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Abstract

Adverse drug-drug interactions (DDIs) remain a leading
cause of morbidity and mortality around the world. Identify-
ing potential DDIs during the drug design process is critical
in guiding targeted clinical drug safety testing. Although de-
tection of adverse DDIs is conducted during Phase IV clinical
trials, there are still a large number of new DDIs founded by
accidents after the drugs were put on market. With the arrival
of big data era, more and more pharmaceutical research and
development data are becoming available, which provides an
invaluable resource for digging insights that can potentially
be leveraged in early prediction of DDIs. Many computa-
tional approaches have been proposed in recent years for DDI
prediction. However, most of them focused on binary predic-
tion (with or without DDI), despite the fact that each DDI
is associated with a different type. Predicting the actual DDI
type will help us better understand the DDI mechanism and
identify proper ways to prevent it. In this paper, we formulate
the DDI type prediction problem as a multitask dyadic regres-
sion problem, where the prediction of each specific DDI type
is treated as a task. Compared with conventional matrix com-
pletion approaches which can only impute the missing entries
in the DDI matrix, our approach can directly regress those
dyadic relationships (DDIs) and thus can be extend to new
drugs more easily. We developed an effective proximal gra-
dient method to solve the problem. Evaluation on real world
datasets is presented to demonstrate the effectiveness of the
proposed approach.

1 Introduction

Drug-drug interaction (DDI) is a modification of the effect
of a drug when administered with another drug, which is a
common scenario for patients with complicated conditions
such as cancer or other chronic diseases. Some DDIs could
be an increase or a decrease in the effect, while some could
be an adverse effect that even results in severe morbidity and
mortality. Although detection of adverse DDIs is conducted
during Phase IV clinical trials, there are still a large num-
ber of new DDIs founded by accidents after the drugs were
put on market. These undetected adverse DDIs have become
serious health threats and caused nearly 74, 000 emergency
room visits and 195,000 hospitalizations each year in the
United States alone (Percha and Altman 2013). This brings
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an urgent need for methods that can identify DDIs earlier
and more comprehensively.

With the arrival of the big data era, more and more health-
care related data are becoming readily available, so does
the pharmaceutical industry. There are quite a few research
works trying to leverage pharmaceutical research and de-
velopment data in the task of DDI prediction. One of the
prominent resource they are using is the chemical structure
of the drugs, as many DDIs are essentially caused by the
chemical-physical incompatibility of two drugs. For exam-
ple, machine learning methods were developed for predict-
ing DDIs by analyzing chemical structure similarity (Cheng
and Zhao 2014b), implementing the chemical-protein inter-
actome (Luo et al. 2014), modeling interaction profile fin-
gerprints (Vilar et al. 2013), and exploiting pharmacoint-
eraction network structure (Cami et al. 2013). There are
also some efforts on predicting DDIs by integrating multiple
molecular and pharmacological data (Yang, Xu, and Zeng
2014). The advantage of these methods lies in the fact that
they rely mainly on chemical and bioactivity data from lab-
oratory studies which could be obtained during preclinical
phase rather than clinical records. As a result, they could
potentially be used to predict DDIs years in advance, en-
abling drug safety professionals to better prioritize their lim-
ited investigative resources and take appropriate regulatory
actions.

Despite their initial success, there are still limitations for
existing computational approaches. For example,

e They only focus on binary predictions, which correspond
to whether or not a DDI would happen. Actually there is a
detailed type (e.g., hepatic failure, cough, dizziness, etc.)
associated with each DDI. Obtaining the actual DDI types
may help us understand better the mechanistic underlying
the DDI and take proper preventative actions.

e They typically use drug features alone in the predic-
tive model (e.g., logistic regression). However, in reality
the interactions among different chemical compounds are
also important factors that lead to DDIs.

e They usually work in an “imputation” manner, i.e., pre-
dicting potential interactions among existing drugs. It is
also much demanding of predicting potential DDIs for
new drugs.

To lift the aforementioned limitations, in this work, we



propose a multitask dyadic regression method that could si-
multaneously detect multiple potential types DDIs for a pair
of drugs. Those drugs could be new or existing. Specifically,
we treat the prediction of each specific DDI type is treated
as a task and minimize the prediction loss over all different
tasks jointly with proper regularizations. An effective prox-
imal gradient method is developed to solve the optimization
problem. We evaluate the proposed method on real world
dataset. Results show that our model could not only accu-
rately characterize the task relatedness and therefore sig-
nificantly improve the prediction performance over baseline
models, but also effectively control the confounding effects
from covariates in observational clinical data and further en-
hance the predictions.

