
Query Complexity of Tournament Solutions

Palash Dey
Indian Institute of Science, Bangalore

Abstract

A directed graph where there is exactly one edge between ev-
ery pair of vertices is called a tournament. Finding the “best”
set of vertices of a tournament is a well studied problem in so-
cial choice theory. A tournament solution takes a tournament
as input and outputs a subset of vertices of the input tourna-
ment. However, in many applications, for example, choosing
the best set of drugs from a given set of drugs, the edges of
the tournament are given only implicitly and knowing the ori-
entation of an edge is costly. In such scenarios, we would like
to know the best set of vertices (according to some tourna-
ment solution) by “querying” as few edges as possible. We,
in this paper, precisely study this problem for commonly used
tournament solutions: given an oracle access to the edges of a
tournament T , find f(T ) by querying as few edges as possi-
ble, for a tournament solution f. We first show that the set of
Condorcet non-losers in a tournament can be found by query-
ing 2n−⌊logn⌋−2 edges only and this is tight in the sense that
every algorithm for finding the set of Condorcet non-losers
needs to query at least 2n−⌊logn⌋−2 edges in the worst case,
where n is the number of vertices in the input tournament.
We then move on to study other popular tournament solutions
and show that any algorithm for finding the Copeland set, the
Slater set, the Markov set, the bipartisan set, the uncovered
set, the Banks set, and the top cycle must query Ω(n2) edges
in the worst case. On the positive side, we are able to cir-
cumvent our strong query complexity lower bound results by
proving that, if the size of the top cycle of the input tourna-
ment is at most k, then we can find all the tournament solu-
tions mentioned above by querying O(nk + n logn/log(1−1/k))
edges only.

Introduction
Many scenarios in multiagent systems can often be modeled
and analyzed using tournaments (Mou86; BBFH14). An im-
portant example of such scenarios is voting where we have
a set of alternatives and a set of votes which are linear or-
ders over the set of alternatives. A important tournament
to consider in this context is defined by the majority rela-
tion induced by the set of votes. In the majority relation, an
alternative x is preferred over another alternative y if x is
preferred over y in a majority of the votes. Indeed, many

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

important voting rules, like Copeland for example, are de-
fined using the tournament induced by the majority relation
of the input set of votes. Other than voting, tournaments have
found many applications in multi-criteria decision analy-
sis (AR+86; BMP+06), zero-sum games (FR95; DLB96),
coalitional games (BH10), argumentation theory (Dun95;
Dun07), biology (CH07), etc.

Formally, a tournament is defined as a set of alternatives
along with an irreflexive, antisymmetric, and total relation,
called dominance relation, on the set alternatives. An equiv-
alent and often more convenient view of a tournament is as a
directed graph on the alternatives where, between every pair
of vertices (which corresponds to the alternatives), there is
exactly one edge. A tournament solution takes a tournament
as input and outputs a subset of the vertices. Tournament
and tournament solutions are important mathematical tools
in any general situation where we have to make a choice
from a set of alternatives solely based on pairwise compar-
isons.
Motivation. We often have situations where the input tour-
nament is given “implicitly” – the vertices of the tourna-
ment are given explicitly and we have to query for an edge
to know its orientation. Moreover, knowing the orientation
of an edge of the tournament can often be costly. For ex-
ample, we can think of an application where we have a set
of drugs for a particular disease and we want to know the
“best” (according to some tournament solution) set of drugs.
A natural dominance relation in this context would be to de-
fine a drug x to dominate another drug y if the probability
that the drug x cures the disease is more than the corre-
sponding probability for the drug y. Since these probabilities
are often not known a priori, estimating them often requires
extensive lab experiments as well as clinical trials. Hence,
we would like to make as few queries as possible to know
the best set of drugs. More generally, we can think of any
tournament based voting rules like Copeland in an election
scenario. A tournament based voting rule chooses winners
solely based on the tournament induced by the pairwise ma-
jority relation between the alternatives. However, in many
applications of voting in multiagent systems, recommender
systems (PHG00) for example, the number of voters is huge
and consequently, learning the majority relation is costly.
Hence, we would like to learn the set of most popular items
(according to the tournament solution under consideration)

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2992



with the smallest number of queries possible. Motivated by
these applications, we study, for a tournament solution f, the
problem of finding f(T ) of an input tournament T by query-
ing smallest number of edges possible. A query for an edge,
in our model, reveals the orientation of the edge in the input
tournament.

