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Abstract

We propose KONT, a formal framework for comparing nor-
mative multiagent systems (nMASs) by computing tradeoffs
among liveness (something good happens) and safety (noth-
ing bad happens). Safety-focused nMASs restrict agents’ ac-
tions to avoid undesired enactments. However, such restric-
tions hinder liveness, particularly in situations such as medi-
cal emergencies. We formalize tradeoffs using norms, and de-
velop an approach for understanding to what extent an nMAS
promotes liveness or safety. We propose patterns to guide
the design of an nMAS with respect to liveness and safety,
and prove their correctness. We further quantify liveness and
safety using heuristic metrics for an emergency healthcare ap-
plication. We show that the results of the application corrob-
orate our theoretical development.

1 Introduction

Normative multiagent systems (nMASs) consist of norms
that regulate how autonomous agents interact with each
other as well as control how agents access nonautonomous
components. An important problem in such settings is to
characterize how well an nMAS addresses liveness and
safety. Traditionally, liveness means that something good
will eventually happen on every enactment and safety means
that nothing bad ever happens on any enactment. When the
parties are autonomous, we can never ensure traditional live-
ness or safety. Therefore, we adopt these working defini-
tions: Liveness means that something good will eventually
be done on every enactment unless someone is held to ac-
count for some infraction. Safety means that nothing bad
ever happens on any enactment without someone being held
to account for some infraction. An example liveness re-
quirement is to provide guaranteed service for users: physi-
cians are always be able to access patients’ electronic health
records (EHRs). Otherwise, network administrators are ac-
countable for any downtime. An example safety requirement
is preserving privacy: patients’ protected health information
(PHI) is not disclosed. Otherwise, the hospital administra-
tion is accountable for any disclosure.

Tradeoffs often arise between liveness and safety in
healthcare. For example, we may choose whether to pre-
serve privacy or act upon private data, and decide that vio-
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lating privacy to save a patient’s life (liveness) is better than
preserving the patient’s privacy (safety). Moreover, tradeoffs
might occur among liveness (or safety) properties when lim-
ited resources prevent agents from fulfilling multiple tasks.

Modern information systems can partially implement
such tradeoffs via dynamic access control policies between
agents and software (Marinovic, Dulay, and Sloman 2014),
e.g., relaxing privacy decisions in emergencies by allow-
ing physicians to access patients’ EHRs without consent.
However, they cannot handle agent autonomy, e.g., how
should a physician consult a colleague regarding a patient’s
PHI to protect the patient’s privacy? Therefore, compar-
ing nMASs based on how well they satisfy liveness and
safety requirements in various operating modes (e.g., reg-
ular practice and medical emergency) is crucial. Norms
have been widely studied (Kafalı, Ajmeri, and Singh 2016;
Sergot 2013; Singh 2013), in particular, for compliance ver-
ification, monitoring, and revision (Alechina, Dastani, and
Logan 2013; Aştefănoaei et al. 2009; Chesani et al. 2013;
Criado and Such 2016). However, little attention has focused
on comparing norms to understand tradeoffs between them.

Accordingly, we propose KONT (stands for computing
normative tradeoffs). KONT presents an approach for com-
paring nMASs. We first develop a strength relation to com-
pare norms using their formally stated properties, and deter-
mine which norm would provide greater liveness or safety.
For example, a norm that prohibits physicians from disclos-
ing patients’ PHI to outsiders or sharing it with colleagues
is stronger than a norm that only prohibits physicians from
disclosing patients’ PHI to outsiders. That is, the latter can
be replaced with the former to provide greater safety. We
then generalize the strength relation to sets of norms, and
compare nMASs with respect to liveness and safety. Follow-
ing the above example, KONT would determine whether an
nMAS with the stronger prohibition is safer than an nMAS
with the weaker one if the other norms are unchanged.

Our contributions are as follows: First, we formalize
tradeoffs between liveness and safety using nMAS elements
(Sections 2 and 3). Second, we develop an approach for
comparing nMASs (Section 4) and propose patterns to guide
the design of an nMAS (Section 5). Third, we propose
heuristic metrics for measuring to what extent an nMAS pro-
vides liveness and safety in an emergency healthcare appli-
cation (Section 6).
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Table 1: KONT syntax.