The rest of the paper is organized as follows. Section 2
introduces the building blocks of the proposed model. While
in Section 3 we will review current works on adverse DDI
detection. Next we will be ready to introduce the proposed
model in Section 4 and evaluate its performance with real
world data in Section 5. Finally we conclude our work and
talk about future directions in Section 6.

2 Background

To prepare for the presentation of our method, in this sec-
tion, we will briefly introduce the two main building blocks:
dyadic prediction and multitask learning.

2.1 Dyadic Prediction

In dyadic prediction, we predict labels for pairs of ob-
jects, which can be considered as a matrix completion prob-
lem: we have partial observed label matrix J = {y; ;} €
RIPI*IPl and dyads d;,d; € D, where d; and d; impact
the row and column of ), respectively. Let {(d;,d;),v; ;}
be the training set, and {(d;,d;), 7, ;} be the unobserved
target set, dyadic prediction is to predict g; ; from (d;, d;)
given the model trained from training set.

Traditional dyadic prediction methods often suffer from
the cold-start problem. If one of d; or d; is not present in the
training set, then we cannot directly compute the label y; ;.
Intuitively, if the entire row or column in ) are not observed,
we cannot predict the value in this row or column.

In this work, we take an inductive approach to train a
model that could characterize the structural similarity be-
tween any entity pairs d; and d; in the training set, repre-
sented via a feature vector. The proposed method addresses
the “cold-start” issue and will be able to estimate the proba-
bility of DDI events between the unobserved drugs and other
drugs only based on the structural information and the struc-
tural similarity vectors from the training set. Therefore, the
proposed method fits the need of predicting potential DDIs
in the preclinical phase.

2.2 Multitask Learning

Multitask learning is a general approach that incorporates
task relatedness during learning. In many real-life scenar-
i0s, subjects can relate to each other in some way. Multitask
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learning method is such an inductive transfer learning ap-
proach that improves generalization by exploiting the con-
nections amongst related subjects as an inductive bias and
has been proved by literature to have better generalization
capabilities (Ando and Zhang 2005). In learning, multitask
learning learns tasks in parallel while using a shared prior
representation that encodes the “relatedness”, thus what is
learned for each task can help other tasks be learned better
(Caruana 1998). In this work, we formulate the prediction
of each DDI event as one dyadic prediction task, and solve
these related DDI tasks in a multitask setting and achieve
better predictive power.

3 Related Work

A few computational and mathematical modeling methods
have been proposed to study the interactions between drugs,
most of which rely on the understanding of the mechanisms
underlying each interaction types (Jin et al. 2011). In con-
trast to computational modeling, recently more focus has
been on predictive modeling approach. Much related works
have developed ways of computing similarity scores be-
tween drugs or pairs of drugs to be used as features for ma-
chine learning classifiers (Cheng and Zhao 2014a; Gottlieb
et al. 2012; Zhang et al. 2015). Sophisticated algorithms
such as restricted Boltzmann machines and matrix factoriza-
tion are especially effective in combining two types of sim-
ilarities by learning latent representation (Cao et al. 2015;
Wang and Zeng 2013). However, they do not inherently sup-
port inductive prediction.

Methodology-wise, the proposed method is related to In-
ductive Matrix Completion (Natarajan and Dhillon 2014)
which makes a low-rank assumption on the coefficient ma-
trix for capturing dyadic feature interactions. Factorization
Machine (FM) (Rendle 2010) is another related model,
which predicts the preference score with a function includ-
ing both linear and nonlinear feature components, where
the nonlinear components capture the pairwise or high or-
der feature interactions. The difference between our model
and FM is that FM is still a regular single-input regres-
sion model, while our model predicts the dyadic relation-
ships among pairs of data entities. One interesting observa-
tion though, is if we make all the input data entities equal,
i.e., we learn the high-order “relationship” between the data
entity and itself, then we can recover FM if we impose low-
rank assumption on the coefficients for the high-order fea-
ture interactions.