Finding the query complexity of various graph properties
has drawn significant attention in literature. In the most gen-
eral setting, the input is a directed graph on n vertices and
one has to find whether the input graph satisfies some prop-
erty we are concerned with, by asking a minimum number
of queries. A query is a question of the form: “Is there an
edge from a vertex x to another vertex y?” The query com-
plexity of a property is the worst case number of queries that
must be made to know whether the input graph has that prop-
erty. A graph property, in this context, is called evasive if
its query complexity is n(n − 1), that is, one has to query
all possible edges of the input digraph to test the property
in the worst case. Karp conjectured that every monotone
and nontrivial graph property is evasive. A graph property
is monotone if it continues to hold even after adding more
edges and nontrivial if it holds for some but not all graphs. A
substantial amount of research effort has provided increas-
ingly better query complexity lower bounds for monotone
and nontrivial properties, although Karp’s conjecture re-
mained open (KSS84; Kin88; RV76; Ros73; CKS01; Kul13;
KT10). In the case of tournaments (where there is exactly
one edge between every pair of vertices), Balasubramanian
et al. (BRS97) showed (rediscovered by Procaccia (Pro08))
that a Condorcet winner – a vertex with n−1 outgoing edges
– can be found, if it exists, with 2n− ⌊logn⌋ − 2 queries and
this query complexity upper bound is tight in the worst case.
This further motivates us to study the query complexity of
other commonly used tournament solutions.
Our Contribution. In this paper, we prove tight bounds on
the query complexity of commonly used tournament solu-
tions. Our specific contributions in this paper are as follows.

– We show that the query complexity of the problem of find-
ing the set of Condorcet non-losers is 2n − ⌊logn⌋ − 2
[Observation 1].

– We show that any algorithm for finding the Copeland set,
the Slater set, and the Markov set in a tournament has
query complexity (n2) [Theorem 1]. We remark that Goyal
et al. (GJR17) also discovered this result independently
(and in parallel) around same time.

– We prove that any algorithm for finding the bipartisan set
[Theorem 2], the uncovered set [Theorem 3], the Banks
set [Theorem 4], and the top cycle [Theorem 5] has query
complexity Ω(n2).

– We complement the our strong query complexity lower
bounds above by showing that, if the tournament T has
a top cycle of size at most k, then the Copeland set, the
Slater set, the Markov set, the bipartisan set, the uncov-
ered set, the Banks set, and the top cycle of a tournament
T can be found using O(nk + n logn/log(1−1/k)) queries
[Theorem 6 and 7].

Related Work. The work of Balasubramanian et

al. (BRS97) (rediscovered by Procaccia (Pro08)) is the
closest predecessor of our work where he shows that the
query complexity of Condorcet winner in tournaments is
2n − ⌊logn⌋ − 2. There have been several other works in
the literature which study the query complexity of various
problems in tournaments. For example, Noy and Naor use
comparison-based sorting algorithms to find feedback sets
and Hamiltonian paths in tournaments (BNN90). There have
been works in computational social choice theory on com-
munication complexity of different voting rules (CS02) and
query complexity of preference elicitation in various do-
mains (Con09; DM16a; DM16b; Dey16b). However, the
querying model in the above works is completely different
from ours and consequently, neither the results nor the tech-
niques involved in these works are directly applicable to our
work; a query in the works above asks: “Does a voter v pre-
fer an alternative x over another alternative y?”

Preliminaries
For a positive integer �, we denote the set {1, 2, . . . , �} by
[�]. For a finite set X and a positive integer �, we denote the
set of all subsets of X of size � by P�(X) and the set of all
probability distributions on X by Δ(X).

Tournaments. A tournament T = (V ,E) is a directed
graph on a set V of n vertices such that, for any two ver-
tices u,v ∈ V , either (u,v) ∈ E or (v,u) ∈ E but not both.
If not mentioned otherwise, we denote the number of vot-
ers by n. We call any subgraph of a tournament a partial
tournament. We call a tournament balanced if the in-degree
and out-degree of every vertex are the same. A tournament
T defines a relation ≻T on the set of vertices V: u ≻T v if
(u,v) ∈ T . Alternatively, any irreflexive, antisymmetric, and
total relation ≻ on a set V defines a tournament T = (V ,E)
where (u,v) ∈ E if u ≻ v. When there is no possibility of
confusion, we drop T from the subscript of ≻. We call the
relation ≻T associated with a tournament T the dominance
relation of T . We say a vertex u dominates or defeats an-
other vertex v if u ≻T v. Let us define the dominion D(v) of
a vertex v as D(v) = {u ∈ V ∶ v ≻ u} and D(v) is called the
dominators of v. Given a tournament T , let A(T ) be its ad-
jacency matrix. We call the matrix G(T ) = A(T ) −A(T )t
the skew-adjacency matrix of T , where A(T )t is the trans-
pose of A(T ). A vertex v is called the Condorcet winner of a
tournament if the out-degree of v is n−1; alternatively, a ver-
tex v is the Condorcet winner if v ≻ u for every u ∈ V ∖{v}.
Given a set V , we denote the set of all tournaments over V
by T(V). A tournament solution f ∶ ∪∣V∣>0T(V) → 2V ∖{∅}
is a function that takes a tournament as input and selects a
nonempty set of vertices as output. Examples of commonly
used tournament solutions are as follows (MBC+16, Chapter
3).

Condorcet non-loser: The Condorcet non-loser set of a
tournament is the set of all vertices which has at least one
outgoing edge.