Spec −→ Spec ∪ Spec | Capability | Norm
Capability −→ cap(AG, Expr)
Norm −→ n(AG, AG, Expr, Expr)
n −→ a | c | p
Expr −→ φ | ¬ Expr | Expr ∧ Expr

2 nMAS Specifications

An nMAS specification is generated by the grammar given
in Table 1, where AG represents an agent identifier, Expr is
a logical expression, and φ is an atomic proposition. We ig-
nore temporal effects by treating each proposition as cap-
turing that a relevant condition has been made true (and re-
mains true subsequently). For example, authenticate means
the physician has been authenticated, consent means the pa-
tient has given consent. An nMAS specification is a set of
capability and norm definitions. Capability cap(AG, Expr)
means that AG can bring about Expr.

Definition 1 describes a norm following Singh’s (2013)
model. Here, X and Y are agents, ant and con are logical ex-
pressions, and n is a placeholder for the norm type: autho-
rization (a), practical commitment (c), and prohibition (p).
Definition 1. A norm n(X, Y, ant, con) represents a social
relationship between its subject (X) and object (Y) regarding
its consequent (con) when its antecedent (ant) holds.

We model conditional, detached, satisfied, and violated
norm states. A conditional norm is detached when its an-
tecedent holds. For brevity, we explain the violation condi-
tions for different norm types via examples.

• a(PHY, HOS, consent, EHR ∨ operate): a physician PHY is
authorized by the hospital HOS to access a patient’s EHR
as well as to operate upon the patient when the patient’s
consent is obtained. Here, the object (HOS) is accountable
to the subject (PHY). If the physician cannot access the
patient’s EHR or operate upon the patient when the au-
thorization is detached (i.e., authenticate is true), then the
authorization is violated. Authorization as defined is not
like a permission in traditional deontic logic: a permission
can never be violated but an authorization can be. In ef-
fect, an authorization acts as a prohibition on the authoriz-
ing party making it accountable to ensure the authorized
party is not blocked from the consequent if the antecedent
holds (Von Wright 1999).

• c(PHY, HOS, emergency, operate): a physician PHY is
practically committed to the hospital HOS to operating
upon patients in an emergency. The physician is account-
able to the hospital for this commitment. If the physician
fails to operate upon patients, the commitment is violated.

• p(PHY, HOS, true, disclose): a physician PHY is prohib-
ited by the hospital HOS from disclosing a patient’s PHI
to others (disclose). The physician is accountable to the
hospital for this prohibition. This prohibition is uncondi-
tional because its antecedent is true. If the patient’s PHI is
disclosed, the prohibition is violated.

3 Understanding Tradeoffs

Liveness and safety often compete with each other. Exam-
ples 1 and 2 describe US Health Insurance Portability and
Accountability Act (HIPAA) scenarios pertaining to regular
and emergency medical practice (HHS 2014).

Example 1. Hospitals are bound by law to keep their pa-
tients’ PHI secure. Accordingly, Hospital A requires its
physicians to authenticate with the hospital’s servers (safety)
before accessing patients’ EHRs (liveness), and prohibits its
physicians from operating upon patients (liveness) or dis-
closing their PHI without consent (safety).

Example 1 describes the medical practice adopted by a
hospital to comply with the law. Authentication controls
access to EHRs. A prohibition provides accountability for
physicians regarding disclosure of patients’ PHI. Note that
these safety regulations do not necessarily affect liveness un-
der regular medical practice, but may do so in medical emer-
gencies due to limited resources.

Example 2. There is a public emergency near Hospital A,
and several unconscious patients need to be operated upon
immediately. We emphasize two important aspects: Hospital
A does not have the required number of physicians on staff
to attend to the emergency situation, and there is no oppor-
tunity for obtaining consent from the patients to share their
PHI with family members.

Example 2 describes a tradeoff between liveness and
safety. Following the guidelines of the American College of
Emergency Physicians (ACEP) for disasters (ACEP 2013),
Hospital A may assign temporary credentials to outside
physicians to cope with the load (increasing liveness). More-
over, Hospital A may waive the consent requirement for
contacting family members following HIPAA emergency
clauses (HHS 2014). However, allowing outside physicians
to access patients’ EHRs is a safety concern (i.e., not having
a control property to restrict access to EHRs).

