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Abstract

Ensemble Clustering (EC) has gained a great deal of atten-
tion throughout the fields of data mining and machine learn-
ing, since it emerged as an effective and robust clustering
framework. Typically, EC methods try to fuse multiple ba-
sic partitions (BPs) into a consensus one, of which each BP is
obtained by performing traditional clustering method on the
same dataset. One promising direction for ensemble cluster-
ing is to derive pairwise similarity from BPs, and then trans-
form it as a graph partition problem. However, these graph-
based methods may suffer from an information loss when
computing the similarity between data points, because they
only utilize the categorical data provided by multiple BPs,
yet neglect rich information from raw features. This problem
can badly undermine the underlying cluster structure in the
original feature space, and thus degrade the clustering per-
formance. In light of this, we propose a novel Simultaneous
Clustering and Ensemble (SCE) framework to alleviate such
detrimental effect, which employs the similarity matrix from
raw features to enhance the co-association matrix summa-
rized by multiple BPs. Two neat closed-form solutions given
by eigenvalue decomposition are provided for SCE. Exper-
iments conducted on 16 real-world datasets demonstrate the
effectiveness of the proposed SCE over the traditional cluster-
ing and state-of-the-art ensemble clustering methods. More-
over, several impact factors that may affect our method are
also explored extensively.

Introduction

Ensemble Clustering (EC) (Strehl and Ghosh 2003; Fred and
Jain 2005), also known as consensus clustering, emerges as
an effective and robust alternative to the traditional cluster-
ing method. It aims to fuse multiple basic partitions (BPs)
into a consensus one, where each BP is obtained by per-
forming traditional clustering method on the same dataset.
Tremendous efforts have been made on this area (Vega-Pons
and Ruiz-Shulcloper 2011). One promising direction is to
derive pairwise similarity from BPs and then transform en-
semble clustering as a graph partition problem (Fred and
Jain 2005; Liu et al. 2015; Zhou et al. 2015). These graph-
based methods usually summarize BPs into a co-association
matrix, which actually calculates the co-occurrence of in-
stances belonging to the same cluster.
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Figure 1: Traditional clustering is directly performed with
raw features, while the input of EC is only the multiple BPs.
However, the information loss of BPs may undermine the
cluster structure in the original feature space. To alleviate
this problem, SCE employs the similarity matrix to enhance
the co-association matrix obtained by BPs.

Clearly, co-association matrix is the key factor for EC
methods to conduct graph partitioning for the final consen-
sus partition (Liu et al. 2015). However, it only computes
the similarity between data points with the categorical data
provided by BPs, yet neglects the rich information from raw
features. Thus, the co-association matrix may suffer from
a problem of information loss, which can badly undermine
the clustering structure existing in the original feature space.
Moreover, since BPs generally partition data with diverse
cluster numbers (larger than the true cluster number) (Fred
and Jain 2005; Wu et al. 2015), the co-association matrix
may “dilute” the pairwise similarity between data points in-
evitably. Due to these problems, some EC methods even per-
form worse than the traditional clustering algorithms, as we
observe in the empirical evidence.

In this paper, we propose a novel Simultaneous Cluster-
ing and Ensemble (SCE) framework to address the above
challenges. As shown in Fig. 1, the similarity matrix from
raw features and the co-association matrix derived by BPs
are jointly involved for the clustering task. Different from
the existing EC work, whose input is only multiple BPs, we
reuse the feature information from original data to alleviate
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the information loss problem. Moreover, compared with sev-
eral state-of-the-art EC methods, SCE can further improve
the clustering performance, even under the scenario that the
traditional clustering with raw features cannot achieve a sat-
isfactory result. This indicates SCE is not just a trivial com-
bination of similarity and co-association matrix, but an ef-
fect way to enhance the cluster structure existing in the co-
association matrix. The contribution of this paper are sum-
marized in threefold:

• A general SCE framework is proposed to perform ensem-
ble clustering by simultaneously utilizing the raw feature
information and basic partitions.