Copeland set: The Copeland set of a tournament is the
set of vertices with maximum out-degree.

Slater set: Given a tournament T = (V ,≻), let us denote
the maximal element of V according to a strict linear order

2993



> on V by max(>). The Slater score of a strict linear order
> over V with respect to tournament T = (V , ≻) is ∣ > ∩ ≻ ∣
where > ∩ ≻= {(x,y) ∈ V × V ∶ x > y,x ≻ y}. A strict linear
order is a Slater order if it has maximum Slater score. Then
the Slater set is defined as SL(T ) = {max(>) : > is a Slater
order for T }.

Markov set: Given a tournament T = (V ,E), we define
a Markov chain M(T ) as follows. The states of the Markov
chain M(T ) are the vertices of T and the transition proba-
bilities are determined by the dominance relation: in every
step, stay in the current state v with probability ∣D(v)∣/∣T ∣−1,
and move to state u with probability 1/∣T ∣−1 for all u ∈ D(v).
The Markov set is the the set of vertices that have maximum
probability in the unique stationary distribution of M(T ).
Formally, the transition matrix of the Markov chain is de-
fined as.

Q =
1

∣T ∣ − 1
(A(T )t + diag(CO))

where diag(CO) is the diagonal matrix of the Copeland
scores. Markov set MA(T ) of a tournament T is then given
by MA(T ) = arg maxa∈V{p(a) ∶ p ∈ Δ(V),Qp = p}.

Bipartisan set: Bipartisan set generalizes the notion of
Condorcet winner to lotteries over the vertices of the tour-
nament. Interestingly, for every tournament T = (V ,E),
there exists a unique maximal lottery (MBC+16). That is,
there exists a probability distribution p ∈ Δ(V) such that,
for the skew-adjacency matrix G(T ) = (gab)a,b∈V of T ,
∑a,b∈V p(a)q(b)gab ⩾ 0 for all q ∈ Δ(V) which is, by
convexity, equivalent to the following condition.

∑
a∈V

p(a)gab ⩾ 0 for all b ∈ V (1)

Let pT denote the unique maximal lottery of T . Then the
bipartisan set BP(T ) of T is defined as the support of pT .
That is,

BP(T ) = {a ∈ V ∶ pT (a) > 0}
Uncovered set: Given a tournament T =(V ,≻), we say a

vertex v ∈ V covers another vertex u ∈ V if D(u) ⊆ D(v)
and is denoted by vCu. We observe that vCu implies v ≻
u and is equivalent to D̄(v) ⊆ D̄(u). The uncovered set
UC(T ) of a tournament T is given by the set of maximal
elements of the covering relation C. That is,

UC(T ) = {v ∈ V ∶ uCv for no u ∈ V}
Banks set: A sub-tournament of a tournament T = (V ,E)

is an induced subgraph of T . The Banks set BA(T ) is the
set of maximal elements of all the maximal transitive sub-
tournaments of T .

Top cycle: A non-empty subset of vertices B ⊆ V is called
dominant in a tournament T = (V ,≻) if x ≻ y for every
x ∈ B and y ∈ V ∖ B. Dominant sets are linearly ordered via
set inclusion and the top cycle returns the unique smallest
dominant set.

A tournament solution is called neutral if the output does
not depend on the names of the input set of vertices. All the
tournament solutions discussed above are neutral.

Essential States in a Markov Chain. A state i in a finite
Markov chain is called essential if for every state j that is

reachable from i, the state i is also reachable from j. A state
is called inessential if it is not essential. A well known fact
from probability theory is that, π(i) = 0 for every inessen-
tial state i, where π is a stationary distribution of the Markov
chain. Hence, every vertex whose corresponding state in the
Markov chain is inessential, does not belong to the Markov
set of that tournament. We refer the reader to (Bré13) for a
more detailed discussion on Markov chains.
Query Model. Given a tournament T = (V ,E) on n ver-
tices, a query for a pair of vertices {x,y} ∈ P2{V} reveals
whether (x,y) ∈ E or (y,x) ∈ E . The query complexity of
an algorithm is the maximum number of queries the algo-
rithm makes in the worst case. The query complexity of a
tournament solution f is the minimum query complexity of
any algorithm for computing f.

Query Complexity Lower Bounds of
Tournament Solutions

We begin with the following observation which gives us the
query complexity of the Condorcet non-loser set of tourna-
ments.

Observation 1 The query complexity of the Condorcet non-
loser set in tournaments is equal to the query complexity
of the Condorcet winner in tournaments. Hence, the query
complexity of the Condorcet non-loser set in tournaments is
2n − ⌊logn⌋ − 2.