Figure 1 depicts such tradeoffs between liveness and
safety schematically, treating each as a single dimension.
Each point represents an nMAS specification. The dashed
curve corresponds to specifications that are optimal in that
an increase in one dimension would decrease the other. Let
us review each case. Note that KONT supports first-order
predicates, i.e., agents and other relevant parameters can be
specified (see Table 1). For the rest of this paper, we use
atomic propositions for brevity to describe norm examples.

Suboptimal describes a nonoptimal specification. Con-
sider authorization a(PHY, HOS, authenticate ∧ expert, op-
erate). Expert physicians who are authenticated can oper-
ate upon patients. This specification provides liveness and
safety for regular practice. However, liveness is decreased in
emergencies due to the restrictions on physicians, e.g., au-
thentication is not possible for outside physicians.

Loss describes a transition to a specification in which
one dimension is decreased without affecting the other (e.g.,
from Suboptimal to Diminished). Consider a(PHY, HOS,
true, disclose) in addition to the above authorization. Live-
ness is not affected, but safety is decreased since physicians
are allowed to disclose patients’ PHI.
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Figure 1: Design space for nMASs, schematically. Regu-
lar circles represent nonoptimal specifications. Double cir-
cles on the dashed curve represent optimal specifications,
for which dashed circles represent distinct tradeoffs between
safety and liveness.

Gain describes a transition to a specification in which
one dimension is increased without affecting the other
(e.g., from Suboptimal to Enhanced). Consider a(PHY, HOS,
state authenticate ∧ expert, operate) instead of the autho-
rization in Suboptimal. Physicians from other hospitals may
perform surgical procedures (state authenticate represents
state-wide authentication). Liveness is increased by inviting
outside physicians to help. Safety is not reduced since the
new authorization too requires physicians to be experts.

Boost describes a transition to a specification in which
both dimensions are increased (e.g., from Suboptimal to Op-
timal). Consider norms a(PHY, HOS, credentials, operate)
and p(PHY, HOS, ¬credentials, EHR). Authentication is re-
placed by a central registry for physicians. In an emergency,
any available physician (not limited to a specific state) can
be verified for expertise using credentials, thereby increas-
ing liveness. Safety is increased due to the prohibition for
restricting access to EHRs without credentials.

Tradeoff describes a transition between optimal specifi-
cations, where only one dimension can be increased. Con-
sider authorization a(PHY, HOS, credentials ∨ international,
operate). Physicians from international hospitals can oper-
ate upon patients, which increases liveness. However, safety
is decreased due to difficulty in holding international physi-
cians accountable because their credentials might not be
valid in a foreign hospital.

4 Comparing nMAS Specifications

We describe the development of KONT for formalizing the
tradeoffs described in Section 3. Φ is the set of domain
propositions. C is the set of agent capabilities. A norma-
tive specification, N, is the social component of an nMAS
specification. N is the union of the sets of authorizations
(A), practical commitments (C), and prohibitions (P). Def-
inition 2 ensures that the normative specification is consis-
tent, i.e., the agent is not both authorized and prohibited or
committed and prohibited regarding the same proposition. �
represents logical consequence.
Definition 2. N is consistent iff (i) p(AG, Y, ant1, con) �∈ N
when a(AG, X, ant2, con) ∈ N, ant2 � ant1, and (ii) p(AG, Y,

ant3, con) �∈ N when c(AG, X, ant4, con) ∈ N, ant4 � ant3.

4.1 Norm Strength

For pairwise comparison of norms and formal understand-
ing of which norms can replace others, we adopt Chopra
and Singh’s (2009) strength relation for commitments and
extend it to all norm types.
Definition 3. Let ni and nj be two norms of the same type
and with the same subject and object. Then, ni is stronger
than nj , denoted ni 	 nj , iff
• ni is detached whenever nj is detached; and
• nj is satisfied whenever ni is satisfied.
Proposition 1. 	 is a partial order.

Proof sketch. 	 is reflexive, antisymmetric, and transitive.
Reflexivity and transitivity follow trivially from logical con-
sequence. For antisymmetry, we need to show that ni = nj

if ni 	 nj and nj 	 ni. When two norms are stronger than
each other, they have the same subject and object; their an-
tecedents entail each other; and their consequents entail each
other. Therefore, the norms are identical.

