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Abstract

In this paper, we tackle the problem of segmenting out a
sequence of actions from videos. The videos contain back-
ground and actions which are usually composed of ordered
sub-actions. We refer the sub-actions and the background as
semantic units. Considering the possible overlap between two
adjacent semantic units, we utilize label distributions to anno-
tate the various segments in the video. The label distribution
covers a certain number of semantic unit labels, representing
the degree to which each label describes the video segment.
The mapping from a video segment to its label distribution is
then learned by a Label Distribution Learning (LDL) algo-
rithm. Based on the LDL model, a soft video parsing method
with segmental regular grammars is proposed to construct a
tree structure for the video. Each leaf of the tree stands for a
video clip of background or sub-action. The proposed method
shows promising results on the THUMOS’14 and MSR-II
datasets and its computational complexity is much less than
the state-of-the-art method.

Introduction
Action detection or localization of real-world videos has
been an active research topic due to its extensive application
in video surveillance, human computer interaction, video re-
trieval, etc. Even under the circumstance that the action cat-
egory of a video is known, it is still rather difficult to extract
the actions since they could differ greatly in position and du-
ration. In real-world videos, the actions are often composed
of several continuous sub-actions (Pirsiavash and Ramanan
2014). Analogous to the grammar structure of a sentence,
the sub-action, action and background (non-action segment)
could all be regarded as grammar components of a video. In
such case, it is reasonable to facilitate the grammar struc-
ture of the action for better action localization. This process
is called video parsing (Pirsiavash and Ramanan 2014). For
convenience of presentation, both the background and the
sub-actions are uniformly called semantic units in the rest of
this paper.

The video parsing algorithms can be roughly grouped into
two families, i.e., the sliding window based method and the
inference based method. Most of the sliding window based
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methods train a classification model to seperate the action
and the background. For example, an SVM model (Oneata,
Verbeek, and Schmid 2014; Wang et al. 2015) is trained
to score all the video segments in the sliding widows of
multiple length in the test videos and Non-Maximum Sup-
pression (NMS) (Neubeck and Van Gool 2006; Hoai, Lan,
and De la Torre 2011) is adopted to obtain the optimum
global parsing of the videos. However, most methods of this
kind ignore the graduality of the actions and restrict the de-
tected action length within only a few choices of the window
length. Moreover, the inference based methods often utilize
the inner structure of actions to construct the state transi-
tion model for video parsing. A semi-Markov model (SMM)
(Shi et al. 2011) is proposed to model the state transition be-
tween actions and the viterbi-like dynamic programming al-
gorithm is adopted to solve the inference problem. But no
sub-actions are considered. An HMM method with latent
variables (Tang, Li, and Koller 2012) is proposed to con-
struct a state transition model among the sub-actions and
the maximum posteriori inference is adopted to obtain the
best parsing of the test video. However, it is not clear how
to use it to detect multiple actions in one video. Segmen-
tal Regular Grammars (Pirsiavash and Ramanan 2014) pro-
poses a tree structure with segmental regular grammars to
present a video. Each leaf in the tree represents a clip of
sub-action or background, but the procedure of finding the
worst-offending parsing in the training process of the struc-
tured SVM is quite time-consuming. Moreover, it ignores
the ambiguity among the semantic units and uses a single
label to describe a video segment.

It is worth noting that the semantic units are often ordered
and interlaced with each other in an action. For example,
Fig. 1 shows 10 key frames in a video about high jump.
There are generally two sub-actions in the high jump ac-
tion, i.e., approaching and taking off. The graduality among
the three semantic units (background, approaching and tak-
ing off) often makes it hard to locate the exact boundaries
among them. See, for example in Fig. 1, the key frames (b)
and (c) between background and approaching, (e) and (f)
between approaching and taking off, or (h) and (i) between
taking off and background.

