
The Symbolic Interior Point Method

Martin Mladenov
TU Dortmund University, Germany

martin.mladenov@cs.tu-dortmund.de

Vaishak Belle
University of Edinburgh, UK

vaishak@ed.ac.uk

Kristian Kersting
TU Dortmund University, Germany
kristian.kersting@cs.tu-dortmund.de

Abstract

Numerical optimization is arguably the most prominent com-
putational framework in machine learning and AI. It can be
seen as an assembly language for hard combinatorial problems
ranging from classification and regression in learning, to com-
puting optimal policies and equilibria in decision theory, to
entropy minimization in information sciences. Unfortunately,
specifying such problems in complex domains involving rela-
tions, objects and other logical dependencies is cumbersome
at best, requiring considerable expert knowledge, and solvers
require models to be painstakingly reduced to standard forms.
To overcome this, we introduce a rich modeling framework
for optimization problems that allows convenient codifica-
tion of symbolic structure. Rather than reducing this symbolic
structure to a sparse or dense matrix, we represent and ex-
ploit it directly using algebraic decision diagrams (ADDs).
Combining efficient ADD-based matrix-vector algebra with a
matrix-free interior-point method, we develop an engine that
can fully leverage the structure of symbolic representations to
solve convex linear and quadratic optimization problems. We
demonstrate the flexibility of the resulting symbolic-numeric
optimizer on decision making and compressed sensing tasks
with millions of non-zero entries.

Introduction

A convex quadratic program (QP) is an optimization problem
in which a convex quadratic function is minimized over the
solution set of a system of linear inequalities. In this paper,
we assume that a QP takes on the following standard form

minimize cT x + 1/2xT Qx
subject to Ax = b, x ≥ 0,

where, Q is a symmetric positive semi-definite matrix. When-
ever Q = 0, we speak of linear programs (LPs). Convex QPs
are commonly solved by numerical solvers (Mattingley and
Boyd 2012; Grant and Boyd 2008).

In the broad discussion of quadratic programs, normal
forms as the one above are the representation of choice,
as they abstract away problem specifics. They are widely
used to provide insight into the geometric properties of these
problems and design solution techniques. Most solvers are
designed to take normal forms as input.
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Concrete problems arising in applications, however, are
easier to express in terms of an algebraic modeling language
of parametrized sums, multiplications and set operations,
which we refer to as symbolic. For example, to specify that
the flow in a directed graph G must be conserved, we use the
constraint:

∀v ∈ Vertex(G) :
∑

u∈Nb+(v)
xuv −

∑
w∈Nb−(v)

xvw = 0.

This can be read as follows: for every vertex v, if we add the
flow xuv from each incoming neighbor u ∈ Nb+(v) of v and
subtract the flow xvw to each outgoing neighbor w ∈ Nb−(v)
of v, we get the number 0. On the one hand, such symbolic
forms provide a compact representation of structured prob-
lems; of course, any problem can also be expressed as a
standard form in matrix-vector algebra. However, describing
a problem in terms of, say, the coefficients of its constraint
matrix is unintuitive and a tedious exercise. On the other hand,
symbolic forms are the starting point for designing special-
ized algorithms. Through ingenuity, the AI, machine learning
and operations researchers can make inferences about the
structure of a given constraint and leverage them to design a
more efficient algorithm (e.g., optimizers for flow problems
(Chardaire and Lisser 2002)).

This notational convenience of symbolic forms has been
widely recognized within the literature. For example, (Fourer,
Gay, and Kernighan 1993; Wallace and Ziemba 2005) are
interested in intuitive modeling languages for optimization,
and allow sets of objects to index LP variables. Disciplined
programming (Grant and Boyd 2008) provides an object-
oriented environment in a high-level programming language
to enable a structured interface between the model and the
solver. However, these and other works address the notational
convenience of symbolic forms only: the language is used
to simplify the problem specification, but it is eventually
converted to a matrix-vector normal form for solving. This is
unlike the situation in statistical relational learning (Getoor
and Taskar 2007; De Raedt et al. 2016) where symbolic
structure is being used extensively.