Table 2 shows examples of comparing norms with 	. We
omit agents and norm type whenever they are not relevant.
That is, we write a norm as n(ant, con).

Table 2: Examples of norm strength.

a(authenticate ∨ consent, EHR) 	 a(consent, EHR)
c(true, operate ∧ clinic) 	 c(emergency, operate)
p(true, consult ∨ disclose) 	 p(¬emergency, disclose)

Next, we present reasoning postulates regarding norms.
Postulate 1 covers cases where multiple norms of the same
type with the same consequent can be combined into a sin-
gle norm. Postulates 2–4 cover cases of multiple norms with
the same antecedent and different consequents. Note that au-
thorizations and prohibitions are stronger when their conse-
quents are more general but commitments are stronger when
their consequents are more specific.
Postulate 1. n(r ∨ s, u) ∈ N iff n(r, u) ∈ N and n(s, u) ∈ N
Postulate 2. a(r, u ∨ v) ∈ N iff a(r, u) ∈ N and a(r, v) ∈ N
Postulate 3. c(r, u ∧ v) ∈ N iff c(r, u) ∈ N and c(r, v) ∈ N
Postulate 4. p(r, u ∨ v) ∈ N iff p(r, u) ∈ N and p(r, v) ∈ N
Lemma 1. Normative specifications are closed under norm
strength, i.e., if ni ∈ N and ni 	 nj then nj ∈ N.
Example 3. Let a1 = a(PHY, HOS, authenticate ∨ emer-
gency, EHR) ∈ A1. Then, a2 = a(PHY, HOS, authenticate,
EHR) ∈ A1 as a1 	 a2. Similarly, a3 = a(PHY, HOS, au-
thenticate ∧ consent, EHR) ∈ A1, a4 = a(PHY, HOS, au-
thenticate, EHR ∧ operate) ∈ A1 as a2 	 a3 and a2 	 a4.
Definition 4. Norm ni is maximal in Ni, denoted ni ∈
max(Ni), iff � nj ∈ Ni: nj �= ni and nj 	 ni.

Definition 4 defines maximal norms in a given normative
specification. Consider the authorizations in Example 3 and
let A1 be {a1, a2, a3, a4}. Then, a1 ∈ max(A1).
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4.2 nMAS Requirements

We represent requirements R = Rc ∪ Rd ∪ Ru, as the
union of three distinct sets of atomic propositions. Here,
Rc or control properties enforce constraints on agents’ ac-
tions (liveness or safety); Rd or desired properties need to
be achieved (liveness); and Ru or undesired properties need
to be avoided (safety). Control properties describe technical
considerations, e.g., a valid authentication is required to ac-
cess EHR. Desired and undesired properties describe techni-
cal (e.g., access to EHR) and social (e.g., interactions among
physicians) considerations.

4.3 Comparison of nMASs in Operating Modes

An operating mode M describes agents’ capabilities for a
specific situation (i.e., what actions can be performed in M).
For example, in a medical emergency (emg), patients cannot
give consent. Similarly, when there is a server failure (srv),
physicians cannot authenticate. However, in regular practice
(reg), those actions can be performed. Thus, Creg = Cemg ∪
Csrv ∪ {cap(PAT, consent), cap(PHY, authenticate)}.

Agent capabilities are essential for describing operating
modes, which specify the technical environment and thus
provide a foundation for comparing nMASs. To this end, we
consider a possible capability as any pairing of an agent and
an expression constructed exclusively via conjunction and
disjunction from atomic propositions in Rc. That is, a ca-
pability does not involve negation, though the syntax nom-
inally allows negation. Further, an agent’s capabilities are
grounded on the atomic propositions in Rc. That is, cap(AG,
r ∧ s) ∈ M iff cap(AG, r) ∈ M and cap(AG, s) ∈ M. And,
cap(AG, r ∨ s) ∈ M iff cap(AG, r) ∈ M or cap(AG, s) ∈ M.
In addition, a mode is any subset of capabilities provided
that if cap(AG, φ) ∈ M and φ � φ′, then cap(AG, φ′) ∈ M.
That is, capabilities in modes are closed under strength. In
essence, for each agent AG, the set of possible capabilities
corresponds to the set of subsets of Rc.

