
Improving Surveillance Using Cooperative Target Observation

Rashi Aswani, Sai Krishna Munnangi and Praveen Paruchuri
Machine Learning Lab, Kohli Center on Intelligent Systems

International Institute of Information Technology - Hyderabad, India
{rashi.aswani, krishna.munnangi}@research.iiit.ac.in, praveen.p@iiit.ac.in

Abstract

The Cooperative Target Observation (CTO) problem has been
of great interest in the multi-agents and robotics literature due
to the problem being at the core of a number of applications
including surveillance. In CTO problem, the observer agents
attempt to maximize the collective time during which each
moving target is being observed by at least one observer in the
area of interest. However, most of the prior works for the CTO
problem consider the targets movement to be Randomized.
Given our focus on surveillance domain, we modify this as-
sumption to make the targets strategic and present two target
strategies namely Straight-line strategy and Controlled Ran-
domization strategy. We then modify the observer strategy
proposed in the literature based on the K-means algorithm to
introduce five variants and provide experimental validation.
In surveillance domain, it is often reasonable to assume that
the observers may themselves be a subject of observation for
a variety of purposes by unknown adversaries whose model
may not be known. Randomizing the observers actions can
help to make their target observation strategy less predictable.
As the fifth variant, we therefore introduce Adjustable Ran-
domization into the best performing observer strategy where
the observer can adjust the expected loss in reward due to
randomization depending on the situation.

Introduction

Performing surveillance of targets (Chakrabarty et al. 2002)
(Tang and Ozguner 2005) is an important task that security
agencies across the world perform on regular basis. The key
difficulty here is that there are typically limited security re-
sources for performing the Cooperative Target Observation
(referred to as CTO in the literature). The difficulty is exac-
erbated since targets themselves may have a variety of be-
haviors. It is therefore important that the security resources
are used in an efficient fashion. (Microdrones 2016) presents
an application where micro-drones are useful to perform
surveillance. In particular, with large gatherings and protests
(or even when monitoring a set of individuals or wildlife),
it is possible that there would be a number of people (or
events) who could possibly be considered suspicious (called
targets). Here, the aim of micro-drone would be to perform
surveillance of the maximum number of targets (i.e. main-
tain an overview) instead of doing deep probe of a target i.e.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

spend all the time on a specific target who may not turn out
to be problematic or dangerous.

(Microdrones 2016) also discusses the notion of risk free
surveillance. The motors of UAV micro-drones typically al-
low for a discrete and almost silent surveillance unlike he-
licopters and planes which are noisy. In addition, micro-
drones can use camouflage colors to minimize the risk of be-
ing sighted. In this paper, we develop a strategic component
to obfuscate the aim of micro-drone wherein the surveil-
lance strategy is inherently randomized with the amount
of randomization being adjustable according to the situa-
tion. The Cooperative Target Observation problem has been
of great interest in both multi-agents (Hu et al. 2013) (Ja-
cobi et al. 2005) and robotics (Rysdyk 2006) (Werger and
Matarić 2000) (Parker 1999) literature due to the problem
being at the core of many applications. (Parker 2002) intro-
duces the Cooperative Multi-Robot Observation of Multiple
Moving Targets (CMOMMT) formalism which is similar to
CTO problem. The paper focuses on developing on-line dis-
tributed control strategies that allow the robot team to at-
tempt to minimize the total time in which targets escape ob-
servation by some robot team member in the area of interest.
(Luke et al. 2005) studies the CTO problem and compares
the performance of K-means and Hill Climbing algorithms
on centralized, partly-decentralized and fully decentralized
agent strategies under different levels of target speeds, sen-
sor ranges and update rates. The paper shows that K-means
performs quite well over a large part of the parameter space
tested and is pretty robust to the degree of decentralization.