In this paper, triggered by relational mathematical program-
ming (Kersting, Mladenov, and Tokmakov 2015; Cussens
2015), we take the view that symbolic forms can and should
inform the solver without any expert intervention. The main
goal of this paper is to demonstrate that structure in linear and
quadratic programs can be efficiently detected and exploited
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automatically by making use of the symbolic representation
of the problem within solvers, the job that has so far been
solely at the hands of the expert.

To realize this objective, we will proceed as follows. We
will first introduce a high-level algebraic-logical language,
which sets the frame for our discussion. Its significance is
that the standard forms that result from QPs expressed in
the language can be viewed as pseudo-Boolean functions.
Thus, instead of storing a standard form as a dense or sparse
matrix, as is usually the case in QP solvers, we will store
it as an Algebraic Decision Diagram (ADD), making use
of the problem structure to produce a highly compressed
representation. The reason for doing this lies in the fact that
ADDs can carry out certain matrix manipulations efficiently.

Nonetheless, even if a mathematical program encoded in a
high-level language has been reduced to an efficiently manip-
ulable data structure such as an ADD, it is far from obvious
how a generic solver can be engineered for it. Matrix opera-
tions with ADDs are efficient only under certain conditions,
such as:

• they have to be done recursively, in a specific descent
order;

• they have to involve the entire matrix (batch mode): access
to arbitrary submatrices is not efficient.

This places rather specific constraints on the kind of method
that could benefit from an ADD representation, ruling out
approaches like random coordinate descent. In this paper,
we aim to engineer and construct a solver for such matrices
directly in circuit representation. We employ ideas from the
matrix-free interior point method (Gondzio 2012), which
appeals to an iterative linear equation solver together with
the log-barrier method, to achieve a regime where the con-
straint matrix is only accessed through matrix-vector multi-
plications. Specifically, we show a ADD-based realization
of the approach leverages the desirable properties of these
representations (e.g. caching of submatrices), leading to a
robust and fast engine. We demonstrate the flexibility of this
symbolic-numeric optimizer on decision making and com-
pressed sensing tasks with millions of non-zero entries.

The remainder of this paper is organized as follows. We
start off by a short recap of decision diagrams and their ba-
sic properties. Next, we formulate a symbolic language for
defining QPs and relate it to ADDs. We then proceed with
the discussion of a solver for QPs expressed in that language.
Before concluding we provide numerical illustrations of the
method along with a discussion of related work.

Algebraic Decision Diagrams

A BDD (Bryant 1986) is a compact and efficiently manipula-
ble data structure for a Boolean function f : {0, 1}n → {0, 1} .
Its roots are obtained by the Shannon expansion of the cofac-
tors of the function: if fx and fx denote the partial evaluation
of f (x, . . .) by setting the variable x to 1 and 0 respectively,
then

f = x · fx + x · fx.

When the Shannon expansion is carried out recursively, we
obtain a full binary tree whose non-terminal nodes, labeled

by variables {. . . , xi, . . .}, represent a function: its left child
is f ’s cofactor w.r.t. xi for some i and its right child is f ’s
cofactor w.r.t. xi. The terminal node, then, is labeled 0 or 1
and corresponds to a total evaluation of f . By further ordering
the variables, a graph that we call the (ordered) BDD of f
can be constructed such that at the kth level of the tree, the
cofactors wrt the kth variable are taken. Given an ordering,
BDD representations are canonical: for any two functions
f , g : {0, 1}n → {0, 1}, f ≡ g ⇔ fx ≡ gx and fx ≡ gx; and
compact for Binary operators ◦ ∈ {+,×, . . .}: | f ◦ g| ≤ | f ||g|.

ADDs generalize BDDs in representing functions of the
form {0, 1}n → R, i.e. pseudo-Boolean functions, and so
inherit the same structural properties as BDDs except, of
course, that terminal nodes are labeled with real numbers
(Fujita, McGeer, and Yang 1997; Clarke, Fujita, and Zhao
1996). Consider any real-valued vector of length m: the vec-
tor is indexed by lg m bits, and so a function of the form
{0, 1}lg m → R maps the vector’s indices to its range. Thus,
an ADD can represent the vector. By extension, any real-
valued 2m × 2n matrix A with row index bits {x1, . . . , xm}
and column index bits {y1, . . . , yn} can be represented as a
function f (x1, y1, x2, . . .) such that its cofactors are the en-
tries of the matrix. The intuition is to treat x1 as the most
significant bit, and xm as the least. Then A represented by a
function f as an ADD is: ( fx1y1 fx1y1 ) as the first row and
( fx1y1 fx1y1 ) as the second, where each submatrix is similarly
defined wrt the next significant bit. Analogously, when multi-
plying two m-length vectors represented as Boolean functions
f , g : {0, 1}lg m → R, we can write [ fx1 fx1 ][gx1 gx1 ]T , tak-
ing, as usual, x1 as the most significant bit.