We restrict a normative specification to include only styl-
ized authorizations. In intuitive terms, the subject (autho-
rized party) is an agent whose actions we are concerned
with, the object (authorizing party) is an infrastructure
provider or facilities operator, and the antecedent is an ex-
pression composed entirely of propositions in Rc. In a spe-
cific mode, some members of Rc may be directly enabled via
agent capabilities; some members via authorizations; others
not enabled at all (described next). An authorization may
have a non-Rc expression as the consequent. Since specifi-
cations are closed under strength, other authorizations may
be inferred but the above-mentioned are the only ones di-
rectly specified.

We begin describing how to compare nMAS specifica-
tions by defining whether a specification enables a propo-
sition. Definition 5 describes enablement, N M−→ φ, which
means that N enables proposition φ in mode M. There must
be an authorization whose consequent is logically entailed
by the proposition, and any of the following must hold for
the antecedent: the antecedent is true; there is a capability for
the antecedent; or the antecedent itself is enabled. Note that
there cannot be any prohibitions that interfere with the au-

thorizations due to consistency of normative specifications
(Definition 2). Definition 5 does not guarantee satisfaction
of the proposition, but verifies whether an agent can achieve
it given the agent’s capabilities, the controls placed by the
technical environment, and the authorizations specified in
the social environment.

Definition 5. N M−→ r iff ∃ a(AG, X, ant, con) ∈ N: r � con

and either ant=true or cap(AG, ant) ∈ M or N M−→ ant.

Lemma 2. If N M−→ r and r � s, then N M−→ s.

Example 4. Let N1 be {a(PHY, HOS, consent, EHR), a(PAT,
HOS, true, consent)}. Then, N1

reg−−→ EHR, N1 �emg−−−→ EHR.

Next, we describe three relations for pairwise compari-
son of normative specifications. We begin with flexibility:
AsFlexibleAs(Ni, Nj , M, R) means that Ni is at least as flex-
ible as Nj in mode M with respect to the requirements. We
write it as Ni �

M Nj when the requirements are fixed. Def-
inition 6 describes how KONT concludes Ni �

M Nj : When
Nj enables a proposition r, then Ni must enable r as well.
That is, when Nj allows something to happen, then Ni must
allow the same thing to happen.

Definition 6. Ni �
M Nj iff ∀ r: if Nj

M−→ r, then Ni
M−→ r.

Proposition 2. � is reflexive and transitive.

We write Ni �
M Nj (Ni is more flexible than Nj in mode

M) iff Ni �
M Nj , Nj �� M Ni.

Example 5. Consider two desired properties (Rd={EHR,
operate}), and two specifications: N2 = {a(PHY, HOS, true,
EHR)}; N3 = {a(PHY, HOS, authenticate, EHR), a(PHY, PAT,
consent, operate)}.

Let us compare N2 and N3 in regular practice mode.
N2 has an unconditional authorization toward accessing pa-
tients’ EHRs. N3 has an authorization toward EHR. Accord-
ing to Definition 5, EHR is enabled because there is a capa-
bility for the antecedent of the authorization (authenticate).
Moreover, N3 enables operating upon patients since there is
an authorization toward operate with a capability for its an-
tecedent (consent). Thus, N3 �reg N2. However, N2 �� reg

N3. Therefore, N3 �
reg N2.

We continue with liveness: AsLiveAs(Ni, Nj , M, R)
means that Ni is at least as live as Nj in mode M with re-
spect to the requirements. We write it as Ni �M Nj when
the requirements are fixed. Definition 7 describes how KONT
concludes Ni �M Nj : When there is a commitment cj in Nj

whose consequent entails a desired property rd and whose
antecedent is enabled, cj must be in Ni as well. Note that
there cannot be any prohibitions that interfere with cj due to
consistency of normative specifications (Definition 2).

Definition 7. Ni �M Nj iff ∀ rd ∈ Rd: ∀ cj = c(X, Y, ant,

con) ∈ Nj: if con � rd and Nj
M−→ ant, then cj ∈ Ni and Ni

M−→ ant.

Proposition 3. � is reflexive and transitive.

We write Ni �M Nj (Ni is more live than Nj in mode M)
iff Ni �M Nj , Nj �� M Ni.
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Example 6. Consider a desired property about prescrib-
ing drugs to patients (Rd={prescription}), and two specifi-
cations: N4 = {a(PHY, HOS, true, authenticate), c(PHY, PAT,
authenticate, prescription)}; N5 = {a(PHY, HOS, true, au-
thenticate), c(PHY, PAT, true, prescription ∧ treat)}.

