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Abstract

For many supervised learning problems, limited training sam-
ples and incomplete labels are two difficult challenges, which
usually lead to degenerated performance on label prediction.
To improve the generalization performance, in this paper, we
propose Doubly Regularized Multi-Label learning (DRML)
by exploiting feature network and label network regulariza-
tion simultaneously. In more details, the proposed algorithm
first constructs a feature network and a label network with
marginalized linear denoising autoencoder in data feature set
and label set, respectively, and then learns a robust predictor
with the feature network and the label network regularization
simultaneously. While DRML is a general method for multi-
label learning, in the evaluations we focus on the specific ap-
plication of multi-label text tagging. Extensive evaluations on
three benchmark data sets demonstrate that DRML outstands
with a superior performance in comparison with some exist-
ing multi-label learning methods.

Introduction
With the research on tagging learning for decades (Nigam
et al. 1998; Elisseeff and Weston 2001; Yu, Yu, and Tresp
2005; Hsu et al. 2009; Liu and Tsang 2015), recent years
have witnessed the increasing applications of tagging learn-
ing in many fields ranging from social media searching
to classification of medical reports due to its capability
of improving data organization and management. Conse-
quently, many tagging methods (Liu, Jin, and Yang 2006;
Zhang and Zhou 2007; 2014; Li, Yang, and Zhang 2016)
have been developed based on different requirements from
different areas. However, most existing tagging methods as-
sume that the amount of given training data is sufficient
and the given training labels are complete. In contrast, for
many supervised learning problems, they often face two
challenges: limited training samples and incomplete train-
ing labels, which usually lead to degenerated performance
on label prediction.

Given a limited amount of labeled training data and a
very high-dimensional feature space, a common solution is
to regularize a model by penalizing a specific norm of its
parameters. The most commonly used norms in supervised
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learning are L1 and L2, which assume that model param-
eters are independent. However, dependencies between pa-
rameters usually exist in the real-world applications. For ex-
ample, in biomedical domain, gene features have structured
input since genes are organized as pathways; the learned
model parameters (feature weights for a linear classifier)
should be more effective by keeping the structural relation-
ship between features. Further, dependencies can also be in-
ferred from data, e.g., manifold-based feature graph can be
used to regularize the model parameters and show its effec-
tivity (Li and Li 2008). However, the feature network based
on feature manifold only considers the positive correlation
between features and ignores negative correlations between
features. It is inappropriate since negative correlations also
help to reduce the search space of the model parameters.

On the other hand, recent work, for example (Chen,
Zheng, and Weinberger 2013), considers regularized learn-
ing with label network to mitigate the influence of incom-
plete training label set. It assumes that the given label set is
incomplete and proposes a label network based on marginal-
ized linear denoising autoencoder to exploit the relation-
ship among tags. Consequently, a label network regularized
learning method is presented to cope with the incomplete
tagging problem. The proposed method significantly im-
proves over the prior state-of-the-art. However, it still suffers
from learning with limited training samples, which influence
the generalization performance.

To improve the generalization performance of tagging, it
is necessary to consider both feature network and label net-
work. To achieve this goal, we propose to train robust predic-
tors with feature network and label network simultaneously.
In particular, we first learn a feature network and a label net-
work with marginalized linear denoising autoencoders on
feature set and label set, respectively. Take the learning of
feature network for example, we learn the feature network
by a marginalized linear denoising autoencoder, which is a
one-layer linear denoising neural network, and train a net-
work weight matrix Bx to make Bxx̃ approximate x, where
x̃ is a corrupted version of sample x ∈ R

d by random
dropout corruption on each feature dimension. The learned
network weight Bx

ij indicates the relationship between fea-
ture i and feature j.

Further, we present the Doubly Regularized Multi-Label
learning (referred as DRML) model, which learns a robust
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predictor with the feature network and the label network reg-
ularization simultaneously. On the one hand, DRML extends
the general multi-label learning with a feature network regu-
larization; on the other hand, it exploits label network to en-
rich the incomplete training label set through a marginalized
linear denoising autoencoder on the label set. In addition, it
also leads to an optimization problem which is jointly con-
vex and can be solved through alternative optimization with
simple closed-form updates. Finally, we demonstrate the ef-
fectiveness and promise of DRML through extensive eval-
uations in three real data sets in comparison with the peer
methods in the literature.