As can be gathered by the cofactor formulations, the ADD
representation admits two significant properties. First, when
identical submatrices occur in various parts of the matrix,
e.g. in block and sparse matrices, different cofactors map to
identical functions leading to compact ADDs. Second, matrix
algorithms involving recursive-descent procedures on sub-
matrices (e.g. multiplication) and term operations (addition,
maximization) are efficiently implementable by manipulat-
ing the ADD representation. In sum, standard matrix-vector
algebra can be implemented over ADDs efficiently, and in
particular, the caching of submatrices in recursively defined
operations (while implicitly respecting the variable ordering)
will best exploit the superiority of the representation.

First-Order Logical Quadratic Programs

Given a finite-domain first-order logical language L, the
syntax for first-order (FO) logical quadratic programs is:

minimize
v

∑
{x,x′:θ(x,x′)}

q(x, x′)v(x)v(x′) +
∑
{x:ζ(x)}

c(x)v(x)

subject to {y : ψ(y)} :
∑
{x:φ(x,y)}

a(x, y)v(x) ≥ b(y)

where x, y and z are tuples of ground atoms, and we write δ(z)
to mean that the L-formula δ mentions the atoms z, and read
{z : δ(z)} as the set of all assignments to z satisfying δ(z).1

1Since ground atoms always evaluate to true or false, we often
refer to x, y, z, . . . as Boolean variables.
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minimizev(x),v(x) v(x) + v(x)
subject to v(x) ≥ 1, v(x) + v(x) ≥ 1,

[
0 (xy) 1 (xy)
1 (xy) 1 (xy)

]
︸��������������︷︷��������������︸

A

,

[
1 (y)
1 (y)

]
︸�︷︷�︸

b

,

[
1 (x)
1 (x)

]
︸�︷︷�︸

c

.

Figure 1: A first-order mathematical program, its normal form, and the ADD representation of its constraint matrix.

The constraints are to be read procedurally as follows: for
every assignment to y satisfying ψ(y), consider the constraint∑

C a(x, y)v(x) ≥ b(y), where the set C are those assignments
to x satisfying φ(x, y), and a and b are pseudo-Boolean func-
tions. For example, consider:

minimizev

∑
{x:true}v(x) s.t. {y : true} :

∑
{x : x∨y} v(x) ≥ 1

This program is equivalent to the ground LP shown in
Fig 1(left), where v(x) and v(x) are the two real-valued deci-
sion variables. Moreover, the LP’s normal form is given in
Fig 1(center). For the sake of simplicity, we use an LP for
illustrating the language, but everything carries over to the
QP case.

To get a sense of how constraints in this language are
reduced to ADDs, let I and J be finite sets, a : I × J → R,
b : I → R be real-valued functions, and {x( j) | j ∈ J} be
a set of variables. Then, the system of linear inequalities
∀i ∈ I :

∑
j∈J a(i, j)x( j) ≥ b(i) is identical to the matrix-

vector inequality Ax ≥ b, where A ∈ R|I|×|J| is a matrix such
that Ai j = a(i, j), b is the vector bi = b(i) and x ∈ R|J| is an
unknown vector representing the variables. In our language,
the constraint {y : ψ(y)} :

∑
{x:φ(x,y)} a(x, y)v(x) ≥ b(y) can be

rewritten as

{y : true} :
∑
{x:True} a(x, y)1ψ(y)1φ(x, y)v(x) ≥ b(y)1ψ(y),

where 1 is an indicator function, e.g., if 1φ(x, y) is the function
that returns 1 whenever φ(x, y) holds and 0 otherwise. Thus,
the pseudo-Boolean function a′(x, y) := a(x, y)1ψ(y)1φ(x, y)
identifies with the matrix A ∈ R2|x|×2|y| in the canonical form
representation of this constraint. The other elements of the LP
can be represented as pseudo-Boolean functions analogously.
Assuming that a, b, c and q have symbolic representations
that can be built recursively, the corresponding a′, b′, c′ and
q′ can be obtained by ADD multiplication. Formally:

Proposition 1: There is an algorithm for building an ADD
for terms from a first-order logical mathematical program
without converting the program to the canonical (ground)
form. The ADD obtained from the algorithm is identical to
the one obtained from the ground form.

