
Progressive Prediction of Student
Performance in College Programs

Jie Xu,∗ Yuli Han,† Daniel Marcu,∗∗ Mihaela van der Schaar†
∗University of Miami, Coral Gables, FL 33124

†University of California Los Angeles, Los Angeles, CA 90095
∗∗Information Sciences Institute, University of Southern California, Marina del Ray, CA 90292

Abstract
Accurately predicting students’ future performance based on
their tracked academic records in college programs is cru-
cial for effectively carrying out necessary pedagogical inter-
ventions to ensure students’ on-time graduation. Although
there is a rich literature on predicting student performance in
solving problems and studying courses using data-driven ap-
proaches, predicting student performance in completing col-
lege programs is much less studied and faces new challenges,
mainly due to the diversity of courses selected by students
and the requirement of continuous tracking and incorpora-
tion of students’ evolving progresses. In this paper, we de-
velop a novel algorithm that enables progressive prediction of
students’ performance by adapting ensemble learning tech-
niques and utilizing education-specific domain knowledge.
We prove its prediction performance guarantee and show its
performance improvement against benchmark algorithms on
a real-world student dataset from UCLA .

Introduction
Making college affordable has a significant impact on ensur-
ing the nation’s economic prosperity and is a central focus of
the government when making education policies (The White
House 2016). Yet student loan debt in the United States has
blown past the trillion-dollar mark, exceeding American’s
combined credit card and auto load debts (Complete Col-
lege America 2014). As the cost in college education (tu-
ition, fees and living expenses) has skyrocketed over the
past few decades, prolonged graduation time has become a
crucial contributing factor to the ever-growing student loan
debt. In fact, recent studies show that only 50 of the more
than 580 public four-year institutions in the United States
have on-time graduation rates at or above 50 percent for their
full-time students (Complete College America 2014).

To make college more affordable, it is thus crucial to
ensure that many more students graduate on time through
early interventions on students whose performance will be
unlikely to meet the graduation criteria of the college pro-
gram on time. A critical step towards the effective interven-
tion is to build a system that can continuously keep track

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Y. Han and M. van der Schaar’s research is supported by NSF
ECCS 1407712. This research was done when Y. Han was a visit-
ing summer student at UCLA.

of students’ academic performance and accurately predict
their future performance, such as when they will graduate
and their potential final GPAs, given the current progress.
Although predicting student performance has been exten-
sively studied in the literature, it was primarily studied in the
contexts of solving problems in Intelligent Tutoring Systems
(ITSs) (Cen, Koedinger, and Junker 2006)(Feng, Heffernan,
and Koedinger 2009)(Yu et al. 2010)(Pardos and Heffernan
2010) , or completing courses in traditional classroom set-
tings or in Massive Open Online Courses (MOOC) plat-
forms (Meier et al. 2015)(Brinton and Chiang 2015). How-
ever, predicting student performance at the college program
level is significantly different and faces new challenges.

First, students can differ tremendously in terms of pre-
college traits as well as selected courses and the sequence in
which they take the selected courses, especially since more
and more institutions offer open curricula where students
can take courses without concern for any requirements ex-
cept those in their chosen concentrations (majors). In con-
trast, solving problems in ITSs often follow routine steps
which are the same for all students (KDD Cup 2010). Sim-
ilarly, predicting student performance in courses are often
based on in-course assessments which are designed to be
the same for all students (Meier et al. 2015).

Second, predicting student performance in a college pro-
gram is not a one-time task; rather, it requires continuous
tracking and updating as the student finishes new courses
over time. An important consideration in this regard is that
the prediction needs to be made based on not only the most
recent snapshot of the student accomplishments but also the
evolution of the student progress, which may contain valu-
able information of the student’s learning style, habits and
goals for making accurate predictions. However, the com-
plexity can easily explode, which grows exponentially in the
number of academic terms (quarters, semesters).