Related Work
Given a small training data set, network regularized learn-
ing is common to improve the generalization performance.
In the cases of semi-supervised and unsupervised learning,
graph Laplacian (Belkin and Niyogi 2001; 2003) is usually
introduced to exploit the geometry of the marginal distri-
bution. (Belkin, Niyogi, and Sindhwani 2006) proposes a
graph Laplacian regularized geometric framework for data-
dependent regularization. (Cai et al. 2008) proposes a Lapla-
cian probabilistic semantic indexing method for topic mod-
eling. In addition, graph Laplacian is also used for label
propagation (Zhou et al. 2003; Wang and Zhang 2006).

Further, the previous work (Li and Li 2008; Sandler et al.
2008; Gu and Zhou 2009; Fei, Quanz, and Huan 2010) has
demonstrated that learning with feature network can lead to
improvement in generalization. (Li and Li 2008) introduces
a network-constrained regularization for linear regression in
order to incorporate the feature graph information into nu-
merical data analysis. Based on the prior knowledge of fea-
tures, (Sandler et al. 2008) presents a framework for regu-
larized learning with feature network. (Gu and Zhou 2009)
constructs a feature graph to explore the geometric structure
of feature manifold.

Recently dropout training methods (Hinton et al. 2012;
Srivastava et al. 2014) are proposed to combat overfitting by
artificially corrupting the training data. By randomly drop-
ping subsets of features at each iteration of a training pro-
cess, (Hinton et al. 2012) reduces the influence of overfit-
ting with dropout training. (Srivastava et al. 2014) intro-
duces dropout training into the supervised neural network
learning to improve the performance. In addition, (Vincent et
al. 2008) trains robust denoising autoencoders with dropout
noise. (Chen et al. 2012) proposes a marginalized denoising
autoencoder to learn stacked features for supervised learn-
ing.

On the other hand, the given training data usually contain
incomplete label, which belong to a special case of label
noise problem. A number of denoising methods have been
proposed for the label noise problem. Filtered preprocess-
ing of the data and robust design of the algorithms are two
common ways of tackling with label noise. The former fo-
cuses on removing the noise from the training set as much
as possible (Van Hulse and Khoshgoftaar 2006) while the
latter attempts to reduce the impact of the noise in the clas-
sification by designing robust algorithms (Lin and de Wang
2004). In addition, tag refinement is another effective way

for noisy tagging in the literature (Wang et al. 2007). By in-
vestigating the robustness of SVMs against adversarial label
noise, (Biggio, Nelson, and Laskov 2011) exploits a kernel
matrix correction to improve the robustness of SVM. (Chen,
Zheng, and Weinberger 2013) proposes to enrich the user
tags with a label network learned from marginalized linear
denoising autoencoder on training label set.

Learning with Feature Network and Label
Network Simultaneously

In this section, we first introduce how to construct a novel
feature network based on marginalized linear denoising au-
toencoder and to regularize the model parameters with this
new feature network. Then a framework of label network
regularization is also presented to enrich the incomplete la-
bel set. Further, we incorporate the label network regular-
ization into the framework of learning with feature network.
Consequently, a novel multi-label learning method, the Dou-
bly Regularized Multi-Label (DRML), is developed to solve
the problem of learning with feature network and label net-
work simultaneously.

Learning with Feature Network
Regularization using feature network is especially appropri-
ate for learning with high-dimensional feature space such as
that encountered in medical text tagging where training data
are very limited due to restricted corpus collection and ex-
pensive tagging process. Given a small set of training data,
the local distances required by traditional manifold based
methods may be difficult to be estimated accurately. Thus,
manifold-based feature graphs are not so effective for learn-
ing with limited data. In this section, we first construct a
new feature network with a marginalized linear denoising
autoencoder and then propose a framework of feature net-
work regularized learning.

Feature Network Construction In particular, we reduce
the problem of constructing a feature network NF into ob-
taining a feature structure relationship matrix, in which rows
and columns correspond to features, and matrix elements
indicate the relationship between features. Further, we de-
scribe how to estimate the feature relationship matrix from
the data matrix X ∈ R

d×n with a marginalized linear de-
noising autoencoder. Our intention is to explore the feature
relationship network by a reconstruction mechanism. Let
xi ∈ R

d be the i-th sample, which is under consideration
now. Imagine that we first corrupt this sample by random
feature deletion with probability px ≥ 0 and then recon-
struct the original xi from the “corrupted version” x̃i with a
feature relationship mapping matrix Bx : Rd → R

d. Here,
for each sample x and dimension t, p(x̃t = 0) = px and
p(x̃t = xt) = 1 − px. Consequently, we train this feature
relationship mapping by minimizing the squared reconstruc-
tion loss,

L(Bx) =
1

n

n∑
i=1

||xi −Bxx̃i||2 (1)
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where Bx ∈ R
d×d can be considered as a feature relation-

ship matrix that predicts the presence of features given the
existing features in x̃.