Different from previous work assuming hard boundaries
among the semantic units, this paper proposes a video pars-
ing method which assumes flexible soft boundaries among
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Figure 1: Example of the ambiguity among the semantic units of the high jump action. The first row shows the 10 key frames of
the video. The second row shows the label distribution corresponding to each key frame, where blue, yellow and red represent
the background, the approaching sub-action and the taking off sub-action, respectively. In the third row the same set of colors
are used to represent the three semantic unit labels and the areas with mixture color represent the ambiguity between two
adjacent semantic units.

the semantic units. In order to do this, we adopt a recently
proposed machine learning paradigm called Label Distri-
bution Learning (LDL) (Geng 2016). The label distribu-
tion covers a certain number of labels, representing the de-
gree to which each label describes the instance. The de-
scription degrees of all the labels sum up to 1. LDL has
been successfully applied to many real applications, such
as age estimation (Geng, Zhou, and Smith-Miles 2007;
Geng, Yin, and Zhou 2013), head pose estimation (Geng
and Xia 2014), multi-label ranking for natural scene im-
ages (Geng and Luo 2014), facial expression recognition
(Zhou, Xue, and Geng 2015), prediction of crowd opinion
on movies (Geng and Hou 2015) and emotion analysis from
texts (Zhou et al. 2016). In this paper, a label distribution
is assigned to each video segment. Different description de-
grees in the label distribution correspond to different seman-
tic units. Higher description degree indicates that the cor-
responding semantic unit label is more relevant to the seg-
ment. Some examples of the label distribution can be found
in the second row of Fig. 1, where each label distribution
corresponds to one key frame (standing for a segment) of
the video. By label distribution, the proposed video parsing
method allows a single segment to be associated with multi-
ple semantic units with different importance, which can ex-
plicitly represent the ambiguity among the semantic units.
The main contributions of this paper include:

1. LDL is adopted to model the ambiguity among the se-
mantic units, which is ignored by most previous work. A
bi-directional sliding process is proposed to generate the
label distributions for the video segments in the sliding
windows.

2. The time-consuming grammar inference process is
avoided in the training process. Instead, an efficient opti-
mization algorithm is adopted to build the mapping from
a segment to its label distribution.

3. Based on the prediction of the label distribution model,
a tree structure with explicit semantic meaning is con-
structed for the test videos.

The rest of this paper is organized as follows. First a soft
video parsing method based on LDL is proposed. Then the

experimental results are reported. Finally, conclusions and
discussions are given.

Soft Video Parsing by LDL
LDL with Bi-directional Sliding Window
As mentioned before, in real-world videos, the boundary be-
tween two adjacent semantic units is often ambiguous. Con-
sequently, a single semantic label might be insufficient to
describe a particular video segment. Instead, we propose to
use a label distribution (Geng 2016) to do that. The label
distribution indicates the relative importance of the corre-
sponding semantic units in each video segment. As we slide
a window through the whole video, the label distribution of
the acquired video segment varies at the same time. In this
way, the graduality among the semantic units can be directly
modeled. However, since the ground truth of most datasets
usually just provides the positions of the start and end frames
of each action, the transition points among the sub-actions
are unknown as well as the label distributions for the video
segments in the sliding windows. In order to deal with these
problems, we propose in this section an iterative method to
build an LDL model via a bi-directional sliding window pro-
cess.

Firstly, the transition points among the sub-actions are ini-
tialized by dividing each action into equal-sized sub-actions.
For example, as shown in Fig. 2, two sub-actions a1 and a2
of the action A are equal-sized and b stands for the back-
ground. Considering the general case, we suppose two ad-
jacent segments x and x′ are labeled by the semantic units
yi and y′i, respectively. For the forward sliding case, x′ is to
the right of x. For the backward sliding case, x′ is to the left
of x. The sliding window is initialized as x0 = x and keeps
the length unchanged while sliding. The window is moved
p − 1 times (p is a constant) equidistantly toward x′ before
reaching the union boundary of x and x′ (the p-th shift may
reach the union boundary). The label distribution for the t-th
window xt (t = 0 . . . p− 1) is generated by

d
y′
i

xt =
t× λ×min(l(xt), l(x

′))
p× l(xt)

