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Abstract

The explosive growth of video content on the Web has been
revolutionizing the way people share, exchange and perceive
information, such as events. While an individual video usu-
ally concerns a specific aspect of an event, the videos that are
uploaded by different users at different locations and times
can embody different emphasis and compensate each other
in describing the event. Combining these videos from dif-
ferent sources together can unveil a more complete picture
of the event. Simply concatenating videos together is an in-
tuitive solution, but it may degrade user experience since it
is time-consuming and tedious to view those highly redun-
dant, noisy and disorganized content. Therefore, we develop
a novel approach, termed event video mashup (EVM), to au-
tomatically generate a unified short video from a collection of
Web videos to describe the storyline of an event. We propose
a submodular based content selection model that embodies
both importance and diversity to depict the event from com-
prehensive aspects in an efficient way. Importantly, the video
content is organized temporally and semantically conforming
to the event evolution. We evaluate our approach on a real-
world YouTube event dataset collected by ourselves. The ex-
tensive experimental results demonstrate the effectiveness of
the proposed framework.

Introduction

In recent years, we have witnessed the explosive growth of
Web video content on the Internet due to the tremendous ad-
vance of video-sharing platforms, digital cameras, fast net-
work and massive storage. Users are often overwhelmed by
the unstructured videos and in danger of getting lost in the
video data world. Therefore, it is increasingly important to
automatically summarize a large collection of Web videos in
an efficient yet comprehensive way.

Inspired by text and image summarization (Mason et
al. 2016; Liu, Yu, and Deng 2015; Singla, Tschiatschek,
and Krause 2016; Lin and Bilmes 2011), video summa-
rization (Truong and Venkatesh 2007) has be proposed as
an early attempt to solve this problem. Based on some de-
signed criteria, video summarization typically selects a sub-
set of frames and/or subshots from a long-running video
to form a short summary. Traditional summarization meth-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

������

�	
	����	


�������	�

�������
��
� �������

�	��	�������

����	������������

�������
��������
�����	
���

 	��	


Figure 1: Overview of Event Video Mashup

ods usually rely on low-level cues to determine the impor-
tance of segments of a video (Ma et al. 2005; Ngo, Ma,
and Zhang 2005), and formulate summarization as a re-
construction problem (Zhao and Xing 2014) where sparse
coding is employed to remove the redundant video content
from a single video. More recently, based on the assump-
tion that Web images tend to capture subjects from canonical
viewpoint, (Khosla et al. 2013; Kim, Sigal, and Xing 2014;
Song et al. 2015) utilize Web image prior to help extract
meaningful subsets of user videos. Meng et al (Meng et al.
2016) selects representative objects to form video summa-
rization. Apart from the aforementioned unsupervised meth-
ods, the works in (Potapov et al. 2014; Gong et al. 2014;
Zhang et al. 2016) formulate video summarization as a su-
pervised content selection problem and utilize priori to train
a system to determine the relevance of video content. How-
ever, the above methods are focusing on a single video sum-
marization.

There are some recent multiple-video summarization
works (Chu, Song, and Jaimes 2015; Yeo, Han, and Han
2016; Hong et al. 2011; Tan, Tan, and Ngo 2010; Wang
et al. 2012). However, video co-summarization methods
(Chu, Song, and Jaimes 2015; Yeo, Han, and Han 2016)
only focus on extracting visual co-occurrence across mul-
tiple videos. This summarization criterion may fail to cap-
ture some important information which are not shared by
multiple videos. On the other hand, (Hong et al. 2011;
Tan, Tan, and Ngo 2010; Wang et al. 2012) extract typi-
cal frames/shots and then assign them with semantic an-
notations, which is very similar to our method. But during
the temporal alignment step, (Hong et al. 2011; Wang et al.
2012) simply assume that each tag is given a time stamp, and
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Figure 2: The flowchart of the proposed event video mashup approach

(Tan, Tan, and Ngo 2010) heavily relies on Google Trend.
Therefore, these are not standalone multiple-videos summa-
rization approach for practical applications.