Proof: Given a tournament T = (V ,E), let us define another
tournament T = {V ,E}, where E = {(x,y) ∶ (y,x) ∈ E}.
Now the result follows from the observation that a vertex
v is a Condorcet non-loser in T if and only if v is not the
Condorcet winner in T . Now the 2n − ⌊logn⌋ − 2 query
complexity of the Condorcet non-loser set follows from the
2n − ⌊logn⌋ − 2 query complexity of the Condorcet winner
in tournaments (BRS97). ◻

We next consider the query complexity of the Slater set
of tournaments. The following result provides a necessary
condition for a vertex to belong to the Slater set of a tourna-
ment. We will use it to prove query complexity lower bound
of the Slater set. In the interest of space, we defer the proof
of Lemma 1 to the full version of the paper (Dey16a).

Lemma 1 Suppose the out-degree of a vertex v ∈ V in a
tournament T = (V ,E) on n vertices is strictly less than
(n−1)/2. Then v does not belong to the Slater set of T .

Let us consider the tournament Treg = (V ,E) on n ver-
tices V = {ai ∶ i ∈ [n]}. We assume n to be an odd inte-
ger. In Treg, vertex ai defeats ai+j (mod n) for every i ∈ [n]
and j ∈ [(n−1)/2]. We will use the tournament Treg crucially
in our proofs of the query complexity lower bounds of the
Copeland set, the Slater set, and the Markov set. The follow-
ing result is immediate from the definition of neutral tourna-
ment solutions.

Lemma 2 Given the tournament Treg as input, every neu-
tral tournament solution outputs the set of all vertices in
Treg.

2994



Suppose there exists an edge from a vertex u to another
vertex v in Treg. Let T u,v

reg be the tournament which is the
same as Treg except the edge from u to v is reversed, that
is, T u,v

reg = Treg ∪{(v,u)} ∖ {(u,v)}. The following lemma
will be used crucially in our proofs of the query complexity
lower bounds of the Copeland set, the Slater set, and the
Markov set.

Lemma 3 The Copeland set, the Slater set, and the Markov
set of T u,v

reg do not contain u.

Proof: Copeland set: For the Copeland set, the result fol-
lows from the observation that u is no longer a vertex with
highest out-degree in T u,v

reg .
Slater set: For the Slater set, the result follows imme-

diately from Lemma 1 since the out-degree of u is strictly
smaller than (n−1)/2 in T u,v

reg .
Markov set: If possible, let us assume that the stationary

distribution of the Markov chain M(T u,v
reg ) associated with

the tournament T u,v
reg be π such that π(a) = p for every a ∈

[n] ∖ {u,v}. Then we have the following.

p + π(u)
2

n + 1
= π(v) (2)

p
n − 3
n − 1

= π(u) (3)

π(u) + (n − 2)p + π(v) = 1 (4)

We first observe that, since the Markov chain M(T u,v
reg ) is

ergodic, it has a unique stationary distribution. Now, since
there exists an unique solution to the equations above, the
stationary distribution π of M(T u,v

reg ) is indeed of the form
we assumed (that is, π(a) = p for every a ∈ [n] ∖ {u,v}).
We observe that equation 3 shows that π(u) < p and
equation 2 shows that p < π(v). Hence, the Markov set of
T u,v
reg is {v}. ◻

We now prove that any algorithm for finding the Copeland
set, the Slater set, and the Markov set must query every edge
in the input tournament in the worst case.

Theorem 1 Any algorithm for finding the Copeland set, the
Slater set, and the Markov set of tournaments has query
complexity (n2).

Proof: Let us consider the tournament Treg. We observe
that, due to Lemma 2, the Copeland set, the Slater set, and
the Markov set of Treg is the set of all vertices. Let us now
consider the oracle which answers the queries according to
Treg. We claim that any algorithm for finding the Copeland
set, the Slater set, and the Markov set of tournaments must
query all the (n2) edges of Treg. Suppose not, then there
exists an edge from u to v in Treg for some vertices u and
v that the algorithm does not query. Let T̂ be the partial
tournament of Treg containing the edges that the algorithm
queries. If the output of the algorithm does not contain u,
then the oracle completes T̂ to Treg and thus the algorithm
does not output correctly since the output should contain all
the vertices. On the other hand, if the output of the algorithm
contains u then the oracle completes T̂ by directing the
edge between u and v from v to u and directing the rest of

the edges as in Treg. Again the algorithm outputs wrongly
due to Lemma 3. ◻

We now present our query complexity lower bound for
the bipartisan set of tournaments. Before embarking on the
query complexity lower bound of the bipartisan set, let us
prove a few structural results for the bipartisan set which we
will use crucially later. The following result for the biparti-
san set is well known (GLM93; FR95).

Lemma 4 In a tournament T = (V ,≻), suppose a vertex u
covers another vertex v, that is, u ≻ w whenever v ≻ w for
every w ∈ V . Then v does not belong to the bipartisan set of
T .

The following result shows that, in the tournaments where
every vertex has the same number of incoming edges as the
number of outgoing edges, the bipartisan set is the set of all
vertices.

Lemma 5 Let T be a tournament on n vertices where the
in-degree and out-degree of every vertex is (n−1)/2. Then the
only maximal lottery of T is the uniform distribution over
the set of all vertices of T and thus the bipartisan set of T is
the set of all vertices.