Solution Strategies for FO Logical QPs

Given the representation language, we now turn towards
solving logical QPs. To prepare the discussion, let us establish
an elementary notion of algorithmic correctness for ADD
implementations. Given a first-order logical mathematical
program, we assume that we have in hand the ADDs for A, b
and c. Then, it can be shown:

Theorem 2: Suppose A, b and c are as above, and e is any
arithmetic expression over them involving standard matrix
binary operators. Then there is a sequence of operations over
their ADDs, yielding a function h, such that h = e.

The kinds of expressions we have in mind are e = Ax − b
(which corresponds to the residual in the corresponding
system of linear equations). The proof is as follows:

Proof: For any f , g : {0, 1}n → R, and (standard) binary
matrix operator ◦, observe that h = f ◦ g iff hx = fx ◦ gx and
hx = fx ◦ gx. By canonicity, the ADD for h is precisely the
same as the one for f and g composed over ◦. In other words,
for any arithmetic expression e over { f , g, ◦} represented as
matrices, the ADD realization h is the same function.

To guide the subsequent construction of the engine, we
will first briefly go over the operations previously established
as efficient with ADDs (Clarke, Fujita, and Zhao 1996), and
some implications thereof for a solver strategy.

Theorem 3: (Fujita, McGeer, and Yang 1997; Clarke, Fujita,
and Zhao 1996) Suppose A, A′ are real-valued matrices. Then
the following can be efficiently implemented in ADDs using
recursive-descent procedures:

• accessing and setting a submatrix A∗ of A;
• termwise operations, i.e. (A ◦ A′)i j = Ai j ◦ A′i j for any

termwise operator ◦;
• vector and matrix multiplications.

The proof of these claims and the ones in the corollary
below always proceed by leveraging the Shannon expan-
sion for the corresponding Boolean functions. We refer
interested readers to (Fujita, McGeer, and Yang 1997;
Clarke, Fujita, and Zhao 1996) for the complexity-theoretic
properties of these operations. It is worth noting, for exam-
ple, that multiplication procedures that perform both (naive)
block computations and ones based on Strassen products can
be recursively defined. For our purposes, we get:

Corollary 4: Suppose d = [d1 · · · dm] and e are m-length
real-valued vectors, and k is a scalar quantity. Then the
following can be efficiently implemented in ADDs using
recursive-descent procedures:

• scalar multiplication, e.g. k · d;
• vector arithmetic, e.g. d + e;
• element sum, e.g.

∑
i di;

• element function application, e.g. if w : R→ R, then com-
puting w(d) = [w(d1) · · · w(dm)];
• norms, e.g. ‖d‖ and ‖d‖2.
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A Naive Ground-and-Solve Method

The most straightforward approach for solving a first-order
logical QP (FOLQP) is to reduce the problem to the normal
form and use a standard solver for QPs, such as an interior
point method, an augmented Lagrangian method, or some
form of active set method, e.g. generalized simplex. The
correctness of this solution strategy is guaranteed by the se-
mantics of the logical constraints: in general, every FOLQP
can be brought to the normal form. While this method would
work, it exhibits a significant drawback in that the optimiza-
tion engine cannot leverage knowledge about the symbolic
structure of the problem. That is, even if the problem com-
piles to a very small ADD, the running time of the optimizer
will depend (linearly at best) on the number of nonzeros in
the ground matrix. Clearly, large dense problems will be com-
pletely intractable. However, as we will see later, some dense
problems can still be attacked with the help of structure.

The Symbolic Interior Point Method

While the ground-and-solve method is indeed correct, one
can do significantly better, as we will show now. Specifically,
we will construct a solver that automatically exploits the
symbolic structure of the FOLQP, in essence, by appealing to
the strengths of the ADD representation. The reader should
note that much of this discussion is predicated on problems
having considerable logical structure, as is often the case in
real-word problems involving relations and properties.