To handle the aforementioned problems, in this paper
we propose a novel framework named event video mashup
(EVM) to automatically generate a short video from a col-
lection of related videos to describe an event. Different
from video summarization techniques which extract impor-
tant frames/shots from a single video, video mashup iden-
tifies important frames/shots and temporally aligns them by
simultaneously considering multiple videos from different
sources with varying qualities, resolutions, lengths, etc. Fig-
ure 1 depicts the general idea of event video mashup, where
a short video is constructed by the most important content
selected from relevant videos along the time line.

Our contributions are summarized as follows: 1) as far
as we know, this is the first standalone framework to auto-
matically generate a temporal-aligned summarization from a
collection of Web videos which are unstructured, unprofes-
sional and may be edited arbitrarily. 2) To generate EVM, we
first temporally align the shot cliques by utilizing the tem-
poral information and a semantic smoothing strategy, and
then devise an effective submodular based shot clique se-
lection strategy to ensure the significance and coverage of
the selected content; 3) To enable progress on this problem,
we construct a new dataset with 1,600 videos describing 8
events covering different topics. Extensive empirical results
on this dataset show that our proposed method significantly
outperforms the state-of-the-art approaches.

Event Video Mashup

Event video mashup is a technique that mashes together
many videos related to an event from different sources and
then aggregates the most important content into a single new
video, to allow users to understand the event efficiently and
comprehensively. There are two main problems involved in
event video mashup, including content selection and content
composition. Specifically, content selection concerns how to

select a subset of video content from different raw videos in
order to cover representative and comprehensive informa-
tion of the event in its evolving order. The objective of con-
tent composition is to use the selected content to compose
a single mashup video in a way that the final video can be
smoothly viewed by users.

To address the aforementioned problems, we propose
a new framework that can automatically generate a short
mashup video from a set of Web videos related to an event.
Figure 2 gives an overview of our proposed mashup system.
Given a collection of videos, firstly the shots of videos are
grouped into shot cliques using a graph-based near-duplicate
detection approach. Then semantics of those identified shot
cliques are inferred to unveil their relevance to key seman-
tic facets of the event. Next, the shot cliques are temporally
aligned, followed by a semantic smoothing step to refine the
alignment and discover key subevents of the event. Taking
into consideration both importance and diversity factors, a
shot clique selection method is performed. From each top
ranked shot clique, a shot is chosen to represent the clique.
All the above steps can be generalized as content selection.
Finally, a sequence of selected shots in their previously de-
termined order compose the final mashup video with transi-
tion smoothness being considered. The mashup video length
can be adaptively adjusted by varying the number of top
ranked shot cliques. Next, we describe these components in
details.

Shot Clique Identification

Despite severe diversities among the Web videos related
to the same event, they often share some partial overlaps
in terms of shots and the repetitively occurred shots often
carry important information about the event. For instance,
in videos related to “Academy Awards”, shots describing
”Red Carpet”, ”Best Actor” will appear many times in dif-
ferent videos. In light of this observation, it is necessary to
group the near-duplicate shots together into shot cliques.
There are many works proposed for visual content near-
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duplicate detection (Shen et al. 2007; Zhao and Ngo 2009;
Zhu et al. 2008; Huang et al. 2010; Song et al. 2013).

In this subsection, we apply the concept of maximally co-
hesive subgraph (MCS) (Huang et al. 2010) to detect and
group near-duplicate shots. We first construct an undirected
graph where each vertex represents the feature vector of a
keyframe of a shot. An undirected edge is added between
two vertices if their distance is below a threshold 1. A shot
clique is defined as a maximally cohesive subgraph repre-
senting a cluster of near-duplicate shots. A cohesive sub-
graph is an induced subgraph that satisfies a cohesion con-
straint which ensures that a graph has cohesive topological
structures. Only the largest cohesive subgraph is meaningful,
as it corresponds to a maximal group of near-duplicate shots.
Therefore, the fast maximally cohesive subgraph mining al-
gorithm (Huang et al. 2010) with linear time complexity is
then used for real-time near-duplicate clique identification.
Since the shots of poor quality can degrade user experience,
we filter out some bad shot cliques similar to (Saini et al.
2012).