, (1)

dyixt
= 1− d

y′
i

xt , (2)

dyxt
= 0, y /∈ {yi, y′

i}, (3)
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Figure 2: Examples for (a) forward sliding window and (b)
backward sliding window.

where l(x) is the length of x and λ ∈ [0, 1] is a param-
eter that controls the ambiguity level, which is set to 1.0
without specific statement. Each time, the window is moved
λ × min(l(xt), l(x

′))/p frames. So, the t-th window will
move t× λ×min(l(xt), l(x

′))/p frames into x′. Thus dy
′
i

xt

actually calculates the ratio of the number of overlapping
frames between xt and x′ to the total number of frames in
xt.

For example in Fig. 2, the first a1 segment slides forward
in (a) and slides backward in (b), where p is set as 10 and the
first a1 segment is set twice the length of the first b segment.
Each time, a label distribution [dbxt

da1
xt

da2
xt
] is generated by

Eq. (1)-(3) for the t-th window (t = 0 . . . 9). In this way, 10
segments with corresponding label distributions are gener-
ated for forward sliding and backward sliding, respectively.

Through the bi-directional sliding window process, each
semantic unit segment will generate 2p − 1 different seg-
ments with their corresponding label distributions (one is
overlapping), all of which are then used as the training set
to learn a mapping from a segment to its label distribution
by LDL (Geng 2016). Let X = Rq denote the input feature
space, Y = {y1, y2, · · · , yc} denote the c class labels. Given
a training set S = {(x1,d1), (x2,d2), · · · , (xn,dn)},
where xi ∈ X , di = [dy1

xi
, dy2

xi
, · · · , dyc

xi
], the goal of LDL

is to find the parameter vector θ in a conditional mass func-
tion p(y|xi;θ) that can generate a label distribution simi-
lar to di. Kullback-Leibler (KL) divergence is often used
as the distance measure between the ground truth and the
predicted distributions. One reasonable choice of p(y|x;θ)
is the maximum entropy model (Berger, Pietra, and Pietra
1996). Then the limited-memory quasi-Newton method L-
BFGS (Liu and Nocedal 1989) is facilitated to find the opti-
mal θ, which is denoted as θ∗.

After the initial LDL model is trained, it is reversely used
to update the initial transition points among the sub-actions.
Suppose τ represents the vector composed by the position of
the transition points within an action, xi

τ represents the seg-
ment corresponding to the i-th sub-action determined by τ ,

d(xi
τ ;θ

∗) represents the label distribution predicted by the
LDL model for xi

τ , then the optimum sub-action transition
points for this action is determined by

τ ∗ = argmin
τ

(∑
i

DKL(Ti||d(xi
τ ;θ

∗))

)
, (4)

where DKL represents the KL divergence and Ti is the tem-
plate label distribution for the i-th sub-action, where the de-
scription degree of the i-th sub-action is 1 and those for all
the other semantic units are 0.

When the best sub-action transition points τ ∗ for all the
actions in the training videos are calculated by Eq. (4) in
an exhaustive searching method, the bi-directional sliding
window process is again applied to the updated segments to
generate a new training set with label distributions, based
on which a new LDL model is trained. This process repeats
until the average difference of the transition points between
two adjacent iterations is smaller than a predefined thresh-
old. When the training process is finally converged, we ob-
tain an LDL model that can be later used to predict the label
distribution for any given segment. The whole iterative train-
ing process is summarized in the Training part of Algorithm
1.