To reduce variance in Bx, we take repeated samples of
x̃. In particular, we select each sample of the training set
D = {xi}ni=1 and corrupt it m times by following the
component-wise dropout distribution p(x̃|x). We can create
corresponding corrupted examples x̃ij (with j = 1, . . . ,m)
for each xi and construct a new data set D̃ with |D̃| = mn.
Consequently, the above reconstruction loss in Eq.(1) can be
rewritten as

1

n

n∑
i=1

1

m

m∑
j=1

||xi −Bxx̃ij ||2 (2)

where x̃ij ∼ p(x̃ij |xi).
When m → ∞, we follow the weak law of larger numbers

and rewrite the reconstruction loss as its expectation (Duda,
Hart, and Stork 2001)

L(Bx) =
1

n

n∑
i=1

E
[||xi −Bxx̃i||2

]
p(x̃i|xi)

=
1

n
trace

(
BxQxBx� − 2PxBx� +XX�

)
(3)

where Px =
∑n

i=1 xiE [x̃i]
�, Qx =

∑n
i=1 E[x̃i]E [x̃i]

�
+

Vx [x̃i], and

[Qx]α,β =

{
Sx
αβqαqβ if α �= β

Sx
αβqα if α = β

[Px]αβ = Sx
αβqβ (4)

where qα = qβ = 1 − px, the variance matrix
Vx [x̃i]p(x̃i|xi)

= p(1 − p)δ(xix
�
i ), and Sx = XX� is

the covariance matrix of the uncorrupted data set. Here, δ(·)
denotes a operation that sets up all the entries except the di-
agonal to zero.

Then the solution of Eq.(3) can be expressed in a closed-
form

Bx = Px[Qx]
−1 (5)

Here, the matrix Bx encode the weights of the feature net-
work NF . In particular, Bx

ij represents the similarity rela-
tionship of feature i and feature j.

Feature Network Regularization Learning Given la-
beled training data set {(x1,y1), . . . , (xn,yn)}, for linear
multi-label learning, we obtain the following L2 norm regu-
larized loss

L (W) =
1

n

n∑
i

||yi −Wxi||2 + λ||W||22, (6)

where W ∈ R
l×d is the multi-label regression matrix.

Since a common semantic of the network assumes that
positive linked features should have similar weight param-
eters and negative linked features should have dissimilar
weight parameters, we penalize each feature’s weight pa-
rameters by the squared amount it differs from the weighted

average of its linked features. This way of network penaliza-
tion gives us the following regularization term to incorporate
in multi-label learning:

d∑
j=1

||Wj −WBx
j ||2

=||W −WBx||2

=trace
(
W (I−Bx) (I−Bx)

�
W�

)

=trace
(
WGW�) (7)

where I ∈ R
d×d and G = (I−Bx) (I−Bx)

�.
Further, by incorporating the feature network regulariza-

tion in Eq.(7) into the framework of multi-label learning in
Eq.(6), we have the following feature network regularized
objective:

L(W) =
1

n

n∑
i=1

||yi −Wxi||2 + ηtrace
(
WGW�)

+ λ||W||22 (8)

where the parameters η and λ specify the strength of net-
work and ridge regularization respectively.

Learning with feature network is referred to minimizing
the above loss function, which introduces a feature network
regularization into multi-label learning.

Learning with Label Network
Regularization using label network is very useful for multi-
label learning where the given training labels are usually in-
complete or incorrect since the network can be used to en-
rich the missing labels and correct the incorrect labels. In
this section, similar to the part of learning with feature net-
work, we first construct a label network NL and then present
a framework of label network regularized learning.

Label Network Construction We assume that a label
relationship mapping By ∈ R

l×l can be learned with a
marginalized linear denoising autoencoder to encode the
corresponding weights of network NL. Further, the key idea
is also based on a reconstruction mechanism that By should
be able to predict the original tag vector y from the “cor-
rupted version” ỹ. In particular, we first create a corrupted
version by removing each tag in y with probability py ≥ 0,
and then By is learned to reconstruct the original tag vector
y from the corrupted version ỹ by minimizing the squared
reconstruction error,

L (By) =
1

n

n∑
i=1

||yi −Byỹi||2 (9)

Here, By can be considered as a network weight matrix
which represents the structural relationship among different
labels.