Third, whereas problems and courses often remain the
same over a relatively long period of time, changes in col-
lege programs can be much more frequent due to the addi-
tion and removal of courses, and the adjustment of course
requirement and availability in different quarters. As a re-
sult, prediction algorithms developed offline solely relying
on a logged dataset can be outdated and ineffective in mak-
ing accurate predictions. It is much desired that the predic-
tions algorithm can be easily updated using new student data

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1604

as it is being applied.
In this paper, we aim to address all aforementioned chal-

lenges by proposing a novel algorithm for predicting student
performance in a college program. The algorithm adopts a
bilayered structure comprising a base layer and an ensemble
layer. In the base layer, base predictors make local predic-
tions given the snapshot of the student academic states. They
are trained offline on logged student data for every quarter
utilizing the educational domain knowledge. In the ensem-
ble layer, in each quarter, an ensemble predictor makes a
final prediction by synthesizing the local prediction of the
corresponding base predictor and the final prediction of the
previous quarter ensemble predictor. The ensemble predic-
tors are trained offline and updated online using new student
data based on the Prediction with Expert Advice (PWEA)
algorithm (Cesa-Bianchi and Lugosi 2006). We prove worst-
case performance guarantee for our algorithm and evaluate
its performance using a real-world educational dataset from
a major university in the United States.

Related Work
Machine learning for education has gained much attention
in recent years. A substantial amount of literature focuses on
predicting student performance in solving problems or com-
pleting courses. Many machine learning techniques, such as
decision trees (Marquez-Vera, Romero, and Ventura 2010),
artificial neural networks (Wang and Liao 2011), matrix
factorization (Thai-Nghe et al. 2011), collaborative filters
(Toscher and Jahrer 2010) and probabilistic graphical mod-
els (Bekele and Menzel 2005)(Pardos and Heffernan 2010),
have been applied to develop prediction algorithms. Most
of this work ignores the temporal/sequential effect that stu-
dents improve their knowledge over time and treats the pre-
diction as a one-time task. To take the temporal/sequential
effect into account, a three-mode tensor factorization (on
student/problem/time) technique was developed for predict-
ing student performance in solving problems in ITSs (Thai-
Nghe, Horváth, and Schmidt-Thieme 2010) and a similarity-
based algorithm was proposed to issue predictions of student
grades in courses only when a certain confidence level is
reached (Meier et al. 2016). However, due to the aforemen-
tioned substantial differences of predicting student perfor-
mance in college programs, these methods are not applicable
in our setting.

There is also a rich literature on recommending relevant
courses or problems to students based on their associated
knowledge level, learning styles, and feedbacks (Lee and
Brunskill 2012)(Mandel et al. 2014)(Brunskill and Russell
2010). Course sequence recommendation, which considers
the specific course constraints, was studied in (Xu, Xing,
and van der Schaar 2016). To utilize logged data for course
sequence recommendations and curriculum design, an off-
policy estimator was developed to estimate how an unob-
served policy performs given an observed policy (Hoiles
and van der Schaar 2016). A rank aggregation framework is
adapted for the discovery of optimal course sequences at the
university level (Cucuringu et al. 2016). However, whereas
this literature aims to recommend courses/course sequences

based on student background and past performance, the pur-
pose of the current work is to predict future performance
based on student background and past performance for a
given curriculum.

Our algorithm uses the ensemble learning technique, in
particular, the Exponentially Weighted Average Forecaster
(EWAF) (Cesa-Bianchi and Lugosi 2006) as a building
block to enable progressive prediction of student perfor-
mance and online updating of the predictor as new student
data is received. The major difference from the conventional
EWAF algorithm is that an ensemble predictor has access
to only one base predictor (expert) and the previous quarter
ensemble predictor, whose output summarizes the outputs
of all previous quarter base predictors whereas the conven-
tional EWAF algorithm has access to all experts directly. To
our best knowledge, this is a novel architecture for designing
predictors for progressively expanding input spaces, which
significantly reduces design and implementation complexity
and easily scales with the number of academic terms. In this
setting, we prove that each ensemble predictor still performs
asymptotically no worse than the best base predictor in hind-
sight among all previous quarter base predictors in the worst
case, thereby providing strong performance guarantee.