Grammar Model
As traditional regular grammars (Chomsky 1956) allows at
most one terminal to be on the right side of the production
rule, the Segmental Regular Grammars (SRG) (Pirsiavash
and Ramanan 2014) is proposed for video parsing, where
the production rules may generate any length of terminals:
X → Y w1:z, X → w1:z , where z stands for the length of
the terminal w. For the sake of simplicity, we omit the sub-
script in this paper and use a terminal to stand for a certain
number of frames. Thus a video can be parsed by recursively
applying the production rules of SRG. For example, for the
high jump action shown in Fig. 1, the production rules of the
context-free grammars may be: S → SAb, S → b, A →
a1a2, where b stands for the background, a1 and a2 stand
for the approaching and taking off sub-actions, respectively.
By adding dummy nonterminals, the production rules could
be converted to SRG which contains at most one nonter-
minal on the right side of the rule followed by a terminal:
S → b, S → Ab, A → Ca2, C → Sa1. Thus each
video can be parsed by SRG starting from S and a binary
tree structure would be constructed with each leaf as one of
the semantic units b, a1 or a2.

Each of the SRG rule r ∈ {X → Y w} has an associ-
ated score s(v, r, ĵ, j), which measures the degree the k-
long (k = j− ĵ+1) segment of the test video v matches the
semantic unit w, where ĵ and j are the start and end frame
of the k-long segment, respectively. The score is calculated
by

s(v, r, ĵ, j) = −DKL(Tr||d(xμk ;θ
∗)), (5)

which is the negative KL divergence between the template
distribution Tr for the rule r and the predicted distribution.
Tr is defined similarly as in Eq. (4), where the description
degree for w is 1 and those for all the other labels are 0. As-
sume μk represents the range from ĵ to j, then xμk

stands
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Algorithm 1 Soft Video Parsing
Training:
Inputs:

Φ: the training set {(vi,γi) | 1 ≤ i ≤ n}, where vi is
the i-th training video, and γi is its ground truth anno-
tations of the actions;
ε: the convergence threshold.

Outputs:
θ∗: the parameter vector of the LDL model.

1: Initialize all the sub-action transition points by equally
divide the actions of each video in Φ and δ as +∞;

2: while δ > ε do
3: Apply the bi-directional sliding window process to

each video in Φ to generate an LDL training set;
4: Calculate θ∗ by L-BFGS;
5: Update the sub-action transition points by Eq. (4);
6: δ = the average difference of the current transition

points from those of the last iteration;
7: end while
8: return θ∗;

Testing:
Inputs:

v: the test video;
θ∗: the parameter vector of the LDL model;
ρl, ρu: the minimum and maximum semantic unit
length.

Outputs:
Γ: the predicted parsing for v.

1: π[X, j] = −∞, ∀ j ∈ {ρl, ρl + 1, . . . , l(v)};
2: j = ρl;
3: while j ≤ l(v) do
4: for k = ρl : min(ρu, j) do
5: ĵ = j − k + 1;
6: for r ∈ {X → Y w} do
7: Calculate s(v, r, ĵ, j) by Eq. (5);
8: end for
9: end for

10: Calculate π[X, j] by Eq. (6);
11: end while
12: return the optimal parsing tree Γ;

for the corresponding video segment. The predicted distri-
bution of the video segment d(xμk

;θ∗) is calculated by the
maximum entropy model and θ∗ is obtained from the Train-
ing part of Algorithm 1. Moreover, we can see from the SRG
rule r ∈ {X → Y w} that all the nonterminals start from the
first frame, so the score of the best parsing from frame 1 to
j, π[X, 1, j], can be simplified as π[X, j]. Assume that the
semantic unit w is at least ρl and at most ρu frames long,
then for each frame j, we may search k (the length of w)
from ρl to min(ρu, j) and each possible rule for transition
at j − k to find the best transition point and rule for frame 1
to j. Thus, π[X, j] can be recursively calculated by

π[X, j] = max
k=ρl...min(ρu,j)

r∈{X→Y w}

mj−k · π[Y, j − k] + s(v, r, ĵ, j)

mj−k + 1
,

(6)

where mj−k is the number of semantic unit segments in Y
from frame 1 to j − k. Thus the fraction item in Eq. (6)
stands for the average score of all the mj−k + 1 segments
from frame 1 to j. Assuming j to be the end frame of a
test video, we would obtain the whole parsing of the video
recursively. To improve efficiency, we calculate the π[X, j]
with j from 1 to the end frame of the video by the dynamic
programming process similar to the standard SRG method
(denoted by SSRG) (Pirsiavash and Ramanan 2014), where
Eq. (5) and Eq. (6) are both different, and store the best tran-
sition point j − k for each rule r. The detailed process is
summarized in the Testing part of Algorithm 1.