Proof: We observe that the uniform distribution over all
the vertices satisfy Equation (1) for the tournament T ,
since the average of the entries in every column of the
skew-symmetric matrix G of the tournament T is 0. Now
the result follows from the fact that the maximal lottery in
every tournament is unique (MBC+16). ◻

In the next lemma, we formalize the intuition that, if a
(A,V ∖ A) cut in a tournament has a majority of its edges
from V∖A to A and A is balanced, then the bipartisan set of
the tournament must include at least one vertex from V ∖A.

Lemma 6 Let T = (V1 ∪ V2,E) be a tournament such that
there exist at most ∣V1∣⋅∣V2∣/2 − 1 edges from V1 to V2 and the
in-degrees and out-degrees of all the vertices in the sub-
tournament T [V1] of T induced on V1 are exactly ∣V1∣−1/2.
Then the bipartisan set of T must include at least one vertex
from V2.

Proof: Let p⋆ ∈ Δ(V1 ∪V2) be the maximal lottery of T and
V = V1 ∪ V2. If possible, let us assume that p⋆(v) = 0 for
every v ∈ V2. Let q ∈ Δ(V2) be the uniform distribution on
V2 and G = (gab)a,b∈V the skew-adjacency matrix of T .
We first claim that p⋆ cannot be the uniform distribution on
V1. Indeed, otherwise we have ∑a,b∈V p

⋆(a)q(b)gab < 0
(since a strict majority of the edges between V1 and V2 are
from V2 to V1) which contradicts the fact that p⋆ is the
maximal lottery of T . We now consider the sub-tournament
T [V1] of T induced on V1. Due to Lemma 5, the only
maximal lottery of T [V1] is the uniform distribution
on V1. Hence, since p⋆ is not the uniform distribution
over V1, there exists a distribution q′ ∈ Δ(V1) such that
∑a,b∈V1

p⋆(a)q′(b)gab < 0. However, this contradicts our
assumption that p⋆ is the maximal lottery of T . Hence, the
bipartisan set of T must include at least one vertex from V2.
◻

2995



We now have all the ingredients to present our query com-
plexity lower bound result for the bipartisan set.

Theorem 2 The query complexity of the bipartisan set of a
tournament is Ω(n2).

Proof: Let n be an odd integer. We consider a partial tour-
nament T = (A ∪ B,E) where A = {ai ∶ i ∈ [n]},B = {bi ∶
i ∈ [n]}, and E = {(ai,ai+j (mod n)), (bi,bi+j (mod n)) ∶ i ∈
[n], 1 ⩽ j ⩽ (n−1)/2}. The oracle answers the queries of the
algorithm as follows. If a query comes for an edge between
vertices ai and aj or bi and bj for any i, j ∈ [n], then the
oracle answers according to T . If a query comes for an
edge between ai and bj for any i, j ∈ [n], then the oracle
says that the edge is oriented from ai to bj. We now claim
that the algorithm must query at least n2/2 edges between
A and B. Suppose not, then, if the output of the algorithm
contains any vertex from B, then the oracle orients every
edge between A and B, from A to B, thereby ensuring
that the output of the algorithm is wrong due to Lemma 4.
On the other hand, if the output of the algorithm does not
contain any vertex from B, then the oracle orients all the
edges between A and B that are not queried, from B to A,
thereby ensuring that the output of the algorithm is again
wrong due to Lemma 6. Hence, the algorithm must query
at least n2/2 edges between A and B and thus the query
complexity of the bipartisan set is Ω(n2). ◻

We now show that the query complexity of the uncovered
set is Ω(n2).

Theorem 3 The query complexity of the uncovered set of a
tournament is Ω(n2).

Proof: Consider a partial tournament T = (A ∪ B ∪ {x},E)
where A = {ai ∶ i ∈ [n]},B = {bi ∶ i ∈ [n]} and
E = {(ai,x), (x,bi) ∶ i ∈ [n]}. Let us consider the
following oracle. Let us define the partial tournament T ′ to
be the graph on A ∪ B ∪ {x} consisting of all the answers
of the oracle till now. Hence, to begin with, T ′ does not
have any edge. The oracle answers the queries for any edge
in T according to T . For any query of the form {ai,aj}
or {bi,bj}, the oracle answers arbitrarily but consistently.
For a query {ai,bj} for some i, j ∈ [n], if ai defeats bk

for every k ∈ [n] ∖ {j} in T ′, then the oracle answers that
bj defeats ai; otherwise oracle answers that ai defeats bj.
We claim that any algorithm for finding the uncovered set
of tournaments must query for the pair {ai,bj} for every
i, j ∈ [n]. Suppose not, then there exists a pair {ai,bj}
which the algorithm does not query. Notice that, by the
design of the oracle, ai defeats bk in T ′ for every k ∈ [n]
such that {ai,bk} has been queried by the algorithm. For
every pair {ak,b�} with k, � ∈ [n],k ≠ i and {ak,b�} has
not been queried, the oracle orients the edge from b� to
ak. The oracle also orients all the edges from ai to bk for
every k ∈ [n] ∖ {j}. Now, if the output of the algorithm
contains x, then the oracle orients the edge {ai,bj} from ai