In addition, Multi-view Machines (Cao et al. 2016).
Multi-view Machines generalize the FM model to capture all
higher-order interactions between different data views and
Jjointly factorize all of them via the CP tensor decomposi-
tion (Carroll and Chang 1970; Harshman 1970b). On one
hand, this decision limits the number of parameters to learn.
However, it restricts to a target model where all the low-rank
factors are shared between parameters reflecting interactions
of different order. Our model is more flexible, allowing for
both shared and non-shared low-rank factors to be learned.

There are works that are limited to modeling the rela-
tionship between two data domains, such as the Sparse Fac-
torization Machine (Xu et al. 2016), the Conditional High-



Order Boltzmann Machine (Huang, Wang, and Wang 2015)
and the ConsMRF (Drumond, Diaz-Aviles, and Schmidt-
Thieme 2016). Also, the Hierarchical Interaction Represen-
tation in (Liu, Wu, and Wang 2015) can model multi-entity
interactions, but assumes a certain interacting order of vari-
ous data domains, which has to be manually determined and
is application-dependent. For example in latent collabora-
tive retrieval, they assume that only the joint interactions be-
tween users and queries with documents have to be taken
into account. In contrast, the proposed model can allow any
interaction between data domains, so that the important ones
are automatically learned based on the input data.

4 Method
4.1 The Proposed Model

In this section, we introduce the proposed multitask dyadic
prediction method as well as describe its technical details.
Our model is motivated by the real world problems of DDI
prediction. Denote Sy, as the coefficient matrix capturing the
relationship between i-th drug and j-th drug with respect to
k-th DDI event, we could use dyadic prediction as in For-
mula 1 to characterize such a specific DDI event.

fr(di,dj) = diTSkdj +b 1

If there are V' individual DDIs to be predict, we will need
to learn V different coefficient matrices S. However, these
DDI tasks are often related. For example, “Heart Rate In-
creased (HRI)” is often associated with “Body Temperature
Increased (BTI)”, if a specific drug pair d;, d; causes HRI,
then it is very likely they will cause BTI, too. Due to such re-
latedness, rather than learning the tasks (e.g. DDI events) in
isolation and ignoring their relatedness, it would be benefi-
cial for us to exploit the connections amongst them by learn-
ing the tasks simultaneously. Therefore, multitask learning
method becomes a natural setting in terms of leveraging
the shared information contained in the variables to improve
generalization power.

To solve the dyadic prediction problem, we optimize the
following objective function as shown in Formula 2.

1
L= (VZ);Ng(fk(dmdj)ayk(diadj))+)\kQ(Sk) )
i,

where {(fr(d;,d;),Vi(d;,d;)) is the regression loss of
function f, €2 is an aggregation of the penalties imposed on
the model parameters. The coefficient matrices Sy, in For-
mula 1 can be optimized by minimize function L. The loss
function £ in the formula is determined by the type of target
value Vi (d;, d;). And we could solve the parameters jointly
by minimizing the objective function in Formula 3.

L= 0 S Ui ). Veldind)) + 0 AO(SH)

(i,5)EN kEV kev
3

In Formula 3, although we solve different coefficient ma-
trices together, there is still no inner relationship among dif-
ferent coefficient matrices. However, with multitask learn-
ing approach, we use a coefficient tensor S to capture the
dyadic relation among two drugs and DDI events rather than
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Figure 1: Illustration of the Drug-DDI Tensor

a matrix. In this way, the relationships among different DDI
events will be captured in the additional dimension of the
tensor.

4.2 Tensorial Interpretation

The multitask dyadic model can effectively be formulated as
a tensor (see Figure 1 for an illustration). In the figure, each
cube represent the value of ); ; 1., where the gray cube for 0
and the yellow cube for 1.

Now we formalize its tensorial notation and formulation.
Denote D € R¥*™ as the data collection of drug’s structure
information, where k refers to the number of drugs and m
is the dimension of drug’s feature vector. We also denote d;
as the feature vector for the i-th drug in D. And represent
the data collection of DDI events with £ € RY*Y, where
e; is the j-th DDI event in £ with dimensionality d’.y e
Rkxkxv is the 1abel tensor, in which Y. ;1 is the relationship
value among the i-th and j-th data object in D and the k-th
data object in £. Given these notation, our goal is to learn
a function as in Formula 4 that characterizes dyadic DDI
relationship f(d;, d;, e;) to predict Y; ; x.

4)

where § € R™*"™*? becomes the coefficient tensor instead
of the matrix in dyadic prediction, while xj, is the mode-k
product.