Further, to reduce variance in By , we take repeated sam-
ples of ỹ. In the limit (with infinitely corrupted versions of
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y), the expected loss function under the dropout distribution
can be expressed as

R(By) =
1

n

n∑
i=1

E
[||yi −Byỹi||2

]
p(ỹi|yi)

=
1

n
trace

(
ByQyBy� − 2PyBy� +YY�

)
(10)

where Py =
∑n

i=1 yiE [ỹi]
�, Qy =

∑n
i=1 E[ỹi]E [ỹi]

�
+

Vy [ỹi], and

[Qy]α,β =

{
Sy
αβqαqβ if α �= β

Sy
αβqα if α = β

[Py]αβ = Sy
αβqβ (11)

where qα = qβ = 1 − py , the variance matrix
Vy [ỹi]p(ỹi|yi)

= p(1 − p)δ(yiy
�
i ), and Sy = YY� is

the covariance matrix of the uncorrupted tag set.
Then the solution of Eq.(10) can be expressed in a closed-

form
By = Py[Qy]

−1 (12)
Here, the matrix By encodes the weights of the network NL

and its element By
ij indicates the relationship between label

i and label j.

Label Network Regularization Learning Unlike the
way of feature network regularization, we want to enrich the
user tags with the network of labels since the given tags are
usually incomplete. The original tag vector y are improved
by propagating the original labels with the learned network
weight matrix y → Byy. Consequently, we can reformu-
late the criterion of linear multi-label learning in Eq.(6) as
follows:

1

n

n∑
i=1

||Byyi −Wxi||2 + λ||W||22 (13)

In fact, the above loss function can be interpreted as
a cross-view learning objective when considering training
data (samples with incomplete tags) as unlabeled multi-
view data. In particular, it can be considered as a cross-
view agreement from two sub-tasks: 1) training a classifier
xi → Wxi that predicts the complete tag set from obser-
vations, and 2) enriching the existing incomplete tag vector
with the network weight matirx yi → Byyi.

However, the loss function in Eq.(13) only exploits a per-
manent label network weight matrix By and does not take
the learning process of label network into account. Expect-
ing that using the learning process of label network can ob-
tain a better By for the label enrichment, we consider to use
the loss of label network learning to guide the label network
regularized multi-label learning,

L (By,W;x,y) =
1

n

n∑
i=1

||Byyi −Wxi||2 + λ||W||22

+ γ
1

n

n∑
i=1

E
[||yi −Byỹi||2

]
p(ỹi|yi)

(14)

where the parameter γ specifies the strength of label network
regularization.

Learning with label network is referred to minimizing the
above loss function, which enriches the existing tag vector
with the label network weight matrix and introduces the la-
bel network learning into multi-label learning at the same
time.

Learning with Feature Network and Label
Network Simultaneously
Based on the above two network regularized learning frame-
works presented in Eq.(8) and Eq.(14), we propose a new
co-regularized method, minimizing the following objective,

JDRML (By,W;x,y)

=
1

n

n∑
i=1

||Byyi −Wxi||2 + ηtrace
(
WGW�)

+ λ||W||22 + γ
1

n

n∑
i=1

E
[||yi −Byỹi||2

]
p(ỹi|yi)

(15)

where λ, γ, η ≥ 0 are regularization parameters. Since
there are two different network regularizations in the objec-
tive, we call it the Doubly Regularized Multi-Label learning
(DRML).

Optimization and Extensions The loss function in
Eq.(15) can be efficiently optimized using coordinate de-
scent. When By is fixed, the computation of regression ma-
trix W can be solved in a closed form:

W = ByYX� (
XX� + nηG+ nλI

)−1
(16)

where G can be computed following the definition in Eq.(7).
When W is fixed, the problem in Eq.(15) with respect to

By can be reformulated as

R (By) =
1

n
trace

(
ByYY�By� − 2ByYX�W�

)

+ γ
1

n
trace

(
ByQyBy� − 2PyBy� +YY�

)
(17)

Similarly, when W is fixed, the solution of B in Eq.(17)
can be obtained as follows:

By =
(
γPy +WXY�) (γQy +YY�)−1

(18)

where Py and Qy can be computed analytically following
Eq.(11).