(Kolling and Carpin 2007) presents an algorithm for the
CMOMMT problem which utilizes information from sen-
sors, communication and a mechanism to predict the mini-
mum time before a robot loses a target. (Jung and Sukhatme
2006) proposes an algorithm that accounts for densities of
observers and targets as properties of the environment. By
manipulating these densities, a control law for each observer
is proposed. In this paper, we build upon the CTO problem
formulation presented in (Luke et al. 2005) and adapt it for
Surveillance domain which needs us to focus on the fol-
lowing aspects: (a) Model realistic behavior for targets (b)
Develop strategy for the observers to perform optimal tar-
get observation and (c) Randomize the observers actions to
make their target observation strategy less predictable.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2985

Model Description

The CTO problem as stated in (Luke et al. 2005), has a set of
mobile agents called observers, which collectively attempt
to observe as many targets as possible. Targets are assumed
to move randomly in the environment. Observers have a lim-
ited sensor range and can observe targets which fall within a
circle of radius R centered at each of the observer. The en-
vironment is a non-toroidal rectangular continuous 2D field
free of obstacles. The paper presents performance compar-
isons of centralized, partly-decentralized and fully decen-
tralized CTO algorithms for a variety of parameter settings.
The decentralized version retains the key characteristics of
the centralized CTO problem with the main distinction that
each observer takes its decision independently with the help
of its local knowledge.

In this paper, we model the surveillance domain as a de-
centralized CTO problem. Given our focus on surveillance
a realistic model for target would be to assume that they are
strategic. Furthermore no assumption was made on the tar-
gets sensor range earlier since targets were assumed to move
randomly and do not consider inputs from environment. We
modify this assumption to make targets strategic with a sen-
sor range similar to observers. Targets can therefore iden-
tify the presence of observer(s) within their sensor range.
In particular, we model targets as intelligent agents, whose
aim is to minimize their chances of being observed while
observers aim is to maximize their target observation. Prior
work on decentralized CTO shows that a K-means based so-
lution (Luke et al. 2005) produces a high quality movement
behavior for the observers. We now describe how we build
upon the K-means solution to introduce five variant strate-
gies for the observer that consider the strategic behavior of
the targets.

Observers Movement

As described in (Luke et al. 2005), a K-means based algo-
rithm can provide a high quality movement behavior for ob-
servers. The K-means based algorithm computes a destina-
tion point for each observer. The observer then moves to-
wards this destination for γ time-steps or steps (with default
value of 10). If the observer reaches its destination before
γ steps, it waits until a new destination is computed. There
is no communication involved among observers (or targets).
Observers do not send any information but are synchronized
in decision making due to the waiting time of γ steps(as
modeled in (Luke et al. 2005)).

K-means based Algorithm For Decentralized CTO Prob-
lem K-means is one of the simplest unsupervised learning
algorithm that is used to perform clustering. Clustering is the
process of partitioning a group of data points into clusters. It
takes N data points and divides them into K clusters. Each
data point is assigned to the cluster closest to it. In our con-
text, the set of targets that fall within the range of an observer
can be considered as a cluster. Note that clusters need not be
of equal sizes. The goal of the algorithm would be to identify
a new destination for each observer so that the cluster asso-
ciated with an observer is more uniformly spread around it.
This will improve the possibility of retaining the maximum

number of targets over time. Following are key steps of the
K-means based algorithm as presented in (Luke et al. 2005):
• Firstly, the algorithm obtains the number of clusters to

pick which is same as the number of observers |O| in our
domain and then initializes the cluster centers with the
observers initial positions.

• For each of the clusters c1, c2, ..., c|O|, it identifies the
targets whose distance is less than the sensor range of the
observer associated with that cluster. Observers observe
all the targets that fall into their cluster.

• The algorithm then computes the mean of the targets
present in each cluster ci and sets the destination position
of the corresponding observer i closer to the mean using
the following equation:

Ki = (1− α)Ki + αMi (1)

where Ki is the initial position of observer i, α is the
weighing factor and Mi is the mean position of targets
present in the cluster ci.

The algorithm iterates over the above mentioned steps till the
time-steps (set as 1500 in our experiments) are exhausted.
The destination for each observer is updated every γ steps.
Therefore each update step for the observer consists of γ
steps and is called update rate of the algorithm. At the start
of new update step the algorithm sets a new (next) destina-
tion for each observer and allows the observers to act (i.e.
move or wait) for γ steps that would help them reach their
destination. Hence each observer keeps adjusting its current
position that would enable it to retain more targets in its sen-
sor range over time. We now build upon the K-means based
algorithm for observer to develop: (a) Explore-Exploit (b)
Memorization (c) One Step Prediction (d) k-step Predic-
tion (e) Explore-Exploit with Adjustable Randomization