Recall from the previous discussion that in the presence of
cache, (compact) ADDs translate to very fast matrix-vector
multiplications. Moreover, from Corollary 4, vector opera-
tions are efficiently implementable, which implies that given
an ADD for A, x and b, the computation of the residual
y = Ax − b is more efficient than its matrix counterpart (Fu-
jita, McGeer, and Yang 1997). Analogously, a descent along
a direction (xk = xk−1+αΔx) given ADDs for xk−1 and Δx has
the same run-time complexity as when performed on dense
vectors. However, we have to remark that for ADD-based
procedures to be efficient, we need to respect the variable
ordering implicit in the ADD. Thus, the solver strategy rests
on the following constraints:

(*) the engine must manipulate the matrix only through
recursive-descent arithmetical operations, such as matrix-
vector multiplications (matvecs, for short);

(**) operations must manipulate either the entire matrix or
those submatrices corresponding to cofactors (i.e. arbi-
trary submatrices are non-trivial to access).

We will now devise a method that satisfies these require-
ments. We proceed in two steps. In step 1, we will demon-
strate that solving a QP can be reduced to solving a sequence
of linear equations over A. Next, in step 2, we will make use
of an iterative solver that computes numerical solutions by a
sequence of residuals and vector algebraic operations. As a
result, we will obtain a method that fully utilizes the strengths
of ADDs. Due to space constraints, we will not be able to
discuss the construction in full detail, and so we sketch the
main ideas that convey how ADDs are exploited.

Algorithm 1: Primal-Dual Barrier Method

Input: (x0, y0, s0) with (x0, s0) ≥ 0
k ← 0;
while stopping criterion not fulfilled do

Solve (2) with (x, y, s) = (xk, yk, sk) to obtain a
direction (Δxk,Δyk,Δsk);

Choose step length αk ∈ (0, 1];
Update (xk+1, yk+1, sk+1)← αk(Δxk,Δyk,Δsk)
k ← k + 1

return xk;

Algorithm 2: Conjugate Gradient Method
t Input: A ∈ Rn×n, b ∈ Rn

k ← 0, r0 ← b − Ax0;
while stopping criterion not fulfilled do

k ← k + 1;
if k = 1 then

p0 ← r0;
else

τk−1 = (rT
k−1rk−1)/(rT

k−2rT
k−2);

pk = rk−1 + τk−1 pk−1;
μk = (rT

k−1rk−1)/(pT
k Apk);

xk = xk−1 + μk pk ;
rk = rk−1 − μkApk ;

return xk;

Step 1: From quadratic programs to linear equations.
A prominent solver for QPs in standard form is the primal-
dual barrier method, see e.g. (Potra and Wright 2000),
sketched in Alg. 1. This method solves a perturbed version
of the first-order necessary conditions (KKT conditions) for
QP:

Ax = b, − Qx + AT y + s = c, XS e = μe, (x, s) ≥ 0,

where X = diag(x1, . . . , xn), S = diag(s1, . . . , sn), and μ ≥ 0.
The underlying idea is as follows (we refer to (Potra and
Wright 2000; Gondzio 2012) for more details): by applying
a perturbed Newton method to the equalities in the above
system, the algorithm progresses the current solution along a
direction obtained by solving the following linear system:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0
−Q AT I
S 0 X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δx
Δy
Δs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b − Ax
c − AT y − s
μe − Xs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (1)

where e is a vector of ones. Observe that besides A and Q,
which we already have decision diagrams for, the only new
information that needs to be computed is in the form of resid-
uals in the right-hand side of the equation. By performing
two pivots, Δx and Δs can be eliminated from the system,
reducing it to the so-called normal equation:

A(Q + Θ−1)−1ATΔy = f , (2)

where Θ is the diagonal matrix Θii =
xi
si

. Once Δy is
determined, Δx and Δs are recovered from Δy as Δx =
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(Q + Θ)−1(ATΔy − g) and Δs = h − ATΔy, where h and
g are obtained from the residuals via vector arithmetic. The
reader will note that constructing the left-hand side involves
the matrix inverse (Q + Θ−1)−1. The efficiency of computing
this inverse cannot be guaranteed with ADDs, unfortunately.
Consequently, we assume that either the problem is separable
(Q is diagonal), in which case computing this inverse reduces
to computing the reciprocals of the diagonal elements (an
efficient operation with ADDs), or that we only have box con-
straints, meaning that A is a diagonal matrix, in which case
solving the equation reduces to solving (Q + Θ)Δy′ = A−1 f
and re-scaling. The general case of going beyond these as-
sumptions is omitted here for space reasons (Gondzio 2012).