Further, the loss in Eq.(15) is jointly convex with respect
to By and W. Consequently, it is guaranteed that the coor-
dinate descent converges to the global minimum.

Experiments
We evaluate DRML on three standard multi-label bench-
mark data sets including two biomedical text data sets.
All data sets are obtained from http://mulan.sourceforge.net/
datasets-mlc.html.
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Table 1: Statistics of the three data sets.
Data set Examples Labels Features
Medical 978 45 1449
Bookmarks 10000 208 2150
Yeast 2417 14 103

Experimental Setup
In this section, we give a detailed descriptions of data sets,
evaluation metrics, parameter setup, and baselines.

Datasets We have used three multi-label datasets, namely
Medical, Bookmarks, and Yeast for experimentation pur-
pose. Their statistics are described in Table 1.

Medical data set is formed by clinical free text, which is
collected from the Cincinnati Children’s Hospital Medical
Center’s Department of Radiology. The text is labeled with
ICD-9-CM codes. For this experiment, we use a subset of
about 978 labeled instances provided by Mulan1.

Bookmarks data set is from Bibsonomy2. Bibsonomy is a
social bookmarking and publication sharing system. Book-
marks contains metadata for bookmark items such as the
URL of a web page and a description of the web page.

Yeast data set is formed by micro-array expression data
and phylogenetic profiles. Each gene is associated with a set
of functional classes. For this experiment, we use the whole
set of 2417 labeled genes.

Evaluation Metric Three metrics, precision, recall, and
F1 score, are often used to measure the performance of a
tagging algorithm. Here, we also use them as our evalu-
ation metrics. First, all the text data are labeled with the
five most relevant tags (i.e., tags with the highest prediction
value). Second, precision (P) and recall (R) are computed for
each tag. The reported measurements are the average across
all the tags. Further, both factors are combined in F1 score
(F1 = 2 P∗R

P+R ), which is reported separately. In all the met-
rics a higher value indicates a better performance.

Setup We use cross-validation to estimate the perfor-
mance of different methods. On the Medical and Yeast data
sets, we follow the experimental setup used in Mulan. Since
there is no fixed split in the Bookmarks data set in Mulan,
we use a fixed training set of 60% of the data, and evaluate
the performance of our predictions on the fixed test set of
40% of the data.

Baselines To demonstrate how DRML improves the tag-
ging performance in comparison with the state-of-the-art
tagging methods, we compare it with the following repre-
sentative tagging methods from the recent literature:

• LeastSquare (Bishop 2006).

• Regularized learning with feature graph Laplacian (re-
ferred to FGL) (Li and Li 2008).

• Low rank empirical risk minimization for multi-label
learning (referred to LEML) (Yu et al. 2014) .

1http://mulan.sourceforge.net/datasets-mlc.html
2http://www.bibsonomy.org

• FastTag, a model which exploits labels’ relationship with
marginalized linear denoising autoencoder regularization
(Chen, Zheng, and Weinberger 2013).

• FastTag+FGL, which combines the merits of the above
two methods by incorporating the feature graph Laplacian
regularization into the FastTag method.

In addition, we also study various different configurations of
the proposed algorithm:

• DRML (By = I): only using the proposed feature net-
work regularization.

• DRML: using the proposed feature network and label net-
work simultaneously.

In particular, for DRML, when we set up Bx = I, DRML
reduces to FastTag.

Experimental Results
In Table 2, we summarize the precision, recall, and F1
score of the Medical, Bookmarks, and Yeast data sets, for
LeastSquare, FGL, LEML, FastTag, FastTag+FGL, DRML
(By = I), and DRML, respectively. On the task of multi-
label text tagging, compared with DRML, though FGL ex-
ploits the feature network based on graph Laplacian, it only
considers the positive correlation between features and ig-
nores the negative correlations between features. In particu-
lar, FGL does not show obvious advantage comparing with
LeastSquare and this suggests that there is a certain limita-
tion with the constructed feature network by graph Lapla-
cian. LEML models multi-label learning as a general empir-
ical risk minimization problem with a low-rank constraint,
while it cannot exploit the structure relationship between
features. FastTag considers the training set as incomplete
tagged data set, but it cannot take advantage of the feature
network to mitigate the influence of limited training data.
While FastTag+FGL incorporates the feature graph Lapla-
cian regularization into FastTag and performs better than
FastTag, it also only considers the positive correlations be-
tween features based on feature manifold. Consequently,
from Table 2, we see that DRML (By = I) performs bet-
ter than FGL, since the learned feature network not only
considers the positive correlations between features, but also
captures the negative correlations. Further, DRML performs
better than leastSquare, LEML, FastTag, and FastTag+FGL
as the F1 scores achieved by DRML are much higher than
those achieved by the competing models in most cases.