For notational convenience, we use fid’k to represent
the model function value of f(d;,d;,ex), and }; ; 1, is the
ground truth relationship among the data entities of drugs
and DDIs (e.g., V; j r = 1if the i-th and the j-th drug would
lead to the k-th DDI, ); ; . = 0 otherwise).

Similar to Formula 3, we can solve all the models jointly
by minimizing the following objective:

f(di7dj,ek) =8 X1 dz X9 dj X3 €f +b

1
L= N Z U fi g Vijke) + AQUS)

(i,4,k)EN

®)

Loss Function In the objective function above, the loss
function 4(f; j k, Vi ;) depends on the type of Y ; 5. For
binary ), we use logistic loss or hinge loss; while for con-
tinuous ), we choose square loss. In our case, we employ



logistic loss as in Formula 6 since ); ; 1, is binary.

U figa>Vigr) = —(1—=ijr)*log( (6)

e_fi,‘j,k )
1+e Figk

~Vij * log (g

Optimization For regularization of the model parameters,
we use proximal gradient methods to solve the following
optimization problem:

3161% J(u) + R(u)

@)

where J is a convex and differentiable function with Lip-
schitz continuous gradient, R is a convex and lower semi-
continuous function which is possibly nondifferentiable, and
‘H is a set, typically a Hilbert space. In proximal meth-
ods, the usual criterion that v minimizes J(u) + R(u)
if and only if Vy(J(u) + R(u)) = 0 is replaced by
0 € Ou(J(u)+R(u)), where 9 is the subdifferential oper-
ator.

One key operator we need to define for proximal methods
is the proximal operator. Given a convex function ¢ : H —
R, we can define its proximal operator prox,, : H — H as
in Formula 8.

1
prox, (2) = arg min Y(u) + S u— 2[5 ®)

The proximity operator can be seen as a generalization of
a projection. And u* is the optimal solution to the problem
of Formula (7) if and only if Formula 9 holds.

u* = prox g (u* —yVJ(u")) ©)

where v > 0 is a constant.
There are alternative proximal operators which can be
used for generalization, such as ¢; norm, ¢ norm, elastic

net, and group sparsity. In this case, R(u) = 1|u|3, we
employ /5 norm as proximal operator:
1

prox, . (u)], = g~ u (10)

Low-Rank Case In this paper, we assume that the high-
order coefficient tensors are low rank, i.e., they can be
approximated by the product of a set of low-rank matri-
ces. For order-3 relationship coefficient matrices, we can
adopt low-rank CANDECOMP/PARAFAC(CP) decomposi-
tion(Harshman 1970a), i.e.,

Sﬂ’lmU ~

ORP®Q an

where S € R™*™*? g the low-rank tensor. O, P, and Q
denote the three matrices obtained from the CP decompo-
sition of low-rank tensor S. O € R™*" with r < m,
P € R™*", and Q € RY*". The regularization we men-
tioned in the prior section can be added to the factorized
matrices to impose different kinds of requirements.

Challenges in Solving Let O corresponding to the drug
d;, P corresponding to the drug d;, Q corresponding to the
drug ey, the optimal problem we want to solve becomes For-
mula 12.

minQ T+ 202(0) + 2pQ(P) + AqQ(Q)

o (12)
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where we have

X 1
T==1x 2 v slosliypry)
(i,5,k)EN
+ (= yig) *log(l — ——=7—=)

And then Formula 4 can be reformulated as follows.

fiik=(00P®Q)x1d; xad; xsey+b  (13)

There are three variables in the target function, we em-
ploy alternating proximal gradient descent (PGD) method to
solve all the parameters in the model. Algorithm [1] is the
Alternating PGD to solve our optimal problem of Formula
(12). The algorithm mainly consists of three steps. We up-
date one variable in each of the three steps alternatively.

Algorithm 1 Alternating PGD algorithm

: Initialize O(0), P(0), Q(0)

:fort=1,2,--- ,Tdo
P(t+1)=APGDp(O(t+1),
Q(t+1) = APGDg(O(t + 1),

end for(while converge)

return O(7T),P(T),Q(T)

A A ol S

However, traditional PGD algorithm converges slow,
which is not a viable solution in our case due to high data
dimensions.