• Two neat closed-form solutions are provided for SCE.
Specifically, we first give a linear solution by integrating
information from two sources with a trade-off parame-
ter and then approximate it as a non-parameter version,
which is more robust and effective.

• To demonstrate the significant advantages over the tra-
ditional clustering and several state-of-the-art ensemble
clustering methods, extensive experiments on 16 real-
world datasets are conducted. Besides, some important
impact factors are thoroughly explored as well.

Related Work

In this section, we give a brief related work on ensemble
clustering along two directions.

Co-association matrix summarizes the information of ba-
sic partitions by counting how often two instances co-occur
in the same cluster, which can be regarded as a similar-
ity matrix. By this means, any graph partition methods can
be directly conducted on the co-association matrix for the
final consensus partition. (Fred and Jain 2005) employed
agglomerative hierarchical clustering on the co-association
matrix. Graph-based Consensus Clustering (GCC) devel-
oped three graph based algorithms (Strehl and Ghosh 2003),
Cluster-based Similarity Partitioning Algorithm (CSPA),
HyperGraph Partitioning Algorithm (HGPA) and Meta-
CLustering Algorithm (MCLA) and returned the best re-
sult according to a normalized mutual information measure-
ment. Most recently, two interesting co-association matrix
based methods emerged as Robust Consensus Clustering
(RCE) (Zhou et al. 2015) and Spectral Ensemble Cluster-
ing (SEC) (Liu et al. 2015), respectively. RCE applied low-
rank constraint on the co-association matrix for a robust rep-
resentation, while SEC ran spectral clustering on the co-
association matrix, linked it to a weighted K-means clus-
tering for high efficiency and provided another interpreta-
tion of ensemble clustering in a utility way. Other repre-
sentative methods in this direction include cumulative vot-
ing consensus (Ayad and Kamel 2008), weighted consensus
clustering (Domeniconi and Al-Razgan 2009), matrix com-
pletion (Yi et al. 2012), infinite ensemble (Liu et al. 2016)
and robust spectral ensemble clustering (Tao et al. 2016).

Another category of ensemble clustering is the utility-
based method, which designs the utility function to measure
the similarity between the basic partitions and the consen-
sus one. By maximizing the utility function, ensemble clus-

tering can be solved as a combinatorial optimization prob-
lem. For example, a Quadratic Mutual Information based
objective function was proposed for ensemble clustering,
and elegantly solved by K-means clustering (Topchy, Jain,
and Punch 2003; 2005), based on the Category Utility Func-
tion (Mirkin 2001). K-means-based Consensus Clustering
(KCC) was proposed as a theoretic framework in (Wu et al.
2015), which provided the sufficient and necessary condi-
tion for KCC utility functions to exactly map the ensemble
clustering to a K-means problem with theoretical supports.

Methodology

In this section, we first introduce some basic knowledge for
ensemble clustering, then elaborate SCE with two closed-
form solutions, and finally give a discussion on our method.

Preliminary

Let X = {x1, x2, · · · , xn} be a set of n data points be-
longing to K crisp clusters, denoted as C = {C1, · · · , Ck},
where Ck

⋂
Ck′ = ∅, ∀k �= k′, and

⋃K
k=1 Ck = X . Given r

basic partitions represented as Π = {π1, π2, · · · , πr}, each
of which partitions X into Ki clusters, and maps each data
point to a cluster label ranged from 1 to Ki. The goal of
ensemble cluster is to find an optimal consensus partition π
based on the input BPs Π. It is, in essence, a combinato-
rial optimization problem. As mentioned before, EC meth-
ods can be roughly generalized into two groups. For the util-
ity function based one, it aims to find the consensus partition
sharing the maximum utility function value with basic parti-
tions, which has the following formulation:

max
π

r∑
i=1

wiU(π, πi), (1)

where U is a utility function that measures the similarity
between two partitions, and wi ∈ [0, 1] is the weight for each
partition, with

∑r
i=1 wi = 1. The well-known Categorical

Utility Function (Mirkin 2001) can be calculated as follow:

Uc(π, πi) =

K∑
k=1

pk+

Ki∑
j=1

(
p
(i)
kj

pk+
)2 −

Ki∑
j=1

(p
(i)
+j)

2, (2)

where p(i)kj is the joint probability of one instance simultane-
ously belonging to Ck and Ci

j . Here, Ck is the k-th cluster
in final partition π, and Ci

j is the j-th cluster in πi. pk+ and
p+j are the cluster portion of π and πi, respectively.