Semantic Inference

Utilization of semantic information can compensate visual
content in describing and organizing an event. On one
hand, combing semantic meaningfulness and occurrence fre-
quency of visual content together can make representative
content selection more robust. On the other hand, seman-
tic cues play significant role in unveiling complex semantic
structures of an event. In light of this, we propose to infer
the semantics of the shot cliques. We first mine a set of can-
didate keywords from the associated textual metadata, and
then estimate the relevance of shot cliques and the keywords
resorting to the affluent labeled Web images.
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Figure 3: Examples of semantic inference results. Up-
per row: events; middle row: representative shots of shot
cliques; bottom row: inferred semantic meaning via our ap-
proach

Keywords Mining: When uploading videos to the Web, users
also provide some textual metadata (e.g., titles, descriptions,
tags) to describe the content of the videos. However, such
metadata is in most cases incomplete and noisy (Wang et al.
2012; Zhu et al. 2013). We propose to extract useful textual
information from the metadata of all the videos related to an
event to form a relatively comprehensive description for the
representative content and further the event. After studying
on a large amount of data, we find that titles of Web videos

1We use the library provided by Zhu et al. (Zhu et al. 2008) to
represent a keyframe as a feature vector. Euclidean distance is used
to measure the distance between feature vectors.

related to an event can provide sufficient keywords to cover
key semantic facets of the event. To mine the keywords from
titles, we first parse the sentences into words and phrases and
eliminate the common stop words. Then we calculate the
term frequency of all the remaining words and remove the
words that appear with low frequency which may not cover
useful information. Furthermore, words will be further fil-
tered out based on the relevance scores between the words
and shot cliques evaluated in next subsection (words that are
not highly related to video content of an event will be re-
moved). Note that phrase can also be selected as semantics
using n-gram. For efficiency, we adopt 2-gram.
Clique-to-Keywords Relevance and Clique Annotation: Af-
ter obtaining a set of candidate keywords w.r.t. the event,
we focus on evaluating a shot clique’s relevance to these
keywords. Instead of using labor-intensive manual labels to
learn a classifier (Gan et al. 2016; Song et al. 2016), we
devise a weak-supervised strategy which estimates the rel-
evance between words and shot cliques by resorting to the
affluent labeled images automatically collected from image
search engines, such as Google and Bing. The rationality
of exploiting the resources from the search engine is that
in most cases they can provide sufficient relevant informa-
tion to the query. Also, since images are inclined to be shot
to record canonical scenes of an event, they can benefit the
video content selection. Specifically, we use each individ-
ual keyword together with the query event as a compos-
ite query to gather a set of relevant images from the Web.
For instance, if we have a candidate keyword “suspect” in
the event “Boston Marathon Bombings”, we use “Boston
Marathon Bombings Suspect” as the query. Then, we calcu-
late the relevance value between a shot clique and a keyword
as follows:

rel(x,w) = |{z |z ∈ Ω(w); d(z, x) ≤ τ}|, (1)

where x denotes keyframe of a shot clique, z denotes a Web
image, w indicates a keyword, | · | is the cardinality of a
set, Ω(w) is the image corpus of w, d(z, x) measures the
Euclidean distance between z and x, and τ is a predefined
threshold. The relevance values are utilized to further re-
move candidate keywords so that at most one keyword or
key phase is left in each title.

Finally, semantics of a shot clique is inferred as the key-
word with largest relevance value to the clique. Figure 3 dis-
plays some examples of our semantic inference results.

Temporal Alignment

An event evolves in a certain chronological order with each
subevent and/or subtopic lasting for a specific period. Only
when the video content is organized according to the evolu-
tion of the event can it assist users to better understand the
event. In this subsection, we aim at aligning the shot cliques
in a temporal order.