Let us compare N4 and N5 in regular practice mode. N4

has a physician’s commitment to prescribe drugs. Accord-
ing to Definition 7, the antecedent of the commitment must
be enabled. N4

reg−−→ authenticate since there is an uncon-
ditional authorization toward authentication of physicians.
Now, N5 has a stronger commitment than the one in N4,
which means that the same commitment in N4 is in N5 as
well due to closure under norm strength (Lemma 1). Thus,
N5 �reg N4. However, N4 �� reg N5. Therefore, N5 �reg

N4.
We continue with safety: AsSafeAs(Ni, Nj , M, R) means

that Ni is at least as safe as Nj in mode M with respect to the
requirements. We write it as Ni ◦�M Nj when the require-
ments are fixed. Definition 8 describes how KONT concludes
Ni ◦�M Nj : When there is a prohibition pj in Nj whose
consequent entails an undesired property ru and whose an-
tecedent is enabled, pj must be in Ni as well.

Definition 8. Ni ◦�M Nj iff ∀ ru ∈ Ru: ∀ pj = p(X, Y, ant,

con) ∈ Nj: if con � ru and Nj
M−→ ant, then pj ∈ Ni and Ni

M−→ ant.

Proposition 4. ◦� is reflexive and transitive.

We write Ni ◦�M Nj (Ni is safer than Nj in mode M) iff
Ni ◦�M Nj , Nj ◦�� M Ni.

Example 7. Consider an undesired property about disclos-
ing patients’ PHI (Ru={disclose}), and two specifications:
N6 = {p(PHY, HOS, true, disclose)}; N7 = {p(PHY, HOS,
true, consult ∨ disclose)}.

Let us compare N6 and N7. The consequent of the prohi-
bition in N6 entails disclosure of PHI, for which N7 has a
stronger prohibition. Thus, N7 ◦�M N6 according to Defi-
nition 8. However, N6 ◦�� M N7. Therefore, N7 ◦�M N6.

Notice that, as defined above, a normative specification
may contain authorizations that are irrelevant with respect
to a specific mode, in that the normative specification may
authorize outcomes based on antecedents that are not within
the capabilities of any agent in that mode. For example, in a
mode where the patient lacks the capability to give consent,
the authorization a(PHY, HOS, consent, EHR) is superfluous.
Specifications that contain such superfluous authorizations
can be different from each other even if they enable the same
propositions in some mode. Therefore, we factor out modes
by comparing specifications over all possible modes.

Accordingly, we define Ni � Nj to mean for all M, Ni

�M Nj ; Ni � Nj to mean for all M, Ni �M Nj ; and Ni ◦�
Nj to mean for all M, Ni ◦�M Nj .

Let us revisit Example 7. N7 ◦� N6. That is, N7 is as safe
as N6 in all modes because both prohibitions are uncondi-
tional (their antecedents are enabled in all modes).

5 nMAS Design via Patterns

We propose normative patterns (Kafalı, Ajmeri, and Singh
2016; Singh, Chopra, and Desai 2009) to guide nMAS de-
sign. The patterns transform a given normative specification
into one that satisfies a liveness or safety requirement.

5.1 Construction Patterns

The following design patterns create norms based on the
liveness and safety requirements.

Gateway creates authorization a(X, Y, rc, rd) with respect
to control property rc and desired property rd.

Achievement creates commitment c(X, Y, rc, rd) with re-
spect to control property rc and desired property rd.

Guard creates prohibition p(X, Y, rc, ru) with respect to
control property rc and undesired property ru.

5.2 Tradeoff Patterns

The following refinement patterns implement tradeoffs be-
tween specifications. That is, applying a refinement pattern
increases one dimension (liveness or safety), but might de-
crease the other.

Progress transforms Ni into Nj with respect to a desired
property rd. Nj is constructed from Ni as follows:

ci = c(X, Y, anti, coni) ∈ max(Ni), coni � rd,Ni
M−→ anti

Nj = Ni ∪ {cj = c(X, Y, antj , conj)},
cj 	 ci,where ci �	 cj ,Nj

M−→ antj

Let us revisit Example 6. Applying the Progress pattern
adds c(PHY, PAT, true, prescription ∧ treat) in N5, which is a
strictly stronger commitment than c(PHY, PAT, authenticate,
prescription) in N4. Therefore, N5 �M N4.