Another category is to summarize the information from
basic partitions into a co-association matrix S (Fred and Jain
2005), which measures the times of two instances occurring
in the same cluster as:

S(x, y) =

r∑
i=1

δ(πi(x), πi(y)), δ(a, b) =
{

1, if a = b
0, if a �= b

.

Based on the co-association matrix, the traditional graph
partition methods can be used for the consensus clustering.
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Given a set of BPs Π and data matrix X , our SCE framework
is formulated as:

Jensemble(Π) + αJsimilarity(X ), (3)

where Jensemble(Π) represents ensemble clustering based
on multiple BPs, Jsimilarity(X ) denotes traditional cluster-
ing preformed on raw features and α is a trade-off parameter
balancing these two terms. By using Eq. (3), basic partitions
and raw features are jointly involved for the clustering task.

Note that, although we can generate BPs from the similar-
ity matrix and do clustering under a common EC framework,
these BPs may still suffer from the information loss problem.
However, considering that the similarity matrix represents
the membership between data points in the original feature
space, the proposed SCE employs it to obtain an enhanced
co-association matrix for the final clustering.

In the following, we take the Uc defined in Eq. (2) as the
utility function in Jensemble(Π) and employ spectral clus-
tering for Jsimilarity(X ). Thus, the objective of the Linear
solution to our SCE (LSCE) is introduced as:

min
π

−
r∑

i=1

Uc(π, πi) + αtr(HTLH), (4)

where tr(·) is the trace of a matrix, L = I−D−1/2AD−1/2

is the normalized Laplacian matrix, in which A is the affin-
ity matrix followed the definition in (Ng, Jordan, and Weiss
2001), and D is the degree matrix which is diagonal with the
l-th element being the sum of l-th row in A; and H ∈ R

n×K

is the scaled cluster membership matrix of π, which can be
calculated as

Hlk =

{
1/
√|Ck|, if xl ∈ Ck in π

0, otherwise
. (5)

Obviously, the above objective function is difficult to op-
timize because (1) it is non-convex and (2) these two terms
in objective function are in element-formulation and matrix-
formulation, respectively. Fortunately, the following theo-
rem is able to transform the optimization problem in Eq. (4)
into an eigenvector decomposition problem.
Theorem 1. Given r BPs and the Laplacian matrix L, we
have:

min
π

−
r∑

i=1

Uc(π, πi) + αtr(HTLH)

⇔ min
H

tr(HT(αL− S)H),
(6)

where S is the co-association matrix derived from r BPs1.
Remark 1. In the left side of Eq. (6), we use the utility func-
tion to measure the similarity between two partitions while
on the right side the co-association matrix is derived as a
new representation for the similarity between two instances.
This indicates that these two kinds of similarity in partition-
level and instance-level can be convertible.

1The proof of all the theorems can be found in the supplemen-
tary material.

Algorithm 1. Simultaneous Clustering and Ensemble
Input: X , data points {x1, x2, · · · , xn},

Π, basic partitions {π1, π2, · · · , πr},
K, the number of clusters.

Output: final partition π.
1: Build the normalized Laplacian matrix L with X ;
2: Calculate the co-association matrix S based on Π;
3: Set H as the smallest K eigenvectors of αL− S

for LSCE, or the K largest ones of L†S for NSCE;
4: Run K-means on H to obtain the final partition π.

Based on Theorem 1, we can solve Eq. (4) by running
K-means on the the smallest K eigenvectors of αL − S, as
following (Zha et al. 2002; Dhillon, Guan, and Kulis 2004).