Explore-Exploit In the Explore-Exploit strategy an ob-
server has two specific actions namely Explore and Exploit.
An observer can perform an Exploit action using the K-
means clustering i.e. Eqn. 1 and can perform an Explore ac-
tion by setting its destination position at random. The desti-
nation of observer is computed using the following formula:

Ki = (1− α)Ki + α(Wexplore ∗RPi +Wexploit ∗Mi)

Wexplore +Wexploit = 1 (2)

Here, Ki denotes the initial observer position, Wexplore de-
notes weight factor for Explore component, Wexploit de-
notes weight factor for Exploit component, Mi denotes the
mean position of targets present in ith cluster and RPi de-
notes a random point. Taking cue from prior work(Luke et
al. 2005) on the method to pick a random destination for tar-
get, we bound the randomly picked destination point RPi

for the observer to be within a quarter of the environment
width and height centered on the observer. The intuition for
picking dimensions for the rectangle in this fashion is to
avoid observers getting clustered near the center of the envi-
ronment while moving to their intended destinations. Note
that the algorithm still follows the steps of K-means algo-
rithm and hence is iterative i.e. the observer would take γ
steps (either random or towards a destination) and then tries

2986

to identify a new destination point. Observer has autonomy
to set values for the parameters Wexplore and Wexploit. We
now present three settings for the Explore-Exploit strategy,
generated by changing the weights for Explore and Exploit
actions:

• Model 1 (0-1 model): In this model, if the observer is not
observing any target currently it performs an Explore ac-
tion in search of targets i.e. Wexplore = 1. On encountering
one or more target(s), it stops Explore and takes Exploit
action of observing the target(s) using K-means clustering
algorithm. Hence, if there is no target under observation,
Wexplore = 1, otherwise Wexplore = 0.

• Model 2 (0-.5-1 model): Model 2 sets Wexplore to ei-
ther 0, 1 or 0.5. In case of no target under observation,
Wexplore = 1, if more than two targets are being observed
Wexplore = 0 and if either one or two targets are being
observed, Wexplore = 0.5.

• Model 3 ((1
|targetsi|+1)

2 model): Similar to the above
models, if the observer i is not observing any target it per-
forms an Explore action. Upon encountering target(s), it
assigns weight to the Explore component depending upon
the number of targets being observed. In particular, the
weight for Explore is set as (1

|targetsi|+1)
2 i.e., as the

number of targets being observed increases, the weight
for Explore gets smaller and vice versa.

Memorization In Memorization strategy, we improve the
0-1 Explore-Exploit strategy in the following fashion (rea-
son for picking 0-1 Model explained in Experiments): At
the start of every update step (us(i): update step i), each ob-
server finds targets in its sensor range. If targets are present
it performs an Exploit action as earlier i.e. Wexploit = 1.
However, the key difference is that, it first sets value for last
stored target position (lstp) variable. The value for lstp is
set as closest target position in the sensor range before start-
ing the Exploit action and then it starts executing the Ex-
ploit steps. If at the start of update step (us(i)) no targets
are present, the observer performs an Explore action by set-
ting its destination as the position in lstp variable (set at
us(i−1)). The reason is that it hopes that the target may not
have gone far from earlier and maybe able to capture it. It
then updates the lstp variable for us(i) as null. In the next
update step (us(i + 1)) if the observer still does not have a
target in range, lstp will be null and hence performs a ran-
dom explore (true for any step where lstp is null). As ear-
lier, random explore sets destination as random point within
one quarter of environment width and height centered on it.

One Step Prediction One Step Prediction has a similar
structure as Memorization except that it performs a predic-
tion step. The key difference due to this happens in the Ex-
plore action wherein instead of setting destination (at us(i))
as the last stored target position (lstp), if no target is present
in observers range, we perform a prediction as where the tar-
get would be (at end of us(i)) using the lstp. To do this, we
use the lstp variable and ocop variable (observers current
origin position i.e. before taking first step at us(i)). Given
that 2 ∗ γ time-steps would have elapsed by the time the

observer reaches its destination set in us(i) (counting from
when lstp would be set, which is at us(i − 1)), we predict
the expected distance traveled would be time (2 ∗ γ) ∗ target
speed (1 unit/time-step) = 2 ∗ γ units. We assume that tar-
get would travel the computed distance on the ocop to lstp
line and the expected target position is set as the destination
for observer. After reaching the destination, if the observer
still does not find any target in range, it sets lstp to null. If
lstp is null at the start of an Explore action, the target does
random explore as in Memorization.