After that, the best parsing tree of the video could be in-
ferred as follows. Assuming j as the end frame of a test
video, we find the rule of the highest score π[X, j] from
all possible rules r ∈ {X → Y w} and use the rule’s cor-
responding transition point to replace the j. This process
repeats until reaching the start frame of the video. Each
time in the process we obtain a semantic unit segment of
the video. Finally we get the best parsing tree encoded as
Γ = {(rt, jt) : t = 1 . . . N}, where N is the total number
of the semantic units in the parsing tree of the video, jt is the
end frame of t-th segment and rt is the rule whose terminal
instances the segment.

It should be noted that the dynamic programming infer-
ence is also involved in training of the SSRG (Pirsiavash
and Ramanan 2014), while in our method, the training is via
the LDL with bi-directional sliding window process. The
complexity of the training process of these two algorithms
are compared as follows. Both our method and SSRG are
trained by iterating between learning the model parameters
and updating the latent transition points among the sub-
actions. The maximum iteration number is set as the same
for both algorithms. The complexity of updating the latent
transition points is also same for both algorithms. Thus, we
only need to compare the Structured SVM used in SSRG
and the L-BFGS in our method. Assume there are n training
videos and each video has at most ns semantic units, then at
most n((2p − 1)(ns − 1) + 1) segments can be generated
by the bi-directional sliding process. Thus, the complexity
of L-BFGS is O(nαpns), where α is the maximum number
of correction matrices stored for the calculation of the Hes-
sian matrix, which is usually smaller than 20. As for Struc-
tured SVM, the computational complexity is O(n2nrρunv),
where nr is the number of possible rules, ρu is the maximum
length of a semantic unit, and nv is the maximum length of
a video. Since ns � nv , and αp � nnrρu (usually nr ≥ 3
and ρu ≥ 150), the training of our method is much faster
than that of SSRG.

Experiments
Methodology
Dataset We conduct our experiments on two bench-
mark datasets: THUMOS 2014 Detection Challenge dataset
(Jiang et al. 2014) and MSR-II Action dataset (Yuan, Liu,
and Wu 2011). We discard the videos which only contain
actions in the THUMOS’14 dataset and use the union of the
validation set and the test set as our dataset since we aim
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at separating the actions and the background. The dataset
contains 20 realistic sport actions and the total video length
is more than 12 hours. Only the start and end frame labels
of each action in the videos are annotated in the ground
truth. The duration of action varies considerably from 0.2
seconds to 98.2 seconds. The number of actions in one
video is within the range from 1 to 218. The MSR-II Action
dataset contains 54 untrimmed video sequences recorded in
a crowded environment, with an average length of 51 sec-
onds. The videos include three categories of actions: hand
waving, hand clapping and boxing.

Feature representation A bag-of-words (BoW) repre-
sentation of the space-time interest points (STIP) feature
(Laptev et al. 2008) is calculated for each video segment
for its efficiency and effectiveness. The method of additive
kernels (Vedaldi and Zisserman 2012) is applied to approxi-
mate a X 2 kernel for the BoW feature to maintain efficiency
while increasing the discriminative power. The priori knowl-
edge of the length of each semantic unit is appended to the
BoW feature. For the i-th video segment xi in the video,
we define a vector ψ(xi) = [1,l(xi),l(xi)

2]

Ẑ
, where Ẑ is a

normalization constant set as the square of mean length of
the training videos. If the BoW feature is denoted by φ(xi),
then the final feature for xi is [φ(xi),ψ(xi)].