First, we build a matrix L ∈ R
n×n based on the pair-wise

temporal orders of shot cliques obtained from the original
videos as:

Li,j =

⎧⎪⎨
⎪⎩

1 if si is before sj ,

−1 if si is after sj ,
0 if not determined

(2)
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where Li,j is element (i, j) of L, si denotes the ith shot
clique and there are n shot cliques. The temporal orders of
some shot clique pairs cannot be directly observed from the
original videos, but they may be inferred via some bridging
shot cliques. Based on this, we conduct matrix completion
for L:

Li,j =

{
0 → +1 if Li,p = 1, Lp,j = 1

0 → −1 if Li,p = −1, Lp,j = −1
(3)

Next, we can align the shot cliques using the local temporal
information contained in L. Specifically, we assign a tempo-
ral position ti (ti ∈ {1, 2, · · · , n}, ti �= tj if i �= j) to each
shot clique si in order to maximize the match between the
mined temporal orders L and the estimated temporal orders:

t = argmax
ti,tj∈{1,2,...,n}

n∑
i=1

n∑
j=1

sgn(tj − ti)Li,j (4)

where sgn(x) is a sign function:

sgn(x) =

{
1 if x > 0,

−1 if x < 0
(5)

Eq.(4) is a NP-hard problem. Alternatively, we propose an
algorithm to approximate the optimal solution. To be spe-
cific, we first initialize the temporal positions of the shot
cliques randomly. And then swap the temporal positions ti
and tj of si and sj iteratively as long as: a) ti and tj contra-
dict with Li,j ; b) the swap can increase the objective func-
tion.

We regard all the shot cliques as a graph, where the ver-
tices are shot cliques and an edge is added between two ver-
tices si and sj , if Li,j �= 0. Then the graph can be divided
into a set of connected subgraphs, which means the inter-
temporal-orders of the subgraphs cannot be determined from
the videos. In fact, these subgraphs often correspond to in-
dependent components of the events. Since users’ interest
and focus towards an event change with the evolution of the
event, we can employ users’ interest trend to estimate the
temporal orders of the independent sets of shot cliques. Up-
load time of video is a good indicator of users’ interest trend
about an event. Therefore, we calculate the average upload
time of the videos related to the subgraphs to determine the
temporal orders.

Semantic Smoothing

Since the pair-wise temporal information mined from orig-
inal videos is incomplete, some shot cliques may be mis-
takenly positioned. Also, there can be shot cliques inferred
with inaccurate semantics. To overcome these problems, we
utilize previously inferred semantic information to smooth
the ordered shot cliques. For example, if shot clique si owns
different semantics from the neighboring shot cliques before
and after it which share same semantics, it is highly possi-
ble that it has been assigned to a wrong temporal position or
inferred with inaccurate semantics. Thus it will be removed
and not considered in content selection.

As a high level concept, events are composed of a series
of key subevents in chronological order, with each subevent

lasting for a specific period. Thus, another important objec-
tive of semantic smoothness is to correspond the ordered
video content to a series of subevents with each of the
subevent being described by a keyword mined in Section
, such as “bride arrival”, “red carpet”, “vows” in an event
“wedding”. There are two problems involved. While one
problem is to determine the boundary between subevents,
the other lies in choosing a proper keyword to describe a
specific subevent.
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Figure 4: Illustration of subevent detection. Horizontal bars
with different colors represent different keywords that are
active in periods of shot cliques and the height of the bars
represent the relevance between shot cliques and keywords
(activeness). Vertical bars represent identified boundaries
of subevents. Left: subevent boundary initialization; right:
boundary refinement

We employ the relevance values w.r.t. the mined keywords
as the semantic representation for the shot cliques. Specifi-
cally, suppose we have mined o keywords and we denote
ri = {ri1, ri2, · · · , rio} as semantic feature for shot clique
si, where rij is the relevance value between si and the jth
keyword. Then the problem can be formulated as maximiz-
ing the following problem:

Smooth(S) =
k∑

i=1

∑
ip

ripj (6)

where the shot cliques S are divided into k subevents, ip de-
notes the pth shot clique of the ith subevent, j is the selected
keyword for the ith subevent. As illustrated in Figure 4, to
divide the shot cliques into subevents, we first roughly deter-
mine the boundaries of subevents via evaluating activeness
of the keywords. To be specific, we initialize each keyword
j with a position l that enables keyword j a maximum ac-
cumulated relevance value on a sequence of shot cliques of
length m:

l = argmax
l∈{m,m+2,··· ,n}

l∑
l′=l−m+1

rl′j (7)

This means that keyword j is most active during the period
[l −m+ 1, l −m+ 2, · · · , l] and it is highly possible that
the video content of this duration is related to subevent de-
scribed by keyword j. The value m should be properly se-
lected: if m is too large, noisy semantics would be counted
when calculating the accumulated relevance value; if m is
too small, more than one positions can be detected for a
keyword with same accumulated relevance value. Here, we
choose the average value m = n

o (n is the number of shot
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cliques and o denotes the number of keywords). Since the
subevents are not of equal length of m, we need to further
refine the subevents boundaries. It is difficult to optimize the
positions of boundaries jointly. However, since a boundary
position of a subevent is only related to the neighboring two
subevents, we can adjust the boundaries sequentially. For ex-
ample, if a boundary I is located at l, we can adjust this po-
sition among the positions between boundary I−1 and I+1
in order that the selected position can maximize Eq.(6).

Shot Clique Selection

After the shot cliques are well organized, we focus on se-
lecting video content to constitute the mashup video. The
selected content should have high importance and encour-
age diversity as well.

While importance means that we prefer the content that
is highly related to key facet of the event, diversity re-
quires that the selected content should cover comprehensive
subevents and the content describing same subevent should
be diversified as well.

Let S = {s1, · · · , sn} denotes a series of n shot
cliques with accompanied keywords W = {w1, · · · , wk},
and M = {sk1

, · · · , skm
}, M ∈ S indicates an order-

preserving subset of m shot cliques. Our goal is to select
an optimal subset M∗ to maximize information coverage
F (M):

M∗ = argmax
M∈S

F (M) (8)

Before examining the coverage of the whole set of se-
lected content, we consider the coverage of a single shot
clique. Let coversi(w) : W → [0, 1] quantify the amount a
shot clique si covers keyword w, which is defined as:

coversi(w) = I(si) · rel(si, w)∑
sj∈M rel(sj , w)

(9)

The first term I(si) = N (si)
N (smax)

∈ (0, 1] (termed content im-
portance) is the normalized shot frequency of shot clique si,
where N (si) is measured as the number of different videos
where the shots in si appear and smax indicates the shot
clique that includes most frequent shots. Since the repetition
of video content is not robust for important content selection
as discussed, we propose the second term (termed seman-
tic importance) to represent the relevance between si and a
keyword w, with rel(si, w) defined in Subsection . Note that
this term is similar to tf-idf of w.

Based on the single shot clique coverage, it is natural
to formulate the set-coverage of the selected shot cliques
coverM(w) as:

coverM(w) =
∑

si∈M
coversi(w) (10)

However, treating the set-coverage of shot cliques as an ad-
dition of single-clique coverage is not reasonable. On one
hand, since shot cliques corresponding to same subevent
may have information overlaps, after seeing one shot that
describes some facet of the event, we may obtain less infor-
mation from another shot describing the same facet. On the

other hand, the additive process does not encourage diver-
sity. Based on the intuition that the more shot cliques about
same subevent are selected, the less new information can be
gained, coverM(w) can be formulated as a sampling proce-
dure:

coverM(w) = 1−
∏

si∈M
(1− coversi(w)) (11)

where coversi(w) can be understood as the probability that
si covers w and Eq.(11) the possibility that at least one shot
clique covering w is selected. As can be seen, as M grows,
adding a new shot clique can increase less and less coverage,
which encourages selecting shot cliques belonging to differ-
ent subevents to convey comprehensive semantic facets.

Then, we can formulate the coverage function C(M) as a
weighted sum of coverM(w):

C(M) =
∑
w

λwcoverM(w) (12)

where λw is the term frequency of w in the organized shot
cliques.