k-step Prediction k-step Prediction has similar structure
as One Step Prediction but makes k prior observations of
the target instead of one lstp variable. As earlier, at the start
of every update step (say us(i)), each observer finds targets
in its sensor range. If targets are present it performs an Ex-
ploit action. The key difference arises in the data collected:
The observer collects ID of the nearest target (say target tj)
before taking the first step of Exploit action in us(i). Col-
lecting the ID allows the observer to track the same tar-
get afterwards (and avoids mixup of different targets and
their locations). Thereafter for each of the next γ steps of
us(i), the observer maintains the location of target tj . If tj
is out of sensor range, it stores null for that step. It then
identifies the start and end positions when tj was in con-
tinuous observation, called the uStart and uEnd. To pre-
dict target position, we assume the target to be moving away
from uStart in a straight line connecting uStart to uEnd.
Given that γ time-steps elapse by the time observer reaches
its destination in us(i), we predict the distance traveled by
the target from uEnd as time multiplied by speed of tar-
get, i.e., (γ − uEnd + γ) ∗ target speed (1 unit/time-step)
= (2 ∗ γ − uEnd) units. We set this expected position of
target as the observer destination (for us(i)). After reaching
the destination, if the observer still does not find any target
in range, it sets all the location values to null. If no prior
target information is available or if uStart equals uEnd for
us(i − 1) at the start of an Explore action, the target does
random explore as in Memorization.

Explore-Exploit with Adjustable Randomization One
of the key contributions of this paper is to introduce con-
trolled randomization into the observer strategy to make
it less predictable. As shown in experiments section, the
Explore-Exploit strategy was found to be the best strategy
for observer across a variety of settings. Hence we pick
Explore-Exploit as the strategy into which we introduce ad-
justable randomization. Intentionally introducing random-
ness into agent strategy has been used as a technique in
the literature (Bryant and Miikkulainen 2006) to make the
agent strategy less predictable. We adapt the BRLP algo-
rithm (Paruchuri et al. 2006) introduced in the context of
randomization in MDP based planning to our setting. To
adapt this into our solution, we first define the notion of re-
ward for observer in a CTO problem as the mean number of
targets being observed by the observer in one simulation run
(which as mentioned in our experimental setup has been set
as 1500 time-steps).

Randomness in observer strategy will be computed over
the weighing factor (i.e. α variable) in Eqn 1. In the ad-

2987

justable randomization strategy, α value is discretized into
units of 0.1 varying from 0.1 to 1. A randomized solution
would suggest a probability distribution over α vector in-
stead of picking a specific α value that will maximize the
observer expected reward i.e. maximize the expected num-
ber of targets observed. Randomness in strategy is measured
using entropy. However an optimization program involving
entropy as the objective function is non-linear in nature and
will be intractable. The BRLP algorithm (Paruchuri et al.
2006) introduced in the context of randomization in MDP
based planning (BRLP-MDP), is a heuristic developed to
address the problem related to non-linearity of the entropy
function. We adapt the BRLP-MDP algorithm for our pur-
poses here to develop the BRLP-CTO algorithm.

At each update step of the Explore-Exploit algorithm, the
observer needs to compute the optimal α to use. It therefore
calls BRLP-CTO algorithm to return the probability distri-
bution over α and one particular value of α is picked based
on the distribution returned. A key step involved in BRLP-
CTO is the computation of the following Linear Program
(3). This LP computes the optimal probability distribution
over α i.e. p(α) given a r(α) vector, a template probabil-
ity distribution vector p ¯(α) and a value for β as input to the
LP. The template probability vector can be any distribution
that has a high entropy and is useful to enforce some level
of randomness into the solution since the objective function
is reward maximization. One such high entropy probabil-
ity distribution vector is the uniform distribution vector. The
amount of randomness that is reflected in the solution from
the template vector is controlled by β ∈ [0, 1].