to bj. Notice that, in this case, x is covered by ai and thus x
should not be in the uncovered set and hence the output of
the algorithm is wrong. On the other hand, if the output of
the algorithm does not contain x, then the oracle orients the

edge {ai,bj} from bj to ai. In this case, x is not covered
by any other vertex and thus x belongs to the uncovered set.
Hence, the algorithm outputs incorrectly in both the cases
thereby proving the result. ◻

Next we consider the Banks set and show its query com-
plexity to be Ω(n2).
Theorem 4 The query complexity of the Banks set of a tour-
nament is Ω(n2).
Proof: Consider a partial tournament T = (A ∪B ∪ {x},E),
where A = {ai ∶ i ∈ [n]},B = {bi ∶ i ∈ [n]}, and
E = {(ai,x), (x,bi), (bi,bj) ∶ i, j ∈ [n], i > j}. Let us
consider the following oracle. Let us define the partial
tournament T ′ to be the graph on A ∪ B ∪ {x} consisting
of all the answers of the oracle till now. Hence, to begin
with, T ′ does not have any edge. The oracle answers the
queries for any edge in T according to T . For any query of
the form {ai,aj} or {bi,bj}, the oracle answers arbitrarily
but consistently. For a query {ai,bj} for some i, j ∈ [n], if
ai defeats bk for every k ∈ [n] ∖ {j} in T ′, then the oracle
answers that bj defeats ai; otherwise oracle answers that ai

defeats bj. We claim that the algorithm must query for the
pair {ai,bj} for every i, j ∈ [n]. Suppose not, then there
exists a pair {ai,bj} which the algorithm does not query.
Notice that, by the design of the oracle, ai defeats bk in T ′
for every k ∈ [n] such that {ai,bk} has been queried by the
algorithm. For every pair {ak,b�} with k, � ∈ [n],k ≠ i and
{ak,b�} has not been queried, the oracle orients the edge
from ak to b�. The oracle also orients all the edges not in
T ′ between ai and bk from ai to bk for every k ∈ [n]∖{j}.
Now if the output of the algorithm contains x, then the
oracle orients the edge between ai and bj from ai to bj.
We claim that x can not be the maximum vertex of any
maximal transitive sub-tournament T ′′ of T . To see this,
we first observe that the sub-tournament T ′′ must have all
the vertices in B and no vertex from A. Indeed, otherwise
either x is not the maximum vertex of T ′′ (if any vertex
from A is there in T ′′) or T ′′ is not a maximal transitive
sub-tournament (if any vertex from B is not there in T ′′).
However, such a sub-tournament is not a maximal transitive
sub-tournament since ai can be added to T ′′ without
violating transitivity. Hence x does not belong to the Banks
set of the resulting tournament and thus the algorithm’s
output is wrong. On the other hand, suppose the output of
the algorithm does not contain x. Then the oracle orients
the edge between ai and bj from bj to ai. In this case,
the sub-tournament of T induced on B ∪ {x} is a maximal
sub-tournament where x is the maximum vertex and thus x
belongs to the Banks set of the resulting tournament. Hence,
the algorithm outputs incorrectly in both the cases thereby
proving the result. ◻

We now show that the query complexity of the top cycle
of tournaments is Ω(n2).
Theorem 5 The query complexity of the top cycle of a tour-
nament is Ω(n2).
Proof: We consider a partial tournament T = (A ∪ B,E)
where A = {ai ∶ i ∈ [n]},B = {bi ∶ i ∈ [n]}, and

2996



E = {(ai,ai+1 (mod n)), (bi,bi+1 (mod n)) ∶ i ∈ [n]}. The
oracle answers the queries of the algorithm as follows. If
a query comes for the edge between vertices ai and aj

or bi and bj for any i, j ∈ [n], then the oracle answers
according to T if the edge is present in T , and arbitrarily
but consistently otherwise. If a query comes for an edge
between ai and bj for any i, j ∈ [n], then the oracle says
that the edge is oriented from ai to bj. Now we claim that
the algorithm must query all the n2 edges between A and B.
Suppose not, then there exist ai and bj for some i, j ∈ [n]
such that the algorithm has not queried for the edge between
ai and bj. Now if the output of the algorithm does not
contain any vertex from B, then the oracle orients the edge
between ai and bj from bj to ai. Notice that, in this case
the top cycle of the resulting tournament T contains at least
one vertex bj ∈ B and thus the algorithm does not output
correctly in this case. On the other hand, if the output of
the algorithm contains any vertex from B, then the oracle
orients all the edges between A and B from A to B. In this
case, the top cycle of the resulting tournament is A and
thus the algorithm again fails to output correctly. Hence, the
algorithm must make Ω(n2) queries. ◻