Apart from selecting important shot cliques spanning
comprehensive facets or subevents of an event, we prefer the
content within the subevents is diversified to deliver more in-
formation. This can be achieved via D(M), which is defined
as:

D(M) =
k∑

i=1

∑
sj∈Si

(1− exp(− 1

Ω
χ2(sj , sj+1))) (13)

where k represents the number of discovered subevents, Si

denotes the shot cliques corresponding to wi, Ω is the mean
of χ2-distances among all adjacent shot clique pairs, sj and
sj+1 denote feature vectors of two adjacent shot cliques
within the ith subevent. It is obvious that Eq.(13) encour-
ages the visual difference between adjacent shot cliques in
order to cover comprehensive scenes of a subevent. Finally,
we can define F (M) as:

F (M) = λ1C(M) + λ2D(M) (14)
where λ1 and λ2 are the weights w.r.t the two terms.

Finding an optimal subset of shot cliques M∗ from S to
optimize Eq.(14) is a NP-complete problem, which means it
is intractable to find the exact optimal solution. While the vi-
sual diversity term D(M) can be computed quickly, C(M)
is more computationally expensive. However, inspired by
(El-Arini et al. 2009), C(M) well conforms to submodu-
larity (Nemhauser, Wolsey, and Fisher 1978), which allows
a good approximation to C(M) efficiently. CM is a sub-
modular problem since it processes the diminishing return
property: seeing some video content s after seeing a small
set A of video content can gain more information than see-
ing s after seeing a bigger set B containing A.

Following (Nemhauser, Wolsey, and Fisher 1978), using
simple greedy algorithm can achieve a (1 − 1

e ) approxima-
tion of optimal value of Eq.(12). Specifically, we run m (the
number of shot cliques to be selected) times of greedy algo-
rithm. In each iteration, we select the shot clique s that can
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cause maximum coverage increase:

Increase(s|M) = C(s ∪M)− C(M) (15)

Due to large computational cost of simple greedy algorithm,
we employ the method proposed in (Leskovec et al. 2007)
which is claimed to be 700 times faster than simple greedy
algorithm but maintains nearly optimal solution. Other solu-
tions can also be adopted (Lin and Bilmes 2011).

After selecting shot cliques, the next step is to choose a
chain of shots from selected shot cliques for the final content
composition.

Shot Selection

Shot selection is to select a sequence of shots from the
selected shot cliques to finally generate a smooth mashup
video, which can be defined as: given a set of shot cliques
M = {s1, . . . , sm}, where each shot clique is composed of
a set of shots, select one shot from each shot clique si to
form a shot sequence P = {pk1 , . . . , pkm} in order that the
transition smoothness of P is maximized.

One simple idea about maximizing the transition smooth-
ness of P is to minimize the quality difference between each
consecutive shot-pair. Then the problem can be formulated
as:

P∗ = argmin
P

∑
j

dis(pkj
, pkj+1

) (16)

where we use normalized resolution difference to measure
the quality difference.

The problem Eq.(16) can be solved using greedy algo-
rithm. We run K iterations of greedy algorithm and in each
iteration we initialize the first node of the sequence with a
different shot and then select the other shots sequentially.
Specifically, from each shot clique we select a shot pkj+1

that is most similar (in terms of resolution) to the shot pkj

selected from last shot clique. The finally selected shot se-
quence form the desired mashup video.

Experiments

In this section, we evaluate the effectiveness of our approach
via comparing to existing methods on a real-world event
video dataset collected from YouTube. To be specific, ob-
jective experiments are conducted to verify the performance
of the proposed approach in representative content selection
and subjective evaluation is performed to justify the practi-
cality of our approach.

Dataset. In order to evaluate our proposed framework,
we collected 1,600 videos from the Youtube. The col-
lected video dataset contains five topics including “social”,
“sports”, “entertainment”, “political” and “technology” and
consists of eight events (see Table 1). For each event, we
collect top 200 videos from Youtube. For each video, we
employ the library provided by Zhu et al.(Zhu et al. 2008) to
extract features for the video frames. The extracted feature
is a concatenation of color histogram, color moments, edge
histogram, Gabor wavelets transform, local binary pattern
and gist.

