
·p (bsi) · p

(
btj

) ·∏h
k=1 p (si,k) ·

∏h
k=1 p (tj,k) ,

where r̃ it the latent rating before adding noise, and is
given by p

(
r̃|si, tj , bsi , btj

)
= I

(
r̃ = sTi tj + bsi + btj

)
,

and p (r|r̃) = N (
r, β2

)
. The indicator function I (·) is equal

to 1 if the proposition in the argument is true and 0 if it is
false. The posterior distribution over si, tj , bsi and btj , given
the observed rating ri,j , is given by summing out the latent

d (questions)

inner product

bias

traits ( )traits ( )

bias

n (users)

+

+

Gaussian

Gaussian Gaussian

Gaussian Gaussian

Response

Instance 

Figure 1: Factor graph for the DRAL model

variables:

p
(
si, tj , bsi , btj |ri,j

) ∝
∫
r̃

p
(
si, tj , bsi , btj , r̃, ri,j

)
dr̃. (1)

A factor graph representation of DRAL is given in Figure 1.

We performed the inference in the DRAL model us-
ing message passage algorithms, implemented in Infer.NET
(Minka et al. 2014). Specifically, we used Expectation Prop-
agation (EP) (Minka 2001), so inference was approximate.
EP calculates marginal distributions on a given factor graph
by iteratively computing messages along edges that propa-
gate information across the factor graph. As EP runs itera-
tively until convergence, the runtime is linear in the model’s
size, which in the case of DRAL is O(n · d). We note
that DRAL can handle fully-observed datasets as well as
partially-observed datasets without any modification.

Active Surveying Using DRAL We now show how to use
DRAL for active surveying. Consider a target user with a set
of partially observed responses x (responses to the previous
queries performed by the algorithm, denoted by O). Denote
by s the latent vector representing this target user.

Prediction For every unanswered question j /∈ O we have
a posterior probability distribution: pj (r) = Pr [xj = r] =
Pr

[
θr ≤ N

(
sT tj + b, β2

) ≤ θr+1

]
. We can predict the

value of any unobserved entry by the expected value of r:
E[r] =

∑L−1
r=0 r · pj(r).

Acquisition For every latent variable we also obtain a pos-
terior distribution, which in our approximate inference pro-
cedure is captured as a Gaussian posterior distribution. The
uncertainty of the model is captured by the entropy. The en-
tropy of the j-th question is:

h (pj) = −
L−1∑
r=0

pj (r) log (pj (r)) (2)

and the average uncertainty of all unobserved questions is:
h (x) = 1

N−|O|
∑

j /∈O h (pj).
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• All couples should be given equal status whether they are
heterosexual or homosexual.

• Homosexual couples should not be allowed to adopt or raise
children.

• The government should subsidize religious education.
• The government should increase unemployment benefits.

Figure 2: An example of a few questions from the question-
naire. The users had been asked to indicate whether they
agree or disagree with each such statement.

We propose three methods for choosing the next question
to acquire for the target user.

Information Gain Selection Given the posterior distri-
butions, we can choose the next question to ask the tar-
get so as to maximize the expected information gain (IG).
For an unobserved question j∗ /∈ O and r ∈ L, the
expected entropy of the model given that x∗

j = r is
h
(
x|x∗

j = r
)
= 1

N−|O|+1

∑
j /∈O,j �=j∗ h (pj)|xj∗=r, where

h (pj)|xj∗=r is the posterior entropy of the j-th element
given xj∗ = r. Thus, the expected information gain
from acquiring element j∗ is ig(x, j∗) =

∑L−1
r=0 pj∗ (r) ·

h
(
x|x∗

j = r
)
. We can maximize the information gain by se-

lecting the unobserved question that maximally reduces the
posterior entropy: argminj∗ /∈O ig(x, j∗).

The Greedy Heuristic A drawback of information gain
selection is its runtime. With b possible choices for the next
query (i.e., questions where the target’s response was not
yet observed), and with L possible labels for each ques-
tion, the information gain method builds b · L models and
recomputes approximate posterior distributions in each. As
this is very costly, a simple alternative is to use the data in-
stance with the greatest model uncertainty (Huang 2007).
Thus, the greedy heuristic acquires the maximal entropy ele-
ment: argmaxj∗ /∈O h(pj∗) where h(pj∗) is as defined above
in Equation 2.