A Non-parameter Solution

Although the above solution gives a neat mathematical way,
the parameter α is difficult to set in practice. In the follow-
ing, based on the solution in Eq. (6), we demonstrate a non-
parameter solution. Taking a close look at Eq. (6), it can be
roughly approximated as two trace terms:

min
H

tr(HTLH) and max
H

tr(HTSH). (7)

Thus, we could propose a Non-parameter version of SCE
(NSCE) as an approximation to LSCE as:

max
H

tr(HTSH)

tr(HTLH)
. (8)

To facilitate the solution for NSCE, we further approximate
Eq. (8) as the final objective function of NSCE:

max
H

tr((HTLH)†(HTSH)), (9)

where (·)† indicates the generalized inverse of a matrix. A
closed-form solution of NSCE could be given by the follow-
ing theorem.
Theorem 2. Given a co-association matrix S ∈ R

n×n and
a normalized Laplacian matrix L ∈ R

n×n, the optimal so-
lution H ∈ R

n×K for NCSE of Eq. (9) is composed by the
largest K eigenvectors of L†S.
Remark 2. Compared with our linear model, our non-
parameter solution is also an eigenvector decomposition
problem. The difference is that in our linear model, the de-
composition matrix is the linear combination with the nor-
malized Laplacian matrix L and the co-association matrix
S; while in the non-parameter solution, L† is employed to
modify the co-association matrix S.

Discussion

As shown by Algorithm 1, the most computing cost of
our method goes to perform eigenvalue decomposition. For
LSCE, it performs on αL − S, and its time complexity is
O(n3); for NSCE, L† needs to be computed in advance,
and it also has a complexity of O(n3). Thus, our algorithms
roughly have a similar time complexity to the traditional
spectral clustering.
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Table 1: Datasets Details
Dataset #Instance #Feature #Class Density Type

cranmed 4663 41681 2 0.0014 text
hitech 2301 126321 6 0.0012 text
k1a 2340 13879 20 0.0068 text
la1 3204 31472 6 0.0048 text
la2 3075 31472 6 0.0047 text
mm 2521 126373 2 0.0015 text

ohscal 11162 11465 10 0.0053 text
reviews 4069 126354 5 0.0053 text
sports 8580 126355 7 0.0010 text
tr12 313 5804 8 0.0471 text
wap 1560 8460 20 0.0167 text

amazon 958 800 10 0.1215 image
ImageNet 7341 4096 5 0.1623 image
pendigits 10992 16 10 0.8717 image

USPS 9298 256 10 0.2456 image
webcam 295 800 10 0.1289 image

Both LSCE and NSCE enjoy a closed-form solution, thus
the convergence of our algorithm is guaranteed. The final
result can be directly obtained without a process of iterative
optimization. Moreover, we can further speed up our method
by using some off-the-shelf fast spectral clustering algo-
rithms, such as (Yan, Huang, and Jordan 2009) and (Chen
and Cai 2011).

Experimental Results

In this section, we first evaluate the clustering performance
of our approach (LSCE and NSCE) on numerous real-world
datasets, and then explore the factors that may affect our
method from three different views.

Experimental Setup

Experimental Datasets. The testbed in our experiment
mainly consists of 11 benchmark datasets selected from
CLUTO2, which is a dataset repository for document
clustering (Zhao and Karypis 2002). In addition, five
widely used datasets from other sources, including OFFICE
dataset3 (amazon and webcam), ImageNet4, pendigits5, and
USPS (Cai, Wang, and He 2009), are also employed to eval-
uate the performance of our method on image clustering.
Thus, we totally use 16 real-world datasets with types of text
and image in this paper. More details are shown in Table 1.

Validation Criteria. All the datasets in Table 1 are pro-
vided with ground truth labels, thus we can validate our
model quantitatively with some external measures, such as
Average Clustering Accuracy (ACC) and Normalized Mu-
tual Information (NMI), which are two well-known clus-
tering criterion and introduced below. ACC is defined as
the fraction of resulted labels given by a clustering method
that match with ground-truth labels (Shao et al. 2015), and
NMI (Cover and Thomas 1991) measures the mutual in-
formation entropy between the inferred partition and the

2http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
3https://www.eecs.berkeley.edu/∼jhoffman/domainadapt/
4http://www.cs.dartmouth.edu/∼chenfang/
5https://archive.ics.uci.edu/ml/datasets.html

ground-truth. Both NMI and ACC range from 0 to 1, and
a higher value indicates better clustering performance. Be-
sides, to ensure the statistical significance of the comparison
result, the p-value is also calculated with t-test.