Parameter Settings. The proposed framework consists
of several parameters, which are tuned experimentally. For

near-duplicate detection and semantic reference, we use
0.25 as the threshold to determine whether two normalized
feature vectors are near-duplicates. Also, we set λ1 = 0.7
and λ2 = 0.3 to emphasize content importance and seman-
tic diversity.

Baselines. To evaluate the performance of the EVM ap-
proach, we compare it with several state-of-the art methods:
a) Sparse Dictionary Selection (DS) (Cong, Yuan, and Luo
2012), that focuses on selecting content in single video; and
b) Near-Duplicate Detection (ND) (Wang et al. 2012), which
summarizes multiple videos.

Results of Semantic Inference

In this part, we study the capability of semantic inference
for shot cliques. We employ accuracy, i.e., the proportion of
shot cliques that are inferred with correct semantic mean-
ing, as metric. In the new benchmark dataset, shot cliques
are annotated with proper keywords via crowd-sourcing, and
the evaluation results are shown in Table.1. From Table.1,
we have the following observations: 1) the number of shot
cliques with semantic meaning is in general positive rele-
vant to the complexity and duration of the event. For in-
stance, “Boston Marathon Bombings” has more complex vi-
sual content and more semantic structure than the “Academy
Awards”, thus it has more shot cliques with semantic mean-
ing. and 2) to our knowledge, the semantic inference is accu-
rate enough for content selection for the reason that semantic
smoothness is conducted when temporally aligning the shot
cliques, thus inaccurately inferred content will be further fil-
tered out.

Results of Shot Clique Selection

In this sub-experiment, we assess the effectiveness of shot
clique selection process in terms of precision and recall by
comparing with the state-of-the-art methods Sparse Dictio-
nary Selection (DS) (Cong, Yuan, and Luo 2012) and Near-
Duplicate Detection (ND) (Wang et al. 2012). While pre-
cision is the fraction of selected shot cliques that describe
important scenes of the event, recall is the fraction of rep-
resentative content that can be covered by the selected con-

Table 1: The performance of Semantic Inference. SMSC is
the number of shot cliques with semantic meaning; Key. is
the number of keywords extracted from the metadata re-
lated to an event; Acc. is the accuracy (%) that measures
the proportion of shot cliques that are inferred with semantic
meaning. LOPC is the abbreviation of the London Olympics
Opening Ceremony

Event Id & Name #SMSC #Key. Acc.

#1, September 11 Attacks 103 10 0.60

#2, Boston Marathon Bombings 204 9 0.71

#3, Iphone 5s Launch 110 11 0.75

#4, Michael Jackson Death 92 10 0.56

#5, 86th Academy Awards 81 10 0.73

#6, US Presidential Election 2012 103 12 0.65

#7, William and Kate’s Wedding 142 14 0.78

#8, LOPC 2012 166 17 0.54
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Table 2: Comparison to the state-of-the-art results in terms
of recall (Rec.%) and precision (Pre.%)

Event Id
DS ND

ours
(EVM)

Pre. Rec. Pre. Rec. Pre. Rec.
#1 0.28 0.31 0.62 0.50 0.78 0.75

#2 0.38 0.42 0.81 0.53 0.91 0.82

#3 0.42 0.35 0.76 0.74 0.88 0.84

#4 0.76 0.64 0.79 0.55 0.90 0.76

#5 0.31 0.44 0.64 0.53 0.82 0.86

#6 0.80 0.39 0.59 0.43 0.84 0.82

#7 0.44 0.41 0.82 0.70 0.92 0.88

#8 0.46 0.38 0.79 0.70 0.86 0.81

Average 0.48 0.42 0.73 0.59 0.86 0.82

tent. Also, the ground truth are manually labeled by crowd-
sourcing. The precision and recall for each event is calcu-
lated and show in Table.2. From results shown in Table. 2,
we have several observations:
1) compared with other state-of-the-art methods, our method
significantly outperforms all of them in both precision and
recall. Also, Near-Duplicate detection approach (ND) per-
forms better than the Sparse Dictionary Selection approach
(DS). This is probably due to that ND only considers the
redundancy of the videos, while our proposed method com-
bines both semantic meaning and occurrence frequency to
obtain rare but interesting contents.
2) Moreover, the Near-Duplicate detection approach (ND)
measures the importance of content isolatedly and it does
not encourage diversity, thus it is difficult for it to gain com-
prehensive information for an event.
3) In addition, the dictionary selection model (DS) encour-
ages diversity but it does not explicitly consider the content
importance.