Solving with Accelerated Proximal Gradient To solve
such a challenge, we employ accelerated PGD algorithm
instead. The accelerated version of the basic PGD algo-
rithm takes the former iterations result into consideration,
which can be interpreted as momentum method. In order
to further improve the convergence rate, an adaptive restart
method(O’Donoghue and Candes 2015) is employed. This
method takes the current iteration as the new starting point,
and resets the related parameter to the initial value.

As we should optimize the three variables in turn, that is,
we apply three proximal gradient descent (PGD) algorithms
for the three variables. The PGD Algorithms for O, P, and
@ have the same structures. Algorithm [2] is the accelerated
PGD algorithm for optimizing the parameter of O.

The derivative of function 7 in Algorithm [2] is as fol-
lowing:

207 _ 1 Z (;—y .k)*afi’j’k
- —fi gk “s
00  |N| (I REN 14 e Tidk 00
1 1
=T (————— —vij.k) * did] Pdiag(e; Q)
N 2 (e k) < did,
(3,4,k)EN
O - L s Ly Yk
= “Figr Y
OP —IN| A= te T oP
1 1 .
= W Z (m — Yij k) * d;d] Odiag(e] Q)
(3,5,k)EN



Algorithm 2 Accelerated PGD for O with fixed P and Q
1), Ao € (0, 1)7 zZo =

1: Initialize 5 € (0,1) 7o € (0,
0,044 =0,00 =1

2: fort=1,2,--- ,Tdo

3: Letyo =70(t—1)

4:  while True do

5.

6

1055 (0(1)))

zZo = proxAOR(O(t) 056

J(z0) = T(O(t) +trace (gJ)T( 0—0(1)+
2fyonO* ( )”2

7: if 7(z0) < J(z0) then

8: break

9: end if

10: 7o = Bvo

11:  end while ,

122 0p= —2—

13:  iftrace((O — zo)T % (20 — Oua)) > 0 then

14: O(t + 1) — Oy

> bo=1,70 =1

16: else

17: O(t+1) :ZO+(1—90)*(ZO _Oold)

18:  endif
20: Oold =Z0
21: end for(while converge)
22: return O(T)

ol ! N

5q Ml (ivJ%EN(l +e fidnk Yijk) * 50

! 1
= ———————— — V) * exd, Pdiag(d] O
IVl (iu%ew(lJre_fi,j,k Ya,b,c) B J( )

5 Experiments

In this section, we evaluate the effectiveness of our model
with experiment on real world data and discuss the results.

5.1 Datasets

The DDI data we used in evaluation is extracted from FDA
Adverse Event Reporting System (FAERS)!'. The FAERS
contains information on adverse events submitted to FDA,
which is designed to support FDA’s post-marketing safety
surveillance program for drugs and therapeutic biologi-
cal products. Mined from FAERS, the Twosides database?
(Tatonetti et al. 2012) is a resource of polypharmacy side ef-
fects for pairs of drugs. It contains only side effects caused
by the combination of drugs rather than by any single drug.
In this study, we only used the unsafe co-prescriptions from
Twosides database as known set of DDIs. There are 645
drugs and 1318 DDI events, in which 59, 220 distinct pairs
of drugs associated with DDI reports.

We used PubChem substructure fingerprint® to construct
drug features. Each drug was represented by an 881-

"https://open.fda.gov/data/faers/
Zhttp://tatonettilab.org/resources/tatonetti-stm.html
3http://tinyurl.com/y7svnm
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dimensional binary profile whose elements encode the pres-
ence or absence of each substructure by 1 or 0, respectively.

5.2 Evaluations

To ensure the validity of the test cases, the validation was
carried out by holding out all the DDIs associated with a
fixed percentage of the drugs, rather than holding out DDIs
directly. To be specific, we randomly selected a fixed per-
centage (10%) of drugs for testing, and considered all DDIs
associated with these drugs as testing set. Then we con-
structed the models with the remaining DDIs as the training
set. The model parameters were tuned with cross validation
based on the training set. Models were tested on the testing
set only after all model parameter tuning has been done.

We use receiver operator characteristic (ROC) curves
and precision-recall (PR) curves to evaluate the proposed
method. In the ROC and PR analytics, we utilized DDI in-
teractions from Twosides database as positive samples, and
the complement set of Twosides DDI interactions as nega-
tive samples. Here since the number of positive samples in
the test data set is far less than that of the negative samples,
the PR curve can describe the predicting results better.