Baselines and evaluation We compare against the state-
of-the-art method based on Standard SRG (SSRG) (Pirsi-
avash and Ramanan 2014) and the re-scoring non-maximum
suppression (RNMS) method (Wang et al. 2015), which is
specialized for action localization. In SSRG, a latent struc-
tured SVM method is adopted to train the model and a dy-
namic programming method is used to infer a tree structure
with a single label for each video segment. The RNMS trains
an RBF-χ2 kernel SVM to seperate the action and back-
ground and adopts non-maximum suppression with zero
overlap to find the higher scoring segments in all the can-
didate sliding windows.

We conduct 5-fold cross validation on the two datasets.
For SSRG and our method (denoted by SP for Soft Parsing)
we use the training set of the first fold to select the opti-
mal number of sub-action via 3-fold cross validation. The
optimal number is chosen from 1, 2 or 3 for each action
category. After that, the optimal sub-action number is used
for the rest folds. As for the parameters in SSRG and SP,
the minimum semantic unit duration ρl is set as 10 frames
to eliminate the small fluctuation. For different numbers of
sub-actions in each action, 1, 2 and 3, the maximum seman-
tic unit duration ρu is set as 300, 200 and 150, respectively
and for the background, ρu is set as 300. As for RNMS, the
parameter C of SVM is set by 3-fold cross validation on
the training set of the first fold. It is chosen from the range
C ∈ {3−2, 3−1, · · · , 37} (Wang et al. 2015). Moreover, the
length of candidate sliding window is chosen from 10, 20,
· · · , 300 frames and the sliding step is set as 10 frames.
Other parameters are set the same as in SSRG and SP.

The mean AP index of PASCAL 2012 (Everingham et al.
2011) and the mean frame labeling accuracy of 5-fold cross
validation are adopted to evaluate the algorithms. An action

detection is considered a true positive if its ratio of the in-
tersection over the union with the ground truth is over 0.4,
as it is consistent with visual inspection (Pirsiavash and Ra-
manan 2014). The confidence score is used to rank the video
segments for the AP index. In our method (SP), it is calcu-
lated as follows. For each sub-action in the action, we cal-
culate the KL divergence between the template distribution
and its predicted distribution obtained by the maximum en-
tropy model. Then the mean negative value of all the KL di-
vergences is regarded as the confidence score for the whole
action.

Results
The comparative results of RNMS, SSRG and our method
(SP) in the THUMOS’14 dataset on two measures, AP
and frame labeling accuracy, are tabulated in Table. 1. The
percentages of improvement over RNMS and SSRG are
shown in the parentheses right after the performances of
our method. The pair-wise t-tests with the significance level
0.1 are performed for each action. The •/� after the per-
formance of SP means that SP performs significantly better
than RNMS/SSRG, while the ◦/� means that SP performs
significantly worse than RNMS/SSRG. Absence of symbols
means that the performances of SP and RNMS/SSRG are
not significantly different. As can be seen in Table. 1, on the
AP measure, SP performs significantly better than RNMS on
10 actions and significantly better than SSRG on 6 actions.
The improvement over RNMS/SSRG could be as high as
1464%/157% (on bask-dunk/clif-dive). In average, the AP
of SP in 20 kinds of actions is 135%/69% higher than that
of RNMS/SSRG. On the Frame Labeling Accuracy, SP per-
forms significantly better than RNMS/SSRG on 19/15 ac-
tions and significantly worse than RNMS/SSRG on 0/1 ac-
tion. The improvement over RNMS/SSRG could be as high
as 526%/140% (on base-pitch), and the average Frame La-
beling Accuracy of SP is 132%/25% higher than that of
RNMS/SSRG.

Both SSRG and SP perform better than RNMS on 15 out
of 20 actions on the two measures as they divide the action
into sub-actions, which is consistent with the fact that these
sports generally involves two or three steps. For example,
the basketball dunk action are generally composed of tak-
ing off and falling down sub-actions and the hammer throw
action often include the swinging, turning and throwing sub-
actions. Moreover, considering the ambiguity among the se-
mantic units, SP performs better than SSRG on 17 out of
20 actions on the two measures. For example, in the javelin
throw action, the three semantic units (background, running
and throwing) are interlaced with each other and it is hard to
differentiate the exact boundary among them.