Results of Video Mashup

In order to further assess usability of the generated video
clips. We adopt questionnaires collected from ten users with
different academic backgrounds. Given an event, users are
asked to response the following question on a questionnaire:
1) Information Coverage: (Q: To what extent do you think
the results cover representative content of the event?)
2) Conciseness: (Q: Is there obvious redundant content ex-
isting in the results?)
3) Effectiveness of Subevent Discovery (organizing the con-
tent into subevents): (Q: Is the content describing same
subevent put together and assigned with accurate descrip-
tions?)
4) We compare our mashup output with traditional visual-
ization waystoryboard proposed in ND (Wang et al. 2012)
to see whether our approach can enable users to better navi-
gate and understand the event. (Q: Are the visualization re-
sults pleasing to watch and would you like to use them to
learn about the event?)

To conduct this experiment, each user will firstly browse
the Internet to learn the query event about 40 minutes. Then,
we present each user with two videos generated by ND
and EVM without telling he/she the corresponding meth-
ods. Next, they will give a score from 0-1 to express their

Table 3: Summary of the user feedback on each questions.
Here, Id is the event id, Avg. is the average score.

ID
Q1 Q2 Q3 Q4

ND EVM ND EVM ND EVM ND EVM

#1 0.70 0.80 0.62 0.74 0.40 0.64 0.65 0.72
#2 0.72 0.83 0.68 0.80 0.42 0.68 0.70 0.80
#3 0.78 0.83 0.62 0.78 0.48 0.71 0.68 0.86
#4 0.76 0.81 0.66 0.85 0.42 0.55 0.69 0.82
#5 0.70 0.82 0.70 0.82 0.44 0.70 0.68 0.79
#6 0.70 0.84 0.67 0.84 0.41 0.69 0.66 0.78
#7 0.78 0.95 0.76 0.88 0.45 0.88 0.74 0.90
#8 0.74 0.88 0.72 0.75 0.36 0.73 0.70 0.82

Avg. 0.74 0.85 0.68 0.81 0.42 0.70 0.69 0.81

ideal about those two videos for each question. Eventually,
we calculate the average score for each event for each ques-
tion and show them in Table 3. By analyzing the feedback,
we find that:
1) the questionnaire results are very positive on our ap-
proach. All of the users who were surveyed found the gen-
erated video clip is more useful and comprehensive than the
video clip generated by the Near-Duplicate Detection (ND)
approach. In general, we provide a unified video with more
informative content (i.e, Q1), more conciseness information
(i.e, Q2), more related subevents (i.e, Q3) and more satisfac-
tion in terms of user experience (i.e, Q4).
2) The user feedback also points out some limitations of
this approach. For instance, compared with the ND based
method, the video summarization generated by our approach
can cover more comprehensive content, but some abstract
facets of events such as “hoax” in “Michael Jackson Death”
and “truth” in “September 11 Attacks” are difficult to be rep-
resented by visual content. Therefore, the performance may
degrade in some cases.

Conclusions

In this work, we proposed a novel approach, namely event
video mashup (EVM), to combine multiple relevant Web
videos together to describe the query event. With visual, se-
mantic, temporal cues being fully explored and exploited,
we selected representative video content from the disorga-
nized videos and organized the content into subevents and
temporal sequences. Specifically, since we comprehensively
consider content importance, content diversity and transition
smoothness, we can provide users pleasing mashup result to
assist them better understand the event. In the future, we will
work on the scalability issue of our approach.
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