5.3 Experiment Results

To evaluate its performance, we compared the proposed
model with several state-of-the-art alternatives as base-
lines, including Logistic Regression(LR), Factorization Ma-
chine(FM), and Support Vector Machine(SVM). We per-
formed the following experiments. First, we try to predict
2 randomly selected DDIs on the test set. As shown in Fig-
ure 2, the proposed model outperforms all models in terms
of both ROC and PR curves. Particularly for the PR curve,
ours learns 64.2% better than LR, which is the best among
all baselines. For the ROC curve as shown in Figure 3, ours
outperforms LR by 15.6%, while the other baselines includ-
ing SVM and FM barely have any predictive power. Second,
we compare based on top 50 frequent DDIs from the Two-
sides database. Figure 4 and 5 show the predicting result for
the 50 DDIs. Results are consistent with previous experi-
ments on 2 DDIs. We can observe that our model consis-
tently gains the best performance, while the baseline models
still have very low predictive ability.

5.4 Case Study

Here we also present case study to visualize the effective-
ness of the proposed model using drug-drug networks. First,
we construct the drug-drug networks that indicate whether
any two drugs would result in a specific DDI. As shown in
Figure 6, the node in the network denotes a drug. The ID of
the drug is shown on the node. The edge between the two
nodes denotes the existence of DDI. It is easier to under-
stand that some specific drugs would have a higher risk to
have DDI than other drugs. In the network, the size of the
node denotes the degree of risk of a drug. We classify the
degree of risk into different levels (in different colors), e.g.
high-risk (blue), and low-risk (white). The red nodes denote
the forecasting errors of drugs.
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Figure 4: PR curve (50 DDIs) Figure 5: ROC curve (50 DDIs)

As shown in Figure 6(a), Drugs with ID #150, #132,
#188, #23, #35, #178, #136 are such high-risk drugs ac-
cording to ground truth. Figure 6(b) shows that the proposed
model correctly predicts three drugs (#150, #178 and #23)
as high-risk ones. While the results of LR, as shown in Fig-
ure 6(c), is sparser than the ground truth, which indicates
lots of existence drug-drug interactions are missed in the
prediction of LR. In addition, although the number of pre-
dicted high-risk drugs (No. 23, 35, 150) of LR model is same
with our model, the forecasting errors of LR model is much
higher. As for FM model (in Figure 6(d)), although it can
predict almost all the high-risk drugs, it also makes more
incorrect prediction

5.5 False Positive Analysis

Since the ground truth data used in this study come from
user report systems, it cannot cover all existing DDI cases,
thus reviewing false positive predictions could potentially
introduce novel knowledge about DDIs and bring huge value
to pharmacovigilance studies.

One pair of drugs we discover are ”Amiodarone (an an-
tiarthythmic medication used to treat and prevent a num-
ber of types of irregular heartbeats) ” and “Buspirone (an
antianxiety drug)”. Although there is no record in FAERS
TWOSIDES data showing they could cause DDI, the pro-
posed model predicts a few their DDIs with high like-
lihood (in parenthesis), including severe DDIs such as
anaemia (0.8301) neumonia (0.8088), asthenia (0.8011), ar-
terial pressure NOS decreased (0.7700), acute kidney failure
(0.6945), sepsis (0.6903), kidney failure (0.6834), and AFIB
(0.6778). Such discovery could be well explained from the
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Figure 6: Comparison of connection characterization

chemical structures of the drugs: Amiodarone is a CYP3A4
inhibitors, while Buspirone needs CYP3A4 for metabolism.
Taking them together would greatly lower the metabolic rate
of Buspirone and cause Buspirone to be highly concentrated
in blood. Consequently many of the predicted DDIs would
occur and become huge risk factors to patients.

6 Conclusion

In summary, we presented a new multitask dyadic prediction
model to predict adverse drug-drug interactions (DDIs). Our
approach direct regresses those dyadic relationships (DDIs)
and thus can be extend to new drugs more easily. We further
developed an effective proximal gradient method to solve
the problem. We evaluated the performance of the proposed
method in a large real world clinical observational databases
(Twosides) and also demonstrated the efficacy and utility of
the proposed method with case studies.

Future direction could include better models for more ac-
curate DDIs identification, as well as a more efficient solving
algorithm that could support large scale DDI detection. This
work essentially establish a extendable foundation for us to
pursue these future directions.
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