System Model
Consider a college program in which students have to com-
plete courses specified by curriculum C to graduate. A stu-
dent is said to graduate on time if he/she completes the cur-
riculum within T quarters where T is a predefined number.
Students may start the program with different background
such as different high school GPAs and SAT scores. De-
note student i’s background by θi ∈ Θ where Θ is the
space that includes all possible background. A student i can
take any course(s) in any quarter subject to course avail-
ability and prerequisite requirements. Some of the courses
may belong to the curriculum C and the rest may be extra-
curricular courses selected according to the student’s own in-
terest. Once having completed a course, student i receives a
grade for the course and earns the credits. Let sti ∈ St denote
student i’s academic state at the beginning of quarter t =
{1, 2, ...}, which includes information of what courses have
been completed, the earned credits and the corresponding
grades. Notice that (1) different students may take courses
in different orders, (2) a student may take the same course
multiple times due to failure and (3) students have different
interests so they take different extra-curricular courses. As
a result, the completed courses at the beginning of the same
quarter t can differ significantly across students so the aca-
demic state space St can be extremely large.

Given the student’s background and evolving academic
state, at the beginning of each quarter t, the objective of our
system is to predict when the student is able to graduate (or
whether the student will graduate on time). Specifically, at
the beginning of each quarter t, we construct a predictor
f t : Θ × S1 × ... × St → Y where Y is the space of all
possible graduation time. Denote ŷti = f t(θi, s

1
i , ..., s

t
i) as

the predicted graduation time given the academic states up
to quarter t and yi as the actual graduation time of student
i. We emphasize that the predictor is using not only a single

1605

�
�

�
�

�
�

��
�

�

��
�

�

��
�

�

����� �����

������� 1 ������� 2 ������� t

��������	
������	�����

�����������	

������
�����

���������	

��	�������	�

�������	�	

��������

�����

Figure 1: System architecture. Prediction results of the pre-
vious quarter can be utilized in the prediction of the current
quarter.

academic state sti but all the academic states in the previous
quarters s1i , ..., s

t−1
i , thereby incorporating the evolution of

student’s performance. Even if two students have the same
academic states at the beginning of quarter t, they may have
taken completely different routes to reach this state. Tak-
ing into account such differences is necessary in the predic-
tion of the student’s future performance. However, the input
space of the predictor grows exponentially in the number
of quarters, thereby making the predictor construction even
more challenging.

Proposed Method
To address the aforementioned challenges, we propose a
novel framework for designing predictors for progressively
expanding input spaces. The principle idea is that since the
input of predictor f t for quarter t is a superset of the in-
put of predictor f t−1 for quarter t − 1, f t can capitalize on
the prediction output ŷt−1

i of f t−1 to update the prediction
by incorporating the incrementally new information sti. This
significantly reduces the complexity of constructing f t and
makes the prediction algorithm scalable. This idea and the
envisioned system architecture is illustrated in Figure 1.

Our approach to enable such progressive predictions is
based on the ensemble learning techniques. The proposed
architecture consists of two layers – a base layer and an en-
semble layer.

• In the base layer, we construct a set of base predictors,
each for one quarter. Specifically, a base predictor for
quarter t is a function ht : Θ × St → Y which utilizes
only the academic state at the beginning of quarter t but
not that of previous quarters. Let zti = ht(θi, s

t
i) denote

the prediction result of ht for student i.

• In the ensemble layer, we construct a set of ensemble pre-
dictors, each for one quarter. Each ensemble predictor f t

for quarter t synthesizes the output of the previous en-
semble predictor ŷti and that of the base predictor zti for
student i and makes a final prediction based on ŷti and zti .

A system block diagram of the proposed bilayered archi-
tecture for the quarter t ensemble learning is illustrated in
Figure 2. In the next sections, we describe how to construct
the base predictors and the ensemble predictors.

Learning Quarter-wise Base Predictors
In this section, we describe how to learn the quarter-wise
base predictor ht : Θ × St → Y for each quarter t us-
ing a training dataset. As pointed out, the academic state

��������	

�������	�
�

����	
�������		

�
�

��������	

�������	�
���

����	
�������		

�
���

�����	

������

��������	
����	�
�

�

�������	�
������

�
���

�

�
���

�

����	���������	�
�

�

�������	

���������

	�	
�

���

�������	

���������

	�	
�

�

��������	
����	�
�

���

� �

���������	

�������

����	

Figure 2: Ensemble Learning for Quarter t. Ensemble pre-
dictor f t has two leafs f t−1 and ht and makes a synthe-
sized prediction ŷti based on the leaf prediction ŷt−1

i and zti .
Depending on the correctness of the prediction results, the
weights of the leaf predictors are updated.

space St is extremely large since the completed courses and
associated grades may differ significantly across students.
Therefore, a major challenge in learning the base predictors
is that of extracting valuable features x(sti) from the aca-
demic state that are amenable to efficient data processing
and learning. Once the features are extracted, state-of-the-
art machine learning techniques can be applied to learn the
base predictors using a training set.