The core issue with adapting BRLP-MDP (Paruchuri et al.
2006) to the CTO problem, is with modeling of r(α). Unlike
an MDP where the reward function is input to the problem,
we need to perform a real-time simulation over all the antic-
ipated scenarios to construct the reward function. Following
are the steps involved in this construction: (1) Each observer
o ∈ O notes the position, speed and direction of all targets
to ∈ To in its sensor range over the γ time-steps in cur-
rent update step (us(i)). Each target added to To may be in
sensor range at different time-steps and durations as long as
they fall within the window from end of first step in us(i)
to the start of first step in us(i + 1). (2) Using information
from the γ sensing steps, at the start of us(i+ 1) all the ob-
servers o ∈ O estimate the destination position dpoto for each
to ∈ To at start of us(i+2). This is called an estimation step
and can take place only at the start of update step. (3) Using
the estimated values, at the start of us(i+1), every observer
o computes the estimated mean position of targets that will
lie in its sensor range at us(i+2). Then, every observer o for
each α value uses Eqn. 2 (with Wexplore = 0) to compute its
own possible destination position dpoα and checks whether
each of the targets in dpoto falls within the sensing range of
dpoα. (4) For each To that o predicts will be in sensing range
of dpoα at us(i+ 2), it adds +1 to its reward at α. Hence the
reward vector r(α) for us(i+ 1) gets estimated.

We now present the LP (3) which takes β value as input

(which as we will see the BRLP-CTO provides):

Maximize
1.0∑

α=0.1

p(α)r(α)

s.t.

1.0∑

α=0.1

p(α) = 1, ∀p(α) >= βp ¯(α)

(3)

BRLP-CTO identifies the appropriate β value by doing the
following: It performs a binary search over the β space to
attain a policy with expected reward E(β) which lies be-
tween {Ē, E∗}, by adjusting the parameter β. For β = 0 this
problem reduces to a LP without any constraint on p(α) and
hence returns the highest expected reward of E∗. For β = 1
it returns the template policy p ¯(α) which acts as a lower
bound on the expected reward (Ē). The binary search ex-
ploits this inverse relationship between β and E(β) to iden-
tify the appropriate β (and hence p(α)β) that guarantees the
threshold amount of reward Emin that a user requests for.
BRLP-CTO has fast convergence (average in milliseconds),
hence it is suited for dynamic environments.

Algorithm 1 BRLP-CTO(Emin, p ¯(α))
1: Set βl = 0, βu = 1 and β = 1/2.
2: Solve Problem (3), let p(α)β and E(β) be the optimal

solution and expected reward value obtained.
3: if Emin > Ē then
4: while |E(β)− Emin| > ε do
5: if E(β) > Emin then
6: Set βl = β
7: else
8: Set βu = β
9: end if

10: β = βl+βu

2
11: Solve Problem (3), let p(α)β and E(β) be the

optimal solution and expected reward value returned
12: end while
13: end if
14: return p(α)β

Targets Movement

Prior work in the literature assumes that targets move ran-
domly. However in a surveillance domain it is reasonable to
assume that targets would be strategic and try to minimize
their observation. Targets have a sensor range similar to ob-
servers in which they can see observers. Like for observers,
we define targets movement by setting a destination point
and moving a fixed γtarget number of steps (with default
value of 100, note that it was γ steps for observers) towards
it. If the target reaches its destination position before γtarget
steps, it immediately calculates its new destination similar
to the target movement in (Luke et al. 2005). Targets desti-
nation position is computed by using following algorithms:
(a) Randomized Movement (b) Straight-line Movement
(c) Controlled Randomization

2988

Randomized Movement In the randomized approach, tar-
gets destination positions are chosen at random from within
a local region (one quarter of the environment height and
width) centered on the target as targets have a local view of
environment. Targets then move to the destination point for
utmost γtarget time-steps whose default value is set to 100.

Straight-line Movement We propose our first heuristic
namely Straight-line Movement wherein a target attempts
to escape out of the observers sensor range by following a
straight line trajectory in the direction that maximizes the
distance of the target from the observer. This direction is
computed by joining a line segment between the observer
current position and the target in the direction of target. Tar-
get takes γtarget steps in this direction after which it again
calculates the new direction depending on the observer ob-
serving it then. If there is more than one observer observing
the target, it calculates the mean position of observers and
uses it to identify the direction which leads to the maximum
distance from the mean.

Controlled Randomization The Straight-line Movement
has a downfall that it might increase observers suspicion to-
wards target. To reduce suspicion, we propose Controlled
Randomization which adds randomization to the Straight-
line Movement. Randomization decreases the suspicion to-
wards a target while Straight-line Movement helps target to
escape out of the sensor range of observer. In Controlled
Randomization, targets follow the Straight-line Movement
for η time-steps and Randomized Movement for the remain-
ing time-steps. We experimented with various values for η
and a value of 0.7 was found to perform the best. Hence, the
target moves in the direction of destination for .7 * γtarget
time-steps and follows a random movement henceforth.