Clustering Tools. Typically, there are two common strate-
gies for basic partition generation, i.e., Random Parameter
Selection (RPS) and Random Feature Selection (RFS). Here,
following (Wu et al. 2015), we employ RPS to generate Π
of r = 100 BPs as default input for all the EC methods.
Each BP is obtained by performing MATLAB kmeans func-
tion with a randomly selected cluster number from [K,

√
n].

Since some datasets we used suffer from a high feature di-
mension, we run kmeans with cosine similarity for all the
datasets to speed up the process of BPs generation.

Compared Methods. We compare our method with three
traditional clustering methods and four sate-of-the-art EC
methods, respectively. To show the performance of feature
information, K-means, spectral clustering (Ng, Jordan, and
Weiss 2001), and Integrated K-means-Laplacian clustering
(IKL) (Wang, Ding, and Li 2009) are implemented with
MATLAB as three baseline methods. On the other side, four
powerful EC methods, i.e., Graph-based Consensus Cluster-
ing (GCC) (Strehl and Ghosh 2003), K-means-based Con-
sensus Clustering (KCC) (Wu et al. 2015), Spectral Ensem-
ble Clustering (SEC) (Liu et al. 2015), and Robust Consen-
sus Ensemble (RCE) (Zhou et al. 2015) are used as the com-
pared EC methods to demonstrate the effectiveness of our
algorithm. These four methods are directly run by the au-
thors’ codes, and fed with the same BPs as ours. In addition,
we use α = 1 in our LSCE model as the default setting. We
test each method 50 times and report the average result.

Clustering Performance

Table 2 and Table 3 summarize the clustering performance
of our SCE and other methods by ACC and NMI, respec-
tively. Overall, our approach (LSCE and NSCE) outper-
forms all the compared methods on 16 datasets except la2.
Specifically, as shown in Table 2 (Table 3), LSCE achieves
the best ACC (NMI) on seven (nine) out of sixteen datasets,
and six (four) second best among the remainder; NSEC is
the top performer by ACC (NMI) on ten (seven) out of six-
teen datasets, and three (eight) second best on the others.
Note that, although NSCE is an approximation of the LSCE,
its effectiveness can be clearly observed on tr12, pendigits,
and ohscal, where the improvements over the best compared
method are around 7%, 4%, and 3% in Table 3, respec-
tively. Moreover, our method enjoys a low standard devi-
ation (std), nearly 0, for most cases, showing the proposed
SCE as a steady clustering method. This is mainly because
our method enjoys a closed-form solution, and jointly uti-
lizes the similarity and co-association matrix. In contrast,
although SEC achieves a high performance by running spec-
tral clustering on the co-association matrix, it still suffers a
std about 2% on average, which implies the feature informa-
tion can make ensemble clustering more stable.

In Table 2 and Table 3, based on input information, the
compared methods are divided into two groups: (1) the base-
line methods, which directly do clustering on data points; (2)
EC methods, which utilize the cluster results from different
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Table 2: Clustering performance on 16 real-world datasets by ACC (%)

Datasets
Ours Ensemble Clustering Methods Baseline Methods

LSCE NSCE GCC KCC SEC RCE K-means Spectral IKL
cranmed 98.81±0.00 98.77±0.00 90.95±0.00 71.00±18.41 98.77±0.00 98.35±0.00 69.12±0.64 78.90±0.00 66.43±0.00
hitech∗∗ 49.16±0.03 49.02±0.00 39.33±0.00 42.36±3.19 48.03±1.52 48.06±0.00 32.57±1.41 26.29±0.00 45.55±0.98