Feature Vector Construction
A student’s academic state includes all courses that the stu-
dent has completed and their grades and credits. A straight-
forward way to construct a feature xt

i is to assemble all this
information into a vector in a unified format for all students.
However, since different students can take different courses,
xt
i must also include information for courses that student i

have not taken, thereby making xt
i a large but sparse vec-

tor. Suppose there are a total number of N courses (includ-
ing curriculum courses and all possible extra-curriculum
courses). For each course, there are two entries in the vec-
tor xt

i, with one entry indicating the earned credit and the
other indicating the earned grade. If student i has not taken
a particular course, then the earned credit is 0 and the earned
grade is NULL. Therefore, the feature vector size is 2N .

An obvious drawback of this approach is that the feature
vector can be very large. In a typical four year college pro-
gram, there are often more than 50 curriculum courses, let
alone numerous extra-curricular courses. Thus the feature
vector size will be on the order of hundreds. Given the fact
that education datasets are often relatively small since the
number of students enrolled in the same program is limited,
training a reasonably good base predictor can be very dif-
ficult. Moreover, using a feature vector at such a fine level
of granularity may also reduce the prediction performance
since much noise may be included.

We reduce the feature vector in two steps as follows.
Course Clustering using Domain Knowledge. The first

step to reduce the feature vector size is to cluster the courses
using educational domain knowledge. For instance, all math
courses can be put in one cluster and all curriculum courses
can be put in another. Notice that a course can belong to
multiple clusters in our setting. For each cluster, we obtain

1606

�������	
�����

�
��
��

�����������������

����������� ���
���������

���� � ����
���� �
������

 ����������

Figure 3: Illustration of Course Clustering using Domain
Knowledge.

the average grade of completed courses in the cluster and the
total credits that have been earned by the student. Suppose
that M clusters are used, then the size of the feature vector
is 2M . Figure 3 shows an illustration of course clustering
using educational domain knowledge.

Feature Selection. Given the constructed course clusters,
feature selection is carried out in order to (1) further reduce
the feature vector size and (2) gain insights on the most im-
portant features that affect the graduation time. A multitude
of feature selection methods can be utilized to perform this
task. Detailed feature selection results and discussions will
be provided in the experiments section.

Learning Ensemble Predictors
We consider a stochastic setting where the student data ar-
rive in sequence i = 1, 2, Such a stochastic setting is
suitable for both offline training and online updating. Given
an offline training dataset, the student arrival sequence can
be easily generated according to any random process. In the
online scenario, the ensemble predictors are able to keep im-
proving itself using the new student data. Each student be-
longs to a student group depending on the static feature of
the student that does not change over quarters, such as the
pre-college traits. The student groups can be created by a
variety of state-of-the-art clustering algorithms. Let gi ∈ G
be the group of student i and G be the group space. For in-
stance, G can consist of a high SAT score group and a low
SAT score group.

Our ensemble predictors are learned based on the EWAF
algorithm, taking into account the student context informa-
tion and evolving progress. Specifically, each base predictor
ht is associated with a weight vector wt

i and each ensemble
predictor f t is associated with a weight vector vt

i, both of
which have size |G| and are changing over the student index
i. All weight vectors are initialized to be (1, ..., 1). For stu-
dent i at the beginning of quarter t, the ensemble predictor
f t makes a prediction ŷti based on a weighted average of the
base prediction result zti and the previous quarter ensemble
prediction result ŷt−1

i . Depending on whether the prediction
is a regression problem (e.g. to predict when to graduate so
Y is a continuous space) or a classification problem (e.g.
to predict whether or not to graduate on time so Y is a bi-
nary space), the weighted averaging is deterministic or prob-
abilistic as follows:

Regression: The ensemble prediction is

ŷti =
vt−1
i (gi)ŷ

t−1
i +wt

i(gi)z
t
i

vt−1
i (gi) +wt

i(gi)
(1)

Classification: The ensemble prediction is ŷt−1
i (or ẑti)

with probability

vt−1
i (gi)

vt−1
i (gi) +wt

i(gi)
(or

wt
i(gi)

vt−1
i (gi) +wt

i(gi)
) (2)

Depending on the true label yi (i.e. the true graduation time
or whether the student graduated on time or not) of student
i, the weights of the base predictor and the previous quarter
ensemble predictor are updated according to their cumula-
tive loss for group gi students. Specifically, the cumulative
loss for base predictor ht up to student n for group g is

Ln(h
t|g) =

n∑
i=1

l(zti , yi)1{gi = g} (3)

and the cumulative loss for the previous quarter ensemble
predictor f t−1 up to student n for group g is

Ln(f
t−1|g) =

n∑
i=1

l(ŷt−1
i , yi)1{gi = g} (4)

where l(y, y′) is a loss function that characterizes the pre-
diction loss. For instance, for the regression case l(y, y′) =
(y−y′)2 and for the classification case l(y, y′) = 1{y �= y′}.

The weights then are constructed using the cumulative
loss based on an exponential function as follows

wt
i+1(g) = exp(−ηiLi(h

t|g))
vt−1
i+1(g) = exp(−ηiLi(f

t−1|g)) (5)

where ηi is a sequence of input constants. Intuitively, the
predictor with a larger cumulative loss will be assigned with
a smaller weight. The complete proposed Ensemble-based
Progressive Prediction (EPP) algorithm is given in Algo-
rithm 1.

Algorithm 1 Ensemble-based Progressive Prediction (EPP)
1: Initialization: L(ht) = 0, L(f t) = 0, ∀t.
2: for each student i do
3: Observe background θi, student group gi
4: for quarter t = 1 to T do � Prediction Phase
5: Observe academic state sti
6: Receive prediction ŷt−1

i from f t−1

7: Base predictor ht predicts zti = ht(θi, s
t
i)

8: Ensemble predictor f t predicts
9: ŷti = f t(ŷt−1

i , zti |vt−1
i ,wt

i)
10: end for
11: Observe true label yi.
12: for quarter t = 1 to T do � Update Phase
13: Compute prediction loss l(ŷti , yi) and l(zti , yi)
14: Update Li(h

t|gi) ← Li−1(h
t|gi) + l(zti , yi)

15: Li(f
t−1|gi) ← Li−1(f

t−1|gi) + l(ŷti , yi)
16: Update weights wt

i+1 and vt
i+1 according to (5)

17: end for
18: end for

1607

Performance Analysis
In this section, we characterize the performance of the pro-
posed progressive predictor. We study only the case |G| = 1
since the extension is straightforward. We will focus on the
ensemble predictor for a particular quarter t and compare
it with the best base predictor among quarters 1, 2, ..., t in
hindsight. Once the performance of ensemble predictor f t is
characterized, characterizing the overall performance of the
progressive predictor is straightforward. The performance
metric is regret. However, since the ensemble prediction is
deterministic in the regression case while probabilistic in the
classification case, we define and analyze the regret sepa-
rately for these two cases.

Regression Case
Let h∗(t) = argminhτ :τ∈{1,...,t} Ln(h

τ) be the best base
predictor in hindsight restricted to the first t quarters and
L∗,t
n = Ln(h

∗(t)) be the corresponding minimal cumulative
loss. The regret of ensemble predictor f t up to student n is
defined as Regt(n) = Ln(f

t)− L∗,t
n .

Proposition 1. Assume that l(·, ·) is convex in its first
argument. When the EPP algorithm runs with parameter
ηi =

√
8(ln 2)/i, then for any number n of students,

the regret of ensemble predictor f t satisfies Regt(n) ≤
t
(
2
√

n ln 2/2 +
√

ln 2/8
)

.