Experiments

For purposes of experiments, we assume that the observers
and targets are operating in a rectangular field with a width
and height of 150 x 150 units (we refer to as units for gener-
alization). We performed a variety of experiments by vary-
ing the density, speed and sensor range of agents, where den-
sity is a function of number of observers and targets.

• To vary density, the number of observers was picked from
{2, 6, 10, 14, 18} and the number of targets from
{3, 9, 15, 21, 27}.

• Six possible target speed values were picked among
{0.2, 0.5, 0.8, 1.0, 1.2, 1.5} measured as units per time-
step. The speed of observers was fixed to 1 unit per time-
step.

• Five possible sensor range values picked from
{5, 10, 15, 20, 25} where a value 5 represents 5 units.

• In total there are 5*5 i.e. 25 settings for densities. They
were tested against six possible values for target speeds
and five different values for sensor ranges resulting in a
testbed involving 5*5*6*5 = 750 different settings.

• Each experiment was simulated 30 times (number of runs)
and each simulation run consists of a total of 1500 time-

steps i.e. each observer and target takes 1500 steps (can
stay at same position or move in a step).

• While performing the experiments, for each simulation
run we gathered the number of time-steps each target is
under observation. The mean across the 30 runs gives the
mean number of steps each target is under observation
per experiment. If a target was observed by multiple ob-
servers, we counted the target only once.
All our experiments were performed on MASON simula-

tion toolkit (Luke et al. 2004). MASON is a fast discrete-
event multi-agent simulation library core developed in Java.
We implemented our model over MASON and used its in-
ternal threading mechanism to run the agents in parallel.

Model 3 9 15 21 27
Model 1 2.3 5.48 7.77 9.72 11.47
Model 2 1.76 4.58 6.94 8.96 10.9
Model 3 2.21 5.28 7.65 9.51 11.41

Table 1: Comparison of Explore-Exploit models

Optimal α value

Our first experiment identifies the best α value for observers
using K-means algorithm. We set the number of observers as
18, number of targets as {3, 9, 15}, sensor range as 15, target
strategy as Randomized strategy, α discretized using interval
of 0.1 from 0.1 to 1 and obtained the following vector of
average number of targets observed: <4.39, 4.7, 5.57, 6.52,
6.69, 6.63, 6.66, 6.69, 6.73, 6.82> (corresponding to each
value of alpha from 0.1 to 1). Henceforth, we set α to 1 in
all our experiments since it performs the best. Prior work on
k-means (Luke et al. 2005) used α as 0.25 which we found
to be significantly worse for our setup.

Explore-Exploit Model

Our second experiment identifies the best weight vector to
use for the Explore and Exploit components in Observer
strategy. Table 1 compares the performance measured as
the mean number of targets observed per experiment for the
three Explore-Exploit models. Each row of the table corre-
sponds to a model and the columns represent the number of
targets. For purposes of this experiment we set the number
of observers to 10, target speed to 1.0, sensor range to 15
and targets following Randomized strategy. Based on these
experiments, Model 0-1 was found to perform consistently
better than the rest, as the maximum mean number of targets
were observed with the Model 0-1 on an average over 30
runs with 1500 time-steps in each run. Hence, we use weight
vectors defined in Model 0-1 for further experimentation.

Proportions 3 9 15 21 27
70-30 2.57 5.67 7.88 9.97 11.62
50-50 2.62 6 8.11 10.03 11.93
30-70 2.6 5.83 7.93 10.07 11.69

Table 2: Comparison of Controlled Randomization ratios

2989

(a) Straight-line vs Random (b) Controlled Random vs Random (c) Controlled Random vs Straight-line

Figure 1: Target Strategies Comparison

(a) Memorization vs Explore-Exploit (b) One Step vs Explore-Exploit (c) k-Step vs Explore-Exploit

Figure 2: Observer Strategies Comparison

Mixing Ratio for Controlled Randomization

Our next experiment aims to identify the best ratio of
Straight-line and Randomized steps to take for Controlled
Randomization. We tested three different mixing ratios: 50-
50, 70-30 and 30-70, where 30-70 implies 30% steps in
Straight-line and 70% Random. Table 2 illustrates the results
measured as the mean number of targets observed. Each row
of the table corresponds to one particular mixing ratio while
the columns correspond to number of targets. Other param-
eters were set as follows: number of observers as 10, target
speed as 1.0, sensor range as 15 and observers following
Explore-Exploit strategy. The table shows that the minimum
number of targets were observed when targets use a 70:30
mixing ratio and hence set as default mixing ratio for Con-
trolled Randomization strategy.