Figure 1(a), Figure 1(b), and Figure 1(c) show the test
F1 scores of FGL, LEML, FastTag, FastTag+FGL, DRML
(By = I), and DRML as a function of the dropout level p
of feature network on Medical, Bookmarks, and Yeast data
sets, respectively. Herein, dropout level p = 0 corresponds
to a regular L2 norm regularization on feature parameters.
The results show that DRML improves over the other stan-
dard predictors on almost all the cases.

From Figure 1(a), Figure 1(b), and Figure 1(c), we ob-
serve that the F1 scores of the testing set for DRML and
DRML (By = I) both increase when the dropout level in-
creases at the start, which shows that it is helpful to use the
feature network generated by marginalized linear denoising
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Table 2: Comparison of DRML and the competing models in terms of precision, recall, and F1 score on the three data sets.
Medical Bookmarks Yeast

Methods precision recall F1 precision recall F1 precision recall F1
LeastSquares 0.1923 0.6077 0.2922 0.1559 0.2612 0.1952 0.4080 0.4712 0.4373

FGL 0.1934 0.6103 0.2937 0.1584 0.2565 0.1959 0.4123 0.4764 0.4420
LEML 0.2227 0.4703 0.3023 0.1627 0.2454 0.1957 0.4845 0.4535 0.4685
FastTag 0.2231 0.5837 0.3228 0.1861 0.2588 0.2165 0.4258 0.4659 0.4449

FastTag+FGL 0.2468 0.5606 0.3427 0.1941 0.2609 0.2226 0.4611 0.4572 0.4591
DRML (By = I) 0.2620 0.5419 0.3532 0.1875 0.2211 0.2029 0.4262 0.4636 0.4441

DRML 0.2898 0.5508 0.3798 0.2334 0.2772 0.2534 0.5285 0.4468 0.4843
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Figure 1: The F1 score for the testing set as a function of feature dropout level p for FGL, LEML, FastTag, FastTag+FGL,
DRML (By = I), and DRML, respectively.
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Figure 2: Performance in terms of F1 score as a function of
the rate of the observed labels for each training document
on the Medical data set. The i-th coordinate on the x-axis
corresponds to the observed labels’ rate i× 10%.

autoencoder to improve the tagging performance. It is also
noted that after a certain point when the feature dropout
level continues to increase, the performance may substan-
tially drop. This is due to the over dropout issue, which loses
much useful feature information and the leaned network is
not accurate. In particular, we can see that the optimal values
of dropout level p often exist in [0.2, 0.6].

Figure 2 demonstrates the comparison between DRML
and the competing models at different rates of observed la-
bels in the training process. We gradually add the rate of
observed labels. As we see from Figure 2, for training set
with the label rate r = 20%, DRML outperforms FGL and
FastTag with about 4% gain. With the increase of the ob-
served label rate, DRML continues to outperform the com-
peting models with significant margins. In particular, DRML
outperforms FastTag+FGL and DRML (By = I) obtains
a better performance than FGL. It illustrates that the con-
structed feature network by marginalized linear denoising
autoencoder is more effective than that by graph Laplacian.
Although FastTag performs similarly to LeastSquare when
the observed label rate is small, its performance improves
fast with the increase of the observed label rate and it out-
performs LeastSquare when the observed label rate is larger.
This also shows the importance of learning with label net-
work.

Conclusion
For many supervised learning problems, limited training
samples and incomplete labels are two difficult challenges,
which usually lead to degenerated performance on label pre-
diction. To improve the generalization performance, in this
paper, we first construct a feature network and a label net-
work with marginalized linear denoising autoencoder in data
feature set and label set, respectively, and then propose the
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Doubly Regularized Multi-Label learning (DRML) by ex-
ploiting feature network and label network regularization
simultaneously. Extensive evaluations on three benchmark
data sets demonstrate that DRML outstands with a superior
performance in comparison with some existing multi-label
learning methods.
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