k1a∗ 43.80±1.51 44.42±1.19 41.21±0.10 44.36±3.30 41.14±2.04 40.53±0.00 38.11±3.07 43.26±2.27 43.16±1.27
la1∗∗ 54.06±0.00 54.24±0.00 44.44±0.00 48.47±4.76 51.98±2.63 48.42±0.00 35.05±1.88 29.34±0.00 41.17±0.00

la2 50.02±0.00 50.50±0.00 46.96±0.00 46.43±5.13 45.91±1.81 49.31±0.00 33.18±1.55 29.29±0.52 39.02±0.00
mm∗∗ 89.33±0.00 89.33±0.00 80.64±0.00 82.77±7.98 87.98±0.00 53.31±0.00 64.32±6.46 55.10±0.00 79.49±0.00

ohscal∗∗ 44.88±0.00 44.92±0.00 40.45±0.00 34.41±2.96 40.67±2.32 N/A 29.72±3.01 41.05±1.53 38.58±0.38
reviews∗∗ 66.90±0.00 62.69±0.00 57.83±0.00 62.77±5.58 57.65±3.64 65.81±0.00 47.89±3.81 34.42±0.06 65.54±0.10
sports∗∗ 52.76±0.00 50.10±0.00 50.54±0.00 45.94±6.62 44.33±3.17 N/A 38.91±3.01 39.80±0.00 33.29±0.00
tr12∗∗ 60.38±0.00 66.12±0.08 55.59±0.00 56.03±3.90 58.85±2.07 50.16±0.00 28.20±1.32 28.85±0.30 28.49±0.18
wap∗∗ 42.01±0.95 42.28±1.20 42.04±0.13 42.08±2.99 38.76±2.67 40.88±0.00 37.02±2.97 38.73±2.40 40.43±1.34

amazon∗ 44.68±0.00 44.88±0.04 43.95±0.00 41.30±2.30 41.30±1.80 41.44±0.00 30.00±2.77 32.03±1.44 30.62±1.47
ImageNet∗∗ 82.18±0.01 81.75±0.00 72.40±0.01 74.40±4.59 78.86±5.78 N/A 71.22±2.98 73.48±0.02 76.04±0.00
pendigits∗∗ 70.92±1.76 74.57±3.37 73.06±0.00 64.67±6.42 67.67±7.48 N/A 74.50±4.03 70.88±3.66 73.31±1.45

USPS∗∗ 73.19±1.77 64.83±0.00 59.59±0.01 58.13±6.71 67.53±4.04 N/A 67.25±0.24 68.95±2.95 71.34±0.02
webcam∗ 54.98±0.78 55.25±0.79 49.83±0.00 49.91±2.62 50.82±2.77 49.08±0.00 38.44±3.19 45.08±2.37 49.39±1.48

The top ACC value is highlighted by red bold font and the second best by blue italic; * (**) indicates statistically (extremely) significant.
N/A means the failure due to out of memory with 32 GB.

BPs. As excepted, EC methods perform better than the base-
lines for most of scenarios, which again demonstrates the
superiority of ensemble. However, sometimes the EC meth-
ods cannot hold their advantage. For example, compared
with spectral clustering, KCC loses its power on ohscal and
pendigits by ACC. For another example, IKL outperforms
GCC on hitech, k1a, wap and USPS by NMI, respectively.
This is mainly due to the fact that existing EC methods may
suffer from the information loss of multiple BPs and ne-
glect the membership between data points in original fea-
ture space. Therefore, it motivates us to propose the SCE
framework to fill in this gap. Another important observation
is that, even under the cases when clustering performance of
raw features is ineffective, such as hitech, mm and tr12, our
approach still exceeds the other EC methods, which shows
SCE as an effective way to utilize the information from raw
features and BPs, but not a trivial combination.

To further validate our method, we employ t-test to com-
pute the p-value between our approach and the top compared
method on each dataset. We label the dataset with “∗” to in-
dicate the significant level (p < 0.05) and “∗∗” to extremely
significant (p < 0.01). As can be seen, we outperform the
best compared method with a statistically significant level,
only except cranmed and la2, which shows the effectiveness
of our algorithm again. In summary, Table 2 and Table 3
demonstrate the superiority of our SCE over other methods
from two clustering criteria and a statistical view.