Target Strategies Comparison

In this experiment, we study the performance of Straight-
line and Controlled Randomization (with 70:30 mix) and
compare with the Randomized strategy. Our study shows
a significant decrement in the mean number of targets ob-
served due to their ability to avoid the observer. The experi-
ments were performed using a setting of sensor range as 15,
number of observers as {2, 6, 10, 14, 18}, number of targets
as {3, 9, 15, 21, 27}, target speeds as {0.5, 0.8, 1.0, 1.2} and
observers following Explore-Exploit strategy. The percent-
age difference between strategies in terms of mean number
of targets observed is calculated as Ta−Tb

Tb
× 100, where Ta

denotes mean number of targets observed by strategy a and
Tb denotes mean number of targets observed by strategy b.

Figure 1(a) shows the number of targets on x-axis and de-
picts the percentage difference in the mean number of targets
being observed by targets Straight-line (strategy a) with re-
spect to the Randomized (strategy b) on y-axis. The 4 lines
correspond to the 4 different target speed settings indicated.
The figure shows a trend wherein as the target speeds get
higher from 0.5 to 1.2 there is a marked decrease in the per-
centage difference which shows that the Straight-line strat-
egy at higher target speeds starts becoming effective.

Figure 1(b) shows the percentage difference in the mean
number of targets being observed by targets following Con-
trolled Randomization (strategy a) having 30% randomiza-
tion with respect to the Randomized (strategy b). While
lower on an average than figure 1(a), the figure shows that
the percentage of mean targets being observed is entirely in
the negative y-axis which shows the Controlled randomiza-
tion strategy dominates.

Figure 1(c) compares the Controlled Randomization strat-
egy (strategy a) with Straight-line (strategy b). Most points
lie on positive y-axis which implies Straight-line strategy is
more effective than Controlled Randomization. This is be-
cause the random part of the path decreases the distance
between observer and target and leads to increase in target
observation. While we leave mathematical quantification of
suspicion for future work, our goal of introducing random-
ness is to reduce the suspicion that target is always trying to
move away and will be used as default strategy for targets.

Observer Strategies Comparison

In this experiment, we study the performance of Memo-
rization, One Step and k-step Prediction in comparison to

2990

the Explore-Exploit strategy. The experiments were per-
formed using a setting having a sensor range of 15, num-
ber of observers as {2, 6, 10, 14, 18}, number of targets as
{3, 9, 15, 21, 27} and target speeds as {0.5, 0.8, 1.0, 1.2}.
Targets were modeled to follow Controlled Randomization
strategy. The x-axis of each of the subfigures in Fig 2 shows
the number of targets while the y-axis shows the percentage
difference in the mean number of targets being observed.
The four lines correspond to four different target speed set-
tings corresponding to {0.5, 0.8, 1.0, 1.2}. As earlier, each
point in the graph is an average over 30 runs across all the
settings for number of observers.

Figure 2(a) compares the Memorization strategy (strategy
a) against Explore-Exploit (strategy b). As we can see from
the figure for the highest speed setting almost all the points
lie on positive y-axis implying Memorization outperforms
Explore-Exploit. However, apart from the highest speed set-
ting Explore-Exploit outperforms for all the other settings.
The lower performance for Memorization is possibly due to
the fact that the observer is only moving to the last position
of the nearest target and not searching for other targets.

In Figures 2(b) and 2(c), we compare One Step and k-
step Prediction against Explore-Exploit. The figures show no
clear winner among Explore-Exploit and One Step but show
Explore-Exploit being better than k-step. The reason is pos-
sibly similar to Memorization where observer tries to follow
the last nearest target in case where no target is in range in-
stead of searching for more targets. The 0-1 Explore-Exploit
will therefore be used as the default observer strategy.