Results for Tournaments with Small Top Cycle
It turns out that, if we a priori know that the size of the top
cycle in the input tournament is at most k, then there is an
algorithm for finding the top cycle with much less number
of queries.
Theorem 6 Suppose we know that the top cycle of the input
tournament T is of size at most k. Then there exists an al-
gorithm for finding the top cycle of T with query complexity
O(nk + n logn/log(1−1/k)).
Proof: We first partition the set of vertices V into ⌈n/2k⌉
subsets Vi, i ∈ ⌈n/2k⌉, each of size at most 2k. For each
partition, we query all pair of vertices. We notice that, in
each set Vi of the partition, there must exist at least one
vertex vi with in-degree at least k (for every k larger than
some small constant) and consequently vi does not belong
to the top cycle of T for every i ∈ ⌈n/2k⌉. We delete the
vertex vi from Vi for every i ∈ ⌈n/2k⌉, thereby deleting
⌈n/2k⌉ vertices in total. The now iterate the same process
on the remaining set of vertices. The first iteration takes
O((n/k)k2) = O(nk) queries. From the next iteration
onwards, we can manage with only n queries per iteration
by partitioning the vertices cleverly: since we have deleted
exactly one vertex from each set of the partition we can add
one vertex to each set of the partition by “breaking” some
of the sets from the partition. We now observe that, in every
set, we now need to compare the new vertex with the rest of
the vertices thereby requiring at most n − k queries in total.
Since, each iteration decreases the size of the tournament by
a factor of Ω(1 − 1/k), after O(logn/log(1−1/k)) iterations, we
have O(k) vertices in the tournament where we can find the
top cycle using O(k2) = O(nk) queries. Hence, the query
complexity of our algorithm is O(nk + n logn/log(1−1/k)).
The correctness of the algorithm follows from the fact that
whenever we remove a vertex v from the tournament, v does

not belong to the top cycle of T . ◻

The following result gives relationship between the top
cycle of a tournament and other tournament solutions like
the Copeland set, the Slater set, the Markov set, the biparti-
san set, the uncovered set, and the Banks set.
Lemma 7 Let T be a tournament whose top cycle is C.
Then the Copeland set, the Slater set, the Markov set, the
bipartisan set, the uncovered set, and the Banks set of T are
the same as the corresponding solutions for the tournament
T (C).
Proof: Copeland set, bipartisan set, uncovered set: Fol-
lows from the observation that every vertex in C covers every
vertex in V ∖ C and Lemma 4.

Markov set: All the states corresponding to the vertices
in V∖C are inessential and thus do not belong to the Markov
set of T .

Slater set: We observe that, in the Slater order ≻ of the
tournament T , every vertex in C must be preferred over ev-
ery vertex in V ∖ C. If not, then let there be a vertex a ∈ C
and b ∈ V ∖ C such that a immediately follows b in ≻. Then
by swapping the positions of the vertices a and b in ≻, we
can strictly decrease the disagreement of ≻ with T thereby
contradicting that ≻ is a Slater order of T .

Banks set: Follows from the fact that every maximal ele-
ment of every maximal sub-tournament of T belongs to C. ◻

Lemma 7 and Theorem 6 immediately give the the fol-
lowing query complexity upper bound for the Copeland set,
the Slater set, the Markov set, the bipartisan set, the uncov-
ered set, and the Banks set when we a priori know that the
size of the top cycle of the input tournament is at most k.
Theorem 7 Suppose we know that the top cycle of the input
tournament T is of size at most k. Then there exists an algo-
rithm for finding the Copeland set, the Slater set, the Markov
set, the bipartisan set, the uncovered set, and the Banks set
of T with query complexity O(nk + n logn/log(1−1/k)).
Proof: We first find the top cycle C of T using Theorem 6.
This step requires O(nk + n logn/log(1−1/k)) queries. Next,
we query for all the pair of vertices in C and output the
corresponding solution of T (C). The correctness of the
algorithm follows immediately from Lemma 7. Since the
second step requires O(k2) = O(nk) queries, the query
complexity of our algorithm is O(nk + n logn/log(1−1/k)). ◻

Conclusion and Future Directions
We have shown that, for finding many common tournament
solutions, one has to query, in the worst case, almost en-
tire set of edges in the tournament. On the positive side,
we have exhibited an important structural property, in terms
of the top cycle of the tournament being small, which sub-
stantially reduces the query complexity of common tourna-
ment solutions. An immediate future direction of research
is to study query complexity for other tournament solutions
like the minimal covering set, the minimal extending set, the
minimal TC-retentive set, the tournament equilibrium set,
etc.