Exploration of Impact Factors

In this subsection, we will explore the effect of the trade-off
parameter α in LSCE, BPs number r, and one alternative
BPs generation (RFS) on the clustering performance of our
method, respectively.

Trade-off parameter. Recall the trade-off parameter α
in Eq. (3). It essentially balances the cluster label consensus
and feature similarity in the objective function of LSCE. To
explore the impact of α on final clustering performance, we

(a) tr12 (b) ImageNet

Figure 2: Impact of α to LSCE.

vary it from 1e−5 to 1e+5, and test LSCE on tr12 and Ima-
geNet, respectively. As shown by Fig. 2, benefiting from the
robust nature of ensemble clustering, LSCE keeps a stable
and satisfied performance with the range of 1e−4 to 1e+2.
However, as α increases vastly, LSCE will “degrade” as the
spectral clustering algorithm, and its performance may drop
sharply. This implies that our LSCE is insensitive with a rel-
atively small α.

The Number of BPs. Fig. 3 (a&b) depicts the ACC vari-
ation of our methods in term of BPs number (r) on two
datasets (i.e., la1 and mm), where r varies from 10 to 90 with
an interval of 10. Since we generate Π (100 BPs) on each
dataset as default in our experiment, here, for each r ≤ 90,
we randomly select r BPs from Π as the input for EC meth-
ods. We repeat the sampling process 100 times, and report
the average testing result. For a better view, we only com-
pare with KCC and SEC on different BPs number, as they
generally outperform other compared methods.

We show the std of ACC by using error bar in Fig. 3 (a&b).
Note that, the std here is different from the ones we have
shown in Table 2 and Table 3, because they are produced by
different reasons: the std here is due to the variation of input
BPs, while the other is caused by different initialization in
the clustering process. Thus, the std generated here reveals
the robustness of a EC method to the number of BPs. As
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Table 3: Clustering performance on 16 real-world datasets by NMI (%)

Datasets
Ours Ensemble Clustering Methods Baseline Methods

LSCE NSCE GCC KCC SEC RCE K-means Spectral IKL
cranmed 90.61±0.00 90.36±0.00 58.95±0.00 38.08±33.30 90.36±0.00 88.18±0.00 27.00±0.72 38.75±0.00 24.78±0.00
hitech∗ 34.24±0.05 34.10±0.00 28.35±0.00 27.84±1.71 33.00±2.37 27.67±0.00 17.52±2.44 2.73±0.17 29.31±0.32
k1a∗∗ 57.81±0.71 58.22±0.56 49.12±0.08 56.98±1.32 53.61±1.08 53.73±0.00 43.08±2.76 51.44±0.88 52.28±0.70
la1∗ 35.33±0.00 35.41±0.00 29.21±0.00 30.33±2.87 33.16±2.43 30.52±0.00 15.39±1.58 1.93±0.00 27.99±0.00
la2 32.79±0.00 32.90±0.00 33.58±0.00 28.28±3.78 26.61±1.38 31.49±0.00 17.24±1.66 1.70±0.34 26.50±0.00

mm∗∗ 51.71±0.00 51.71±0.00 29.08±0.00 40.96±2.67 49.19±0.00 0.00±0.00 16.41±0.98 0.65±0.00 30.30±0.00
ohscal∗ 34.07±0.00 33.22±0.00 27.81±0.00 24.53±2.53 30.49±1.51 N/A 21.25±2.92 30.12±0.75 29.61±0.22

reviews∗∗ 57.58±0.00 53.73±0.00 42.46±0.01 50.13±4.84 48.28±3.38 42.70±0.00 25.40±5.08 4.59±0.16 39.34±0.18
sports∗∗ 53.17±0.00 51.53±0.00 47.70±0.00 41.51±5.83 44.02±3.45 N/A 22.42±3.70 1.47±0.00 28.06±0.00
tr12∗∗ 52.69±0.00 58.05±0.10 49.03±0.00 51.21±3.32 51.39±2.07 45.72±0.00 8.90±1.68 7.35±0.67 9.47±0.23
wap∗ 57.92±0.49 58.00±0.47 49.81±0.10 56.40±1.32 54.10±1.20 54.97±0.00 42.55±2.24 49.10±1.31 51.85±0.91