Reward vs. Entropy Tradeoff for BRLP-CTO

For this experiment, we vary the percentage of optimal
reward (i.e. threshold) that the user would like to obtain
using the BRLP-CTO to increase randomization. We per-
formed this experiment with sensor range as 15, target speed
as {0.8, 1.2}, number of observers as {2, 10, 18}, number
of targets as {3, 15, 27} and targets following Controlled
Randomization. We obtained the following vector of av-
erage entropy values (averaged across all the settings for
speeds, number of observers, targets and runs): <3.321,
3.319, 3.312, 3.26, 3.041, 2.137> for threshold reward rang-
ing from 50% to 100% in increments of 10%. Note that
as expected it is a entropy vector with decreasing values
with 100% threshold giving the lowest entropy. However,
the lowest entropy is still a significant value here since there
are many instances where irrespective of α, observer gets
same reward and hence the template policy p(ᾱ) gets picked.

Conclusions
We adapted the CTO problem to Surveillance domain. We
then improved upon the K-means algorithm to develop five
variant strategies for the observer. We changed the assump-
tion related to targets to make them strategic via develop-
ment of two heuristics. We then performed a series of ex-
periments to show that the 0-1 Explore-Exploit strategy per-
forms best for the observers. We build upon this strategy
to introduce user adjustable randomization into the surveil-
lance plan. In future, we plan to study inclusion of realistic
constraints in the environment in which the agents operate.

References

Bryant, B. D., and Miikkulainen, R. 2006. Evolving stochas-
tic controller networks for intelligent game agents. In 2006
IEEE International Conference on Evolutionary Computa-
tion, 1007–1014. IEEE.
Chakrabarty, K.; Iyengar, S. S.; Qi, H.; and Cho, E. 2002.
Grid coverage for surveillance and target location in dis-
tributed sensor networks. IEEE transactions on computers
51(12):1448–1453.
Hu, J.; Xie, L.; Lum, K.-Y.; and Xu, J. 2013. Multia-
gent information fusion and cooperative control in target
search. IEEE Transactions on Control Systems Technology
21(4):1223–1235.
Jacobi, S.; Madrigal-Mora, C.; León-Soto, E.; and Fischer,
K. 2005. Agentsteel: An agent-based online system for
the planning and observation of steel production. In Pro-
ceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems, 114–119. ACM.
Jung, B., and Sukhatme, G. S. 2006. Cooperative multi-
robot target tracking. In Distributed Autonomous Robotic
Systems 7. Springer. 81–90.
Kolling, A., and Carpin, S. 2007. Cooperative observation of
multiple moving targets: an algorithm and its formalization.
The International Journal of Robotics Research 26(9):935–
953.
Luke, S.; Cioffi-Revilla, C.; Panait, L.; and Sullivan, K.
2004. Mason: A new multi-agent simulation toolkit. In Pro-
ceedings of the 2004 swarmfest workshop, volume 8, 44.
Luke, S.; Sullivan, K.; Panait, L.; and Balan, G. 2005. Tun-
ably decentralized algorithms for cooperative target obser-
vation. In Proceedings of the fourth international joint con-
ference on Autonomous agents and multiagent systems, 911–
917. ACM.
Microdrones. 2016. https://www.microdrones.com/en/appli
cations/areas-of-application/monitoring/.
Parker, L. E. 1999. Cooperative robotics for multi-target ob-
servation. Intelligent Automation & Soft Computing 5(1):5–
19.
Parker, L. E. 2002. Distributed algorithms for multi-robot
observation of multiple moving targets. Autonomous robots
12(3):231–255.
Paruchuri, P.; Tambe, M.; Ordóñez, F.; and Kraus, S. 2006.
Security in multiagent systems by policy randomization. In
Proceedings of the fifth international joint conference on Au-
tonomous agents and multiagent systems, 273–280. ACM.
Rysdyk, R. 2006. Unmanned aerial vehicle path following
for target observation in wind. Journal of guidance, control,
and dynamics 29(5):1092–1100.
Tang, Z., and Ozguner, U. 2005. Motion planning for multi-
target surveillance with mobile sensor agents. IEEE Trans-
actions on Robotics 21(5):898–908.
Werger, B. B., and Matarić, M. J. 2000. Broadcast of local
eligibility for multi-target observation. In Distributed au-
tonomous robotic systems 4. Springer. 347–356.

2991