Proof. The proof is largely based on Theorem 2.3 in (Cesa-
Bianchi and Lugosi 2006), which can be used to establish
bounds on the performance difference between f t and the
best among ht and f t−1 when we restrict ourselves to the en-
semble learning problem at quarter t. In particular, we have

Ln(f
t)−min{Ln(f

t−1), Ln(h
t)}

≤2
√
n ln 2/2 +

√
ln 2/8 (6)

By considering the bounds for quarter t− 1, we have

Ln(f
t)− Ln(h

t−1)

=Ln(f
t)− Ln(f

t−1) + Ln(f
t−1)− Ln(h

t−1)

≤2(2
√
n ln 2/2 +

√
ln 2/8) (7)

By induction, we obtain the claimed result.

Classification Case
Since the prediction output in the classification case is ran-
domly sampled according to a distribution, we define regret
is a slightly different way. Instead of using the realized cu-
mulative loss, we use the expected cumulative loss when
defining the regret: Regt(n) = E[Ln(f

t)]−L∗,t
n . Because of

the probabilistic prediction, the space of predictions and the
loss functions are not convex in the classification case and
hence, results of Theorem 2.3 in (Cesa-Bianchi and Lugosi
2006) are no longer applicable. Theorem 2 in (Tekin, Yoon,
and van der Schaar 2015) establishes a similar result for the
classification case, which is utilized in our regret analysis.
Proposition 2. When the EPP algorithm runs with parame-
ter ηi =

√
ln 2/i, the regret of ensemble predictor f t satis-

fies Regt(n) ≤ t
(
2
√
n ln 2

)
.

20 30 40 50 60 70
Selected Courses

0
5

10
15
20
25

St

ud
en

ts Low SAT
High SAT

Figure 4: Distribution of Number of Selected Courses

0%~10%
10%~20%

20%~30%
30%~40%

40%~50%
50%~60%

60%~70%
70%~80%

80%~90%
90%~100%

Percentage of Students

0

200

400

C

ou
rs

es

Figure 5: Courses Selected by Student Percentage. For ex-
ample, there are 374 courses, each of which is selected by
fewer than 10% students.

Proof. Consider the ensemble learning problem at quarter t,
Theorem 2 in (Tekin, Yoon, and van der Schaar 2015) can
be used to show

E[Ln(f
t)]−min{Ln(f

t−1), Ln(h
t)} ≤ 2

√
n ln 2 (8)

Then the proposition can be similarly proved as in Proposi-
tion 1.

Now we have shown that the regret bounds for both the
regression and the classification cases are sublinear in the
number of students n. This implies that the average regret
tends to zero if n → ∞, i.e. limn→∞ 1

nRegt(n) → 0. These
bounds provide a worst-case performance guarantee for the
ensemble predictor, stating that the ensemble predictor is no
worse than the best base predictor in hindsight asymptoti-
cally. However, we point out that the ensemble predictor of-
ten performs much better than all base predictors in practice
as we will show in the experiments.

Moreover, these propositions in fact highlight the impor-
tance of taking the student’s evolving progress into account
for the student future performance prediction. Consider a
particular quarter t. The base predictor ht uses only the
current academic state but not the previous academic states
to make predictions whereas the ensemble predictor f t im-
plicitly uses all past academic states. The cumulative loss
Ln(h

t) of ht clearly is no less than L∗,t
n for any t. Since

Ln(f
t) is asymptotically no more than L∗,t

n , it can be con-
cluded that using the student’s evolving past progress im-
proves the prediction performance by using our algorithm.

Experiments
Dataset
Student data used to test our algorithm is collected from
UCLA Mechanical and Aerospace Engineering Department.

Table 1: Dataset Statistics
On Time Not On Time

Average GPA 3.33 3.17
Average Credits 172.4 157.9

1608

The dataset has 367 anonymized students enrolled in the
same program. The data of each student contains the stu-
dent’s pre-college traits (high school GPA and SAT scores),
the courses (lectures, labs) that the students take in each aca-
demic quarter, the course credits and the obtained grades.
We consider only the fall, winter and spring quarters but not
the summer quarter since very few students take classes in
summer quarters. Thus, we say that a student graduate on
time if he/she graduates within 12 quarters and does not
take any more courses beyond the first 12 quarters. In this
dataset, the on-time graduation rate is 58%. Table 1 shows
that students who graduated on time also had a higher GPA
and earned more credits on average. However, on one hand,
using only the average GPA and total credits ignores the di-
versity of courses taken by students and it can be much eas-
ier to earn a high grade in some courses than others. On the
other hand, there are numerous possibilities of the courses
selected by students. Figure 4 illustrates the distribution of
number of courses selected by students and Figure 5 shows
the number of courses that are selected by a certain percent-
age of students. It can been seen that although the students
come from the same program, the courses that students take
are extremely diverse. The total number of distinct courses
among all students is 453, which is much more than the av-
erage number 44 of courses selected by students.