Fortify transforms Ni into Nj with respect to an undesired
property ru. Nj is constructed from Ni as follows:

pi = p(X, Y, anti, coni) ∈ max(Ni), coni � ru,Ni
M−→ anti

Nj = Ni ∪ {pj = p(X, Y, antj , conj)},
pj 	 pi,where pi �	 pj ,Nj

M−→ antj

Let us revisit Example 7. Applying the Fortify pattern
adds p(PHY, HOS, true, consult ∨ disclose) in N7, which is a
strictly stronger prohibition than p(PHY, HOS, true, disclose)
in N6. Therefore, N7 ◦�M N6.

5.3 Combining the Patterns

KONT uses the above patterns in sequence to guide the cre-
ation of a specification of an nMAS with respect to live-
ness and safety requirements. For example, assume we have
two desired properties Rd={treat, operate} and two control
properties Rc={emergency, consent}. The Achievement pat-
tern creates a commitment c(PHY, HOS, emergency, oper-
ate), and the Progress pattern adds a stronger commitment
c(PHY, HOS, emergency ∨ consent, treat ∧ operate) to the
specification to make the specification more live.
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6 Emergency Healthcare Application

We adopt ECLiPSe, a constraint logic programming frame-
work (Apt and Wallace 2007), to perform experiments on an
emergency healthcare setting. ECLiPSe offers a conceptual
modeling language that extends Prolog and provides con-
straint solver libraries for solving integer constraints. We
provide a prototype implementation, KONTES1 (stands for
KONT experimental setting), for evaluating to what extent
nMAS specifications provide liveness and safety.

We generate integer costs for surgical procedures, and
propose heuristic metrics to measure liveness and safety for
two nMASs: NS corresponds to a Suboptimal specification
and NE corresponds to an Enhanced specification as shown
in Figure 1 (see prototype implementation for more details
on these two specifications).

Liveness score measures the distance of a given nMAS
specification from a perfectly live (i.e., ideal) specification,
which represents a (possibly fictitious) specification with no
constraints on any surgical procedure. We compute liveness
as follows:

Liveness score =
supported procedures

all procedures

Safety score measures the distance of a given nMAS spec-
ification from a perfectly safe (possibly fictitious) specifi-
cation. Here, we choose the perfectly safe specification to
be one where outside physicians are not allowed to perform
any surgical procedure. Then, the safety score measures how
many bad alternatives are avoided. We compute safety as
follows:

Safety score = 1− procedures by outside physicians
supported procedures

Note that the liveness and safety scores are not necessarily
complements of each other, i.e., they do not add up to one.

Table 3 shows the results for two specifications, NS and
NE , in three modes. We use the heuristic scores for empir-
ical evaluation of our theoretical development, e.g., if Ni

�M Nj , then Ni’s liveness score would be higher than Nj’s
score in mode M. Whereas a perfect score (1.00) indicates
an ideal specification for a given metric, the same specifi-
cation may have a lower score for a different metric. We
present one such metric for liveness and safety. NS ◦� NE in
all modes since NS puts more security restrictions on physi-
cians. More specifically, it does not allow outside physicians
to perform any surgical procedures, thus leading to a perfect
safety score. In regular practice, NE ◦�reg NS because the
relaxation conditions of NE only work in nonregular prac-
tice. In regular practice, both specifications support nine out
of the 48 procedures supported by a perfectly live specifi-
cation, leading to a liveness score of 0.19. Thus, NS �reg

NE .
In a medical emergency, the demand for surgical proce-

dures increases. NS fails to meet this demand, leading to a
liveness score of 0.10 with only five alternatives supported.
NE supports 35 alternatives, leading to a liveness score of

1See complete implementation at https://research.csc.ncsu.edu/
mas/code/security/kontes-clp/.

Table 3: Liveness and safety scores for comparing nMASs.