2997



References
Kenneth J Arrow, Hervé Raynaud, et al. Social choice and
multicriterion decision-making. MIT Press Books, 1, 1986.
Felix Brandt, Markus Brill, Felix Fischer, and Paul Harren-
stein. Minimal retentive sets in tournaments. Soc. Choice
Welf., 42(3):551–574, 2014.
Felix Brandt and Paul Harrenstein. Characterization of dom-
inance relations in finite coalitional games. Theor. Decis.,
69(2):233–256, 2010.
Denis Bouyssou, Thierry Marchant, Marc Pirlot, Alexis
Tsoukiàs, and Philippe Vincke. Evaluation and decision
models with multiple criteria: Stepping stones for the ana-
lyst, volume 86. Springer Science & Business Media, 2006.
Amotz Bar-Noy and Joseph Naor. Sorting, minimal feed-
back sets, and hamilton paths in tournaments. SIAM J. Dis-
crete Math., 3(1):7–20, 1990.
Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo
simulation, and queues, volume 31. Springer Science &
Business Media, 2013.
R. Balasubramanian, Venkatesh Raman, and G. Srinivasara-
gavan. Finding scores in tournaments. J. Algorithms,
24(2):380–394, 1997.
Irène Charon and Olivier Hudry. A survey on the linear
ordering problem for weighted or unweighted tournaments.
4OR, 5(1):5–60, 2007.
Amit Chakrabarti, Subhash Khot, and Yaoyun Shi. Evasive-
ness of subgraph containment and related properties. SIAM
J. Comput., 31(3):866–875, 2001.
Vincent Conitzer. Eliciting single-peaked preferences using
comparison queries. J. Artif. Intell. Res., 35:161–191, 2009.
Vincent Conitzer and Tuomas Sandholm. Vote elicitation:
Complexity and strategy-proofness. In Eighteenth National
Conference on Artificial Intelligence (AAAI), pages 392–
397, 2002.
Palash Dey. Query complexity of tournament solutions.
CoRR, abs/1611.06189, 2016.
Palash Dey. Recognizing and eliciting weakly single cross-
ing profiles on trees. CoRR, abs/1611.04175, 2016.
John Duggan and Michel Le Breton. Dutta’s minimal cov-
ering set and shapley’s saddles. J. Econ. Theory, 70(1):257–
265, 1996.
Palash Dey and Neeldhara Misra. Elicitation for preferences
single peaked on trees. In Proc. Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016, pages 215–221, 2016.
Palash Dey and Neeldhara Misra. Preference elicitation for
single crossing domain. In Proc. Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016, pages 222–228, 2016.
Phan Minh Dung. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif Intel, 77(2):321–357,
1995.

Paul E Dunne. Computational properties of argument sys-
tems satisfying graph-theoretic constraints. Artif Intel,
171(10):701–729, 2007.
David C Fisher and Jennifer Ryan. Tournament games
and positive tournaments. J. Graph Theory, 19(2):217–236,
1995.
Dishant Goyal, Varunkumar Jayapaul, and Venkatesh Ra-
man. Elusiveness of finding degrees. To appear in Proc.
Third International Conference on Algorithms and Discrete
Applied Mathematics (CALDAM), February 13 - 18, 2017,
Goa, India., 2017.
Laffond G., Jean-Franois Laslier, and Le Breton M. The
bipartisan set of a tournament game. GEB, 5(1):182–201,
1993.
Valerie King. Lower bounds on the complexity of graph
properties. In Proc. twentieth annual ACM symposium on
Theory of computing, pages 468–476. ACM, 1988.
Jeff Kahn, Michael Saks, and Dean Sturtevant. A topologi-
cal approach to evasiveness. Combinatorica, 4(4):297–306,
1984.
Torsten Korneffel and Eberhard Triesch. An asymptotic
bound for the complexity of monotone graph properties.
Combinatorica, 30(6):735–743, 2010.
Raghav Kulkarni. Evasiveness through a circuit lens. In
Proc. 4th Conference on Innovations in Theoretical Com-
puter Science, ITCS ’13, pages 139–144, New York, NY,
USA, 2013. ACM.
Hervé Moulin, Felix Brandt, Vincent Conitzer, Ulle Endriss,
Jérôme Lang, and Ariel D Procaccia. Handbook of Compu-
tational Social Choice. Cambridge University Press, 2016.
H Moulin. Choosing from a tournament. Soc. Choice Welf.,
3:271–291, 1986.
David M. Pennock, Eric Horvitz, and C. Lee Giles. So-
cial choice theory and recommender systems: Analysis of
the axiomatic foundations of collaborative filtering. In Proc.
Seventeenth AAAI, July 30 - August 3, 2000, Austin, Texas,
USA., pages 729–734, 2000.
Ariel D Procaccia. A note on the query complexity of
the condorcet winner problem. Inform. Process. Lett.,
108(6):390–393, 2008.
Arnold L Rosenberg. On the time required to recognize
properties of graphs: A problem. ACM SIGACT News,
5(4):15–16, 1973.
Ronald L Rivest and Jean Vuillemin. On recognizing graph
properties from adjacency matrices. Theor Comput Sci,
3(3):371–384, 1976.

2998