Due to space limitation, we show results for the classifi-
cation task only in which we predict whether a student can
graduate on time or not.

Important Features
We constructed a feature vector of size 22, which includes
the high school GPA, the SAT scores and the average grade
and total credits for 10 course clusters (math, chemistry,
physics, elementary major, advanced major, related ma-
jor, senior design, elective, compulsory, overall). To find
out the most significant features, we used the standard
LASSO-based feature selection method (Tang, Alelyani,
and Liu 2014). Specifically, we solve the following loss min-
imization problem where A is the feature weight vector:
minA ‖ATx − y‖22 + λ‖A‖1. ‖A‖1 is included in the ob-
jective to induce sparsity in the feature weight vector. Fea-
tures that have non-zero value in A are considered signif-
icant. The significant features vary across quarters, which
are illustrated in Figure 6. It turns out that (1) SAT scores are
more important static features than the high school grades;
(2) Course grades are more important than credits; (3) Ele-
mentary and advanced major courses become important in
the later stage of the program when students begin to take
them; (4) senior design is the most important in the final
quarter.

Performance
We compare the performance of our EPP algorithm with the
following benchmarks

• Using only current state (Base): This is simply using only
the base predictor ht to predict in quarter t without utiliz-
ing the evolving student performance. We implemented
SVM (with various kernels) and KNN for the base pre-

HS GPA SAT Math
Physics

Chemistry
Elem Major

Advd Major

Related Major

Senior Design
Elective

Compulsory
Overall

Course Clusters

2
4
6
8

10
12

Q
ua

rte
rs

Figure 6: Significant Features. (Circle - credits; Dot - grade)

0 2 4 6 8 10 12
Quarter

55

60

65

70

75

80

85

Ac
cu

ra
cy

EPP
Base
Credit
GPA

0 2 4 6 8 10 12
Quarter

50

60

70

80

90

100

Ac
cu

ra
cy

Low SAT (EPP)
Low SAT (Base)
Mid SAT (EPP)
Mid SAT (Base)
High SAT (EPP)
High SAT (Base)

Figure 7: Prediction Accuracy over Quarters

dictors. KNN yields the highest accuracy and hence we
report results only for KNN.

• Using only evolving GPA (GPA): A binary classifier is
trained using only the overall GPA up to quarter t to pre-
dict in quarter t.

• Using only evolving total credit (Credit): A binary clas-
sifier is trained using only the total credits earned up to
quarter t to predict in quarter t.

In the simulations, we created three student groups
(high/mid/low SAT scores). Half of the students were used
as the training data and the remaining students were used as
the testing data. Figure 7 shows the prediction accuracy over
quarters and breaks down for different student groups. As we
can see, all algorithms generally improve their accuracy over
the quarters since more information is accumulated. More-
over, the proposed EPP outperforms all the benchmark algo-
rithms.

Conclusion
In this paper, we proposed a novel algorithm for predict-
ing student’s performance in college programs given his/her
current academic records. Our data-driven approach can be
used together with other pedagogical methods for evaluat-
ing student’s performance and provide valuable information
for academic advisors to recommend subsequent courses to
students and carry out pedagogical interventions measures if
necessary.