There are a few cases where our method does not perform
the best. For example, our method SP performs worse than
RNMS on the ’long-jump’ action in AP. Considering the
running sub-action occupies most time of the long-jump ac-
tion, regarding long-jump as a whole without specially deal-
ing with the sub-actions may be more advantageous. More-
over, SP performs worse than SSRG on the ’billiards’ ac-
tion in AP. The background, striking and rolling sub-actions
seem to have less overlap with each other, which accords
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Table 1: Average Precision (AP) (%) and Frame Labeling Accuracy (%) for the 20 kinds of sports in the THUMOS’14 dataset.

Names
AP Frame Labeling Accuracy

RNMS SSRG SP SP w. OAL RNMS SSRG SP SP w. OAL
base-pitch 2.0 6.6 10.7 (435%,62%) 20.6(93%) 12.9 33.6 80.8 (526%,140%)•� 81.4(1%)
bask-dunk 1.1 12.9 17.2 (1464%,33%)• 20.1 (17%) 27.0 55.7 71.6 (165%,29%)•� 71.8 (0%)
billiards 2.4 3.7 3.1 (29%,-16%) 5.8 (87%) 17.4 54.9 74.6(329%,36%)•� 75.4(1%)
clean-jerk 13.4 8.7 20.1 (50%,131%)� 26.7 (33%) 40.2 43.4 58.5(46%,35%)•� 62.0 (6%)
clif-dive 3.6 14.6 37.5 (942%,157%)•� 37.6 (0%) 25.8 59.4 74.3(188%,25%)•� 74.3(0%)
cric-bowl 1.0 3.2 6(500%,87%) • 12.3(105%) 16.2 50.4 77.2(377%,53%)•� 78.6(2%)
cric-shot 0.3 2.8 4.2(1300%,50%)• 7.6(81%) 14.8 56.4 78.7(432%,40%)•� 80.1(2%)
diving 3.4 8.9 22.5 (562%,153%)•� 29.1 (29%) 31.0 57.0 69.6 (125%,22%)•� 70.9 (2%)
fris-catch 7.9 6.3 9.9 (25%,57%)� 12.6 (27%) 27.9 57.0 61.2 (119%,7%)• 66.1(8%)
golf-swing 11.5 10.6 12.2(6%,15%) 18.2(49%) 51.7 59.2 54.5 (5%,-8%) 61.8 (13%)
hamm-throw 9.2 17.4 41.1 (347%,136%)•� 42.1 (2%) 32.0 48.7 63.8 (99%,31%)•� 63.8 (0%)
high-jump 8.2 12.2 24.1(194%,98%)• 26.5(10%) 28.1 52.2 63.8 (127%,22%)•� 63.8 (0%)
jave-throw 8.3 21.1 22.4 (170%,6%)• 26.6 (19%) 23.7 46.2 64.6 (173%,40%)•� 64.6(0%)
long-jump 35.3 18.1 26.7(-24%,48%) 37.2(39%) 33.6 47.5 66.1 (97%,39%)•� 67.7 (2%)
pole-vault 16.3 15.4 32(96%,108%) 32.9(3%) 37.9 52.5 61.9 (63%,18%)•� 62.5(1%)
shotput 12.9 13.9 15.7 (22%,13%) 18.1(15%) 37.9 51.5 60.9 (61%,18%) •� 61.7 (1%)
socc-pena 5.7 16.5 17.8 (212%,8%) 20.5(15%) 21.2 53.2 65.8 (210%,24%)•� 68.4 (4%)
tenn-swing 2.0 6.2 6.9 (245%,11%) • 6.9(0%) 24.5 66.9 58.4 (138%,-13%)•� 64.4 (10%)
disc-throw 5.9 11.5 25.5 (332%,122%)•� 27.1 (6%) 35.4 56.3 56.9 (61%,1%)• 62.3 (9%)
voll-spik 5.1 6.0 9.8 (92%,63%) 14.4 (47%) 30.5 54.5 56.7 (84%,4%)• 59.8 (5%)