The Minimum Variance Heuristic The goal of informa-
tion gain selection is to minimize the uncertainty regarding
the unobserved questions. An alternative is to try and best
place the target user in the latent trait space. A low variance
of the posterior distribution of the user trait vector suggests
that the model is more certain about the responses that the
user would give to the questions, while a high variance sug-
gests that the model is uncertain about the user’s responses.
Thus, the Minimum Variance heuristic chooses the next el-
ement of x to acquire as the element resulting in a minimal
posterior total variance of the latent user variables.

Empirical Analysis

We now describe our empirical evaluation of DRAL and lin-
ear regression approaches. We first describe the dataset, then
discuss our algorithm evaluation experiments.

Dataset Our dataset is based on a political stance ques-
tionnaire, posed to 1,500 users from the United States,

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

DRAL

Linear Regression

(a) Linear Regression and
DRAL with IG

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Information Gain

Greedy

Minimum Variance

(b) Different heuristics of
DRAL model

Figure 3: The MSE as a function of the number of exposed
entries, where D is fully observed

sourced from Amazon Mechanical Turk, a prominent
crowdsourcing platform. The questionnaire consists of 56
political statements, and users had to indicate whether they
agree or disagree with each such statement. The statements
were about various political topics, including religion, abor-
tion, gay/lesbian rights, public health care, and immigration.
Several example items are given in Figure 2, and the com-
plete questionnaire is available in the full version of the pa-
per.

Experiment Settings In each of our experiments, we ran-
domly selected 500 of our 1,500 users as a sample popu-
lation. Out of a sample of 500 users, we randomly chose a
single one to be the target user. Thus, in each experiment the
sample user data,D, is a 499× 56 binary matrix. Each entry
in the matrix is either 1 (the user agreed with the statement),
or 0 (the user disagreed with the statement).

For all of the Gaussian distributions we use the standard
Gaussian distribution, with zero mean and unit variance.

The size of the trait vectors can be determined using
Bayesian model selection techniques (see, e.g., (Lewenberg
et al. 2016)). In practice, DRAL with different h values
shows similar results, and therefore we set h = 5; the re-
sults with different h values can be found in the full version
of the paper.

In each trial, we allow an evaluated algorithm to examine
the responses of the target one at a time. Once the algorithm
has observed k entries, we ask it to predict the remaining
d − k entries, and to select the next entry to examine. We
measure the performance of the algorithms, for a given num-
ber k of observed responses by their MSE on the remaining
d−k entries (as our data contains Boolean responses, this is
simply the number of mispredicted entries).

We first examine the case of complete data for the training
users, i.e., all responses for the non-target users are given in
advance, so D is fully observed. We then discuss missing
data for the training users. Our analysis is done by mak-
ing a certain proportion p of the entries unobserved: given
a parameter p, we take each entry in D and eliminate it
with probability 1 − p. We used the following values for
p: {0.25, 0.5, 0.75, 0.95}.

Our results are presented as MSE plots, where the x-axis
corresponds to the number of entries k an algorithm is al-
lowed to observe, and the y-axis is the MSE achieved on the
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Figure 4: The MSE of Linear Regression (CCM and MIM)
and DRAL model (with IG selection), where every entry in
D is observed with probability p

remaining d−k entries (so a lower value indicates better per-
formance). Each point in the plots is generated by averaging
the MSE over 500 trials (in each of which we selected a dif-
ferent sample of training users and a different target user).

Thus the algorithm is represented as a curve, indicating
the possible tradeoff between the amount of examined en-
tries and the performance achieved.

Full Data We compared the performance of DRAL and
linear regression (with training error-based Aquire) for the
complete data case (D is fully observed). Figure 3(a) con-
trasts the performance of DRAL (with information gain se-
lection) and linear regression. It clearly shows that DRAL
achieves a much better tradeoff between prediction quality
and the number of entries examined. Figure 3(b) compares
DRAL under different methods for acquiring the next entry
to be examined. It shows that the information gain method
for selecting the next entry outperforms the Minimum Vari-
ance heuristic. Interestingly, the Greedy heuristic achieves
a very similar performance to the information gain method,
despite having much lower computational overhead.

Missing Data We now turn to the missing data case, where
entries for the training users only survive (remain observed)
with probability p. Figure 4 (analogous to Figure 3(a)) con-
trasts the performance of DRAL and the Linear Regression
method (with either the Complete Case Method, CCM, or
the Missing Indicator Method, MIM, for handling missing
entries), for various survival probabilities p: 0.25 and 0.75
in Figures 4(a) and 4(b) respectively. (Plots for p: 0.5 and
0.95 can be found in the full version of the paper). When we
ran linear regression with CCM, we set K = 50, so we learn
from a dataset with at least 50 complete case users.