1609

References
Bekele, R., and Menzel, W. 2005. A bayesian approach
to predict performance of a student (bapps): A case with
ethiopian students. algorithms 22(23):24.
Brinton, C. G., and Chiang, M. 2015. Mooc performance
prediction via clickstream data and social learning networks.
In 2015 IEEE Conference on Computer Communications
(INFOCOM), 2299–2307. IEEE.
Brunskill, E., and Russell, S. 2010. Partially observable se-
quential decision making for problem selection in an intelli-
gent tutoring system. In Educational Data Mining 2011.
Cen, H.; Koedinger, K.; and Junker, B. 2006. Learning fac-
tors analysis–a general method for cognitive model evalua-
tion and improvement. In International Conference on In-
telligent Tutoring Systems, 164–175. Springer.
Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, learn-
ing, and games. Cambridge university press.
Complete College America. 2014. Four-year myth: Mak-
ing college more affordable. http://completecollege.org/wp-
content/uploads/2014/11/4-Year-Myth.pdf.
Cucuringu, M.; Marshak, C.; Montag, D.; and Rombach,
P. 2016. Rank aggregation for course sequence discovery.
arXiv preprint arXiv:1603.02695.
Feng, M.; Heffernan, N.; and Koedinger, K. 2009. Address-
ing the assessment challenge with an online system that tu-
tors as it assesses. User Modeling and User-Adapted Inter-
action 19(3):243–266.
Hoiles, W., and van der Schaar, M. 2016. Bounded off-
policy evaluation with missing data for course recommenda-
tion and curriculum design. In Proceedings of The 33rd In-
ternational Conference on Machine Learning, 1596–1604.
KDD Cup. 2010. Educational data minding challenge. https:
//pslcdatashop.web.cmu.edu/KDDCup/.
Lee, J. I., and Brunskill, E. 2012. The impact on individu-
alizing student models on necessary practice opportunities.
International Educational Data Mining Society.
Mandel, T.; Liu, Y.-E.; Levine, S.; Brunskill, E.; and
Popovic, Z. 2014. Offline policy evaluation across represen-
tations with applications to educational games. In Proceed-
ings of the 2014 international conference on Autonomous
agents and multi-agent systems, 1077–1084.
Marquez-Vera, C.; Romero, C.; and Ventura, S. 2010. Pre-
dicting school failure using data mining. In Educational
Data Mining 2011.
Meier, Y.; Xu, J.; Atan, O.; and van der Schaar, M. 2015.
Personalized grade prediction: A data mining approach. In
Data Mining (ICDM), 2015 IEEE International Conference
on, 907–912. IEEE.
Meier, Y.; Xu, J.; Atan, O.; and van der Schaar, M. 2016.
Predicting grades. IEEE Transactions on Signal Processing
64(4):959–972.
Pardos, Z. A., and Heffernan, N. T. 2010. Using hmms and
bagged decision trees to leverage rich features of user and
skill from an intelligent tutoring system dataset. Journal of
Machine Learning Research W & CP.

Tang, J.; Alelyani, S.; and Liu, H. 2014. Feature selection
for classification: A review. Data Classification: Algorithms
and Applications 37.
Tekin, C.; Yoon, J.; and van der Schaar, M. 2015. Adaptive
ensemble learning with confidence bounds. arXiv preprint
arXiv:1512.07446.
Thai-Nghe, N.; Drumond, L.; Horváth, T.; Schmidt-Thieme,
L.; et al. 2011. Multi-relational factorization models for pre-
dicting student performance. In Proc. of the KDD Workshop
on Knowledge Discovery in Educational Data. Citeseer.
Thai-Nghe, N.; Horváth, T.; and Schmidt-Thieme, L. 2010.
Factorization models for forecasting student performance.
In Educational Data Mining 2011.
The White House. 2016. Making college afford-
able. https://www.whitehouse.gov/issues/education/higher-
education/making-college-affordable.
Toscher, A., and Jahrer, M. 2010. Collaborative filtering
applied to educational data mining. KDD cup.
Wang, Y.-h., and Liao, H.-C. 2011. Data mining for adaptive
learning in a tesl-based e-learning system. Expert Systems
with Applications 38(6):6480–6485.
Xu, J.; Xing, T.; and van der Schaar, M. 2016. Personalized
course sequence recommendations. IEEE Transactions on
Signal Processing 64(20):5340–5352.
Yu, H.-F.; Lo, H.-Y.; Hsieh, H.-P.; Lou, J.-K.; McKenzie,
T. G.; Chou, J.-W.; Chung, P.-H.; Ho, C.-H.; Chang, C.-F.;
Wei, Y.-H.; et al. 2010. Feature engineering and classifier
ensemble for kdd cup 2010. In Proceedings of the KDD Cup
2010 Workshop, 1–16.

1610