Average 7.8 10.8 18.3 (135%,69%) 22.1 (21%) 28.5 52.8 66.0 (132%,25%) 68.1 (3%)

better with the hard boundary assumption in SSRG.
As for the MSR-II action dataset, on the two measures

SP performs significantly better than RNMS and SSRG on
all three actions. On the AP measure, the average perfor-
mance is improved by 456% and 166% respectively and
on the Frame Labeling Accuracy measure, the average per-
formance is improved by 408% and 16% respectively, as
shown in Table. 2. The three actions in the dataset are all
composed of repetitive movements, which can be regarded
as sub-actions. Considering the sub-actions in the actions,
SP and SSRG perform better than RNMS. By using the la-
bel distribution to model the graduality among the semantic
units, SP further improve the performance of SSRG on all
three actions.

Moreover, we experiment with different ambiguity level λ
for each action from 0 to 1 with the increment 1/8 to reveal
different ambiguity of different actions in the THUMOS’14
dataset. Note that λ = 0 stands for the situation that we
do not slide the window backward or forward and only use
the initial label distribution of the window. Experimental re-
sults show that different actions perform best on different
ambiguity levels. For example, as shown in Fig. 3, the ten-
nis swing action performs best when λ = 1. The transition
between swing and the hit sub-actions of the tennis swing
action are quite smooth and the boundary between them is
rather difficult to differentiate. The diving action performs
best when λ = 0. As can be seen from the videos that most
of the diving actions happen suddenly since most of the div-
ing videos are a collection of highlights of diving. Thus the
action has little ambiguity with the background. The javelin
throw and the billiards actions perform best when λ = 0.75
and λ = 0.25, respectively. Their transitions among the se-
mantic units are relatively smooth but still differentiable. In

Table. 1, we compare the performance of SP with Optimal
Ambiguity Level (OAL) with the performance of SP (where
λ = 1). As can be seen, by using the optimal ambiguity
level, the average AP of SP can be further improved by 21%,
and the average Frame Labeling Accuracy can be further im-
proved by 3%.

Conclusion
In this paper, we propose a soft video parsing method based
on label distribution learning. A bi-directional sliding win-
dow process is used to generate the label distributions for
different video segments, and the efficient L-BFGS algo-
rithm is used to learn the mapping from a video segment to
its label distribution. Then, a soft grammar parsing method
is proposed to parse the given test videos in linear-time,
which is practical for long stream videos. We experiment
on 2 benchmark video datasets with various actions and du-
ration and prove the effectiveness of our soft video parsing
method. We show that the ambiguity among the semantic
units can be well modeled by the label distribution and dif-
ferent actions might have different optimal ambiguous levels
among the semantic units.
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Table 2: Average Precision (AP) (%) and Frame Labeling Accuracy (%) for the 3 kinds of actions in the MSR-II action dataset.

Names
AP Frame Labeling Accuracy

RNMS SSRG SP RNMS SSRG SP
hand clapping 4.9 5.5 25.7(424%,367%)•� 13.3 65.7 75.1 (465%,13%) •�
hand waving 5.2 15.0 26.7(413%,78%)•� 18.4 62.9 76.0 (313%,21%) •�
boxing 2.8 6.5 19.3 (589%,197%)•� 14.3 71.6 82.7 (478%,16%)•�
Average 4.3 9.0 23.9(456%,166%) 15.3 66.7 77.9 (408%,16%)
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Figure 3: The key frames of four typical actions, tennis
swing(a), javelin throw(b), billiards(c), and diving(d), with
a descending order of optimal ambiguity level. The horizon-
tal axis corresponds to different values of the ambiguity level
λ, and the vertical axis corresponds to the AP measure.
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