The results show that the performance of the linear
regression-based methods degrades very quickly as a larger
proportion of data entries become unobserved. In contrast,
DRAL is much more robust to the elimination of train-
ing user entries. Although the performance does degrade
slightly, DRAL still achieves very good performance even
when a very large proportion of the entries are eliminated.

As in the full data case, under all entry survival probabili-
ties, the best performance is achieved by information gain
selection; however, in most cases the performance of the
greedy heuristic is still very close.
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Figure 5: The MSE for different p values

Figure 5 depicts the robustness of DRAL (information
gain selection) (5(a)) and Liner Regression with the Com-
plete Case Method (5(b)) against the loss of data, under dif-
ferent survival probabilities. Though decreasing the survival
probability slightly increases the error of DRAL (for any
number of target user queries), the prediction degradation
is slight, as opposed to Linear Regression methods, where
performance quickly drops as entries become unobserved.

Related Work

Active learning relates to many problems where a learning
algorithm is given control of the data acquisition process so
as to require less training to achieve good performance (Set-
tles 2010). Some scenarios allow the learner to request labels
for any unlabeled instance, or even synthesize queries (An-
gluin 1988; 2004): Namata et al. (2012) dealt with surveying
strategies where the goal is to obtain the labels of nodes in
a network structure; Sharara, Getoor, and Norton (2011) ap-
plied active surveying methods for identifying opinion lead-
ers. Garnett et al. (2012) proposed active surveying methods
for identifying users belonging to a certain class and for pre-
dicting the portion of the dataset belonging to a certain class.

In other scenarios, unlabeled instances arrive in a stream
and the learner has to decide whether to obtain a costly label
(Cohn 1994): Yu (2005) proposed active learning with an
SVM algorithm that receives at each round a set of unlabeled
samples, and selects the most ambiguous ones, and various
adaptive sourcing approaches have been proposed for skill-
based domains (Kosinski et al. 2012; Bachrach et al. 2012b;
2012a; Salek, Bachrach, and Key 2013).

Active learning was studied in collaborative filter-
ing (Boutilier, Zemel, and Marlin 2002; Harpale and Yang
2008); however, as we discussed, active surveying is very
different from collaborative filtering, as we are required to
achieve a low prediction error in many unasked questions
(as opposed to collaborative filtering, where we are only re-
quired to find one item which is likely to obtain a high rat-
ing).

There are several common methods for query selection.
In uncertainty sampling, the instance that the learner is least
certain how to label is the next one to be queried (Lewis
and Catlett 1994; Settles and Craven 2008). Another strat-
egy is to identify the instance that would impart the greatest
change to the current model if we knew its label (Settles,
Craven, and Ray 2008). Other approaches select the sample
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generating the lowest expected error on other examples (Roy
and McCallum 2001), and selecting the sample reducing the
model variance (MacKay 1992; Schein and Ungar 2007).

Our DRAL model assumes the full response matrix can
be decomposed as a product of two latent matrices. Prob-
abilistic Matrix Factorization has been studied and sev-
eral approximate inference methods were suggested, includ-
ing Markov Chain Monte Carlo (Salakhutdinov and Mnih
2008), Latent Dirichlet Allocation (Agarwal and Chen 2010)
and approximate message passing (Stern, Herbrich, and
Graepel 2009).

Conclusions

We studied the active surveying problem, and proposed
solving it using the DRAL model. We contrasted our ap-
proach with alternatives based on augmented linear regres-
sion, showing that our method achieves better predictive per-
formance, and is more robust to missing data.

Our problem is reminiscent of other active learning sce-
narios examined in the past, but in contrast to the papers
discussed in the related work section, we examine the active
surveying setting, where the learner issues queries regard-
ing the same target user, whose responses it tries to predict.
Furthermore, our approach is based on maximizing expected
information gain, computed from the posterior distributions
in our probabilistic graphical model.

Several questions remain open for further research. First,
does our model achieve good performance and robustness
to data loss in other domains, and in particular in making
predictions for recommender systems? Second, could non-
Bayesian approaches, perhaps not based on linear regres-
sion, achieve comparable performance? Finally, could an al-
ternative Bayesian model or an alternative graphical model
outperform our model for active surveying?
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