Mode of Liveness Safety

operation NS NE NS NE

Regular practice 0.19 0.19 1.00 1.00
Medical emergency 0.10 0.73 1.00 0.14
Server failure 0.00 0.21 1.00 0.00

0.73. This means that it covers more desired properties (Rd)
described in terms of surgical procedures. Therefore, NE

�emg NS . However, the safety score of NE for the medical
emergency case is low (0.14), since most of the procedures
supported are performed by outside physicians who are not
authenticated by the hospital. Therefore, NS ◦�emg NE .

When there is a server failure and authentication is not
possible, no procedures are supported by NS , whereas NE

supports ten alternatives, leading to a liveness score of 0.21.
Thus, NE �srv NS . However, NE is completely unsafe for
the server failure case, since all the procedures supported are
performed by outside physicians. Therefore, NS ◦�srv NE .

7 Discussion

We developed KONT, an approach for comparing nMASs.
Our approach adopts a sociotechnical perspective: Regula-
tion via norms preserves liveness by limiting the need for
regimentation to curtail autonomy, and safety is achieved
through accountability. We proposed normative patterns to
design an nMAS with respect to liveness and safety, and
provided experiments on an emergency healthcare applica-
tion using constraint logic programming. We showed that
the results of the application corroborate our conceptual de-
velopment.

Sergot (2013) discusses the correspondence of normative
relations among agents with Hohfeldian legal concepts such
as duties and rights, and presents semantics using deontic
logics. Alechina et al. (2013) focus on conditional norms
with deadlines, and extend CTL and ATL with sanctions to
reason about the effects of normative update. They measure
norm compliance by verifying if specific states are reached
before the deadline, and enforce norms via sanctions. We
go beyond verification of compliance, and provide pairwise
comparison of normative specifications.

Kafalı and Yolum (2016) propose an approach for moni-
toring an agent’s interactions to determine whether the agent
is progressing as expected. In particular, they verify whether
the agent’s expectations (represented by a set of proposi-
tions and commitments) are satisfiable by its current state.
Governatori (2013) proposes a conceptual abstract frame-
work to model normative requirements, formalizes different
types of obligations, and verifies whether a business pro-
cess is compliant with requirements (set of obligations). The
above works are limited to the representation and verifica-
tion of commitments and obligations. The main shortcoming
with verification based approaches is the inability to handle
autonomy despite norms. That is, they consider regimented

3011



systems in which norm-violating paths are eliminated from
execution. We expand on verification, and provide metrics
for measuring the liveness and safety of specifications. It
would be valuable to explore probabilistic model checking
tools besides CLP.

Vasconcelos et al. (2009) propose methods for resolving
conflicts among norms. Their resolution method, norm cur-
tailment, manipulates the constraints associated with norms,
e.g., reduce the scope of a prohibition to avoid conflict with
an obligation. We assume no such conflicts occur among au-
thorizations, commitments, and prohibition in a normative
specification. Zhang et al. (2016) discuss probabilistic com-
mitments in open environments with uncertainty. Extending
KONT with probabilistic commitments is an interesting di-
rection, especially in the case of dialectical commitments.
For example, a physician commits to a patient having cancer
with 80% certainty, or an outside physician in an emergency
situation commits to being an expert on a specific surgical
operation without providing any credentials.

Artikis (2009) proposes an infrastructure to specify dy-
namic protocol specifications for open multiagent systems.
Specifications are modeled as metric spaces, and the infras-
tructure enables agents to specify protocols at design-time
and modify protocols at run-time. According to Artikis’ met-
ric, protocols are evaluated based on the distance between
specifications at two distinct time points. In a sense, our
heuristic metrics are similar since we measure the distance
from a perfectly live or safe specification. However, Artikis’
metric space does not cover liveness or safety requirements.

Sanctions (Nardin et al. 2016) would add another di-
mension to KONT’s normative comparison. Sanctions pro-
vide compensation for norm violations (liveness) as well
as deterrence against violating norms (safety). Moreover,
our heuristic metrics for the healthcare application can be
adapted to other domains, e.g., in consumer banking, live-
ness corresponds to how easily customers can make pay-
ments, whereas safety corresponds to absence of false pay-
ments. Additional tradeoff dimensions beyond liveness and
safety would be useful to investigate.
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Kafalı, Ö.; Ajmeri, N.; and Singh, M. P. 2016. Revani:
Revising and verifying normative specifications for privacy.
IEEE Intelligent Systems 31(5):8–15.
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