amazon∗ 34.57±0.00 34.45±0.01 32.82±0.00 33.11±1.27 34.37±1.15 31.26±0.00 30.84±1.23 29.68±0.41 30.65±0.63
ImageNet∗∗ 59.73±0.01 59.33±0.00 49.35±0.01 52.50±3.89 57.84±2.62 N/A 45.27±2.23 45.96±0.03 50.01±0.00
pendigits∗∗ 70.17±0.96 74.29±1.77 70.58±0.00 69.47±3.82 70.21±3.71 N/A 68.94±0.55 66.02±1.05 69.53±0.41

USPS∗∗ 68.63±0.33 64.41±0.00 62.84±0.01 64.51±4.40 65.25±1.79 N/A 61.41±0.15 65.05±1.33 64.71±0.03
webcam∗ 50.86±0.57 51.37±0.55 50.13±0.00 51.02±1.52 49.39±0.73 49.67±0.00 41.43±3.78 44.49±1.43 49.30±1.21

The top NMI value is highlighted by red bold font and the second best by blue italic; * (**) indicates statistically (extremely) significant.
N/A means the failure due to out of memory with 32 GB.
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Figure 3: (a&b) Impact of BPs number (r) to ensemble clustering, where r varies from 10 to 90. (c&d) Impact of RFS to
ensemble clustering, where the selection ratio is set as 20%, 40%, 60%, and 80%, respectively.

can be seen, there are two important observations. First, as r
increases, the performance of all the EC methods generally
goes up, which shows the diversity is a key factor to EC
methods (Iam-on et al. 2011; Wu et al. 2015). Second, all the
methods suffer from a large std when r is small. However,
compared to KCC and SEC, our methods trend to be stable
after r > 60, which indicates LSCE and NSCE are more
robust to the number of basic partitions.

BP Generation Strategy. Finally, we test our SCE frame-
work under another common BP generation strategy, named
Random Feature Selection (RFS). RFS generates multiple
BPs by utilizing the randomly selected partial features from
the original feature dimensions, according to a certain fea-
ture selection ratio. In details, for each dataset, we run K-
means 100 times with cluster number K to generate the ba-
sic partitions (Π) under the RFS strategy. Besides, we vary
the ratio as 20%, 40%, 60%, and 80%, to further explore
its impact on the clustering performance. We compare our
method with all the compared EC methods on each ratio. As
shown by Fig. 3 (c&d), we achieve the best performance.

One may note that, all the EC methods generally have
a better performance at the ratio of 20% or 40%. This is
mainly because a relatively low feature selection ratio can
generate diverse BPs, which is important to the success of

ensemble clustering (Wu et al. 2015; Iam-on et al. 2011).
By using RFS, we can significantly boost the clustering per-
formance on some cases. For example, the best RFS-based
result of NSCE improves the NMI over 30% from its RPS-
based one (NMI = 51.71%) on mm, where the similar sit-
uation appears to other methods. We conjecture that there
exists some noises in the raw feature of mm (Zhao and Fu
2015), and thus the quality of BPs may degrade by using
RPS. To sum up, RFS is an alternative BP generation strat-
egy for our method, and it can improve the performance
when the input feature suffers from noises.

Conclusion

In this paper, we proposed a novel SCE framework by
reusing raw features to handle the problem of informa-
tion loss for ensemble clustering. The similarity matrix ob-
tained from original data was employed to enhance the clus-
ter structure of the co-association matrix derived by input
BPs. Two algorithms were put forward to solve this problem
with closed-form solutions. Experiments on 16 real-world
datasets were conducted to demonstrate the effectiveness of
the proposed algorithms over several traditional clustering
and state-of-the-art ensemble clustering methods. Moreover,
three impact factors were explored extensively.
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