The benefit of reformulating (1) into (2) can be appreciated
from the observation that (2) becomes positive-semidefinite,
which is crucial for solving this system by residuals. To
reiterate: the primal-dual barrier method solves a quadratic
program iteratively by solving one linear system (2) in each it-
eration. Constructing the right-hand side of this linear system
only requires the calculation of residuals and vector arith-
metic, which can be done efficiently with ADDs. Moreover,
this system does not require taking arbitrary submatrices of
A or Q. Hence, the primal-dual barrier method meets our
requirements. Now, let us investigate how (2) can be solved
via a sequence of residuals.

Step 2: From linear equations to residuals. To solve
(2), we employ the conjugate gradient method (Golub and
Van Loan 1996), sketched in Alg. 2. Here, the algorithm uses
three algebraic operations: (1) matrix-vector products; (2)
norm computation (rT r) and (3) scalar updates. From Corol-
lary 4, all of these operations can be implemented efficiently
in ADDs. There is, however, one challenge that remains to be
addressed. As the barrier method approaches the solution of
the QP, the iterates sk and xk approach complementary slack-
ness (xisi = 0). This means that the diagonal entries of the
matrix Θ in (2) tend to either 0 or +∞, making the condition
number of (2) unbounded. This is a severe problem for any
iterative solver, as the number of iterations required to reach
a specified tolerance becomes unbounded. To remedy this
situation, Gondzio (2012) proposes the following approach:
first, the system can be regularized to achieve a condition
number bounded by the largest singular value of A. Second,
due to the IPM’s remarkable robustness to inexact search di-
rections, it is not necessary to solve the system completely. In
practice, decreasing the residual by a factor of 0.01 to 0.0001
has been found sufficient. Finally, a partial pivoted Cholesky
factorization can be used to speed-up the convergence. That
is, perform a small number k (say 50) Cholesky pivots, and
use the resulting trapezoidal matrix as a preconditioner. More
details on this can be found in (Gondzio 2012). Gondzio
also demonstrated that this approach does lead to a practical
algorithm. Unfortunately, in our setting, constructing this pre-
conditioner requires that we query k rows of N and perform
pivots with them. This forces us to partially back down on
our requirement (**), since we need random access to k rows.
However, by keeping k small, we can guarantee the ADD in
this unfavorable regime will be kept to a minimum.

Thus, we have a method for solving QPs, implemented
solely with ADD operations, and much of this work takes full

advantage of the ADD representation (thereby, inheriting its
superiority). Intuitively, one can expect significant speed-ups
over matrix-based methods when the ADDs are compact,
e.g. , arising from structured (in a logical sense) problems.

Empirical Illustration
Our aim here is to investigate the empirical performance of
our ADD-based interior point solver. There are three main
questions we wish to investigate, namely: (Q1) in the pres-
ence of symbolic structure, does our ADD-based solver per-
form better than its matrix-based counterpart? (Q2) On struc-
tured sparse problems, does solving with ADDs have ad-
vantages over solving with sparse matrices? And, (Q3), can
the ADD-based method handle dense problems as easily as
sparse problems?

To evaluate the performance of the approach, we imple-
mented the entire pipeline described here, that is, a symbolic
environment to specify QPs, a compiler to ADDs, based on
the popular CUDD package, and the symbolic interior-point
method described in the previous section.

To address (Q1) and (Q2), we applied the symbolic IPM
on the problem of computing the value function of a family of
Markov decision processes used in (Hoey et al. 1999). These
MDPs concern a factory agent whose task is to paint two
objects and connect them. A number of operations (actions)
need to be performed on these objects before painting, each
of which requires the use of special tools, which may or may
not be available currently. Painting and connecting can be
done in different ways, yielding results of various quality, and
each requiring different tools. The final product is rewarded
according whether the required level of quality is achieved.
Since these MDPs admit compact symbolic representations,
we consider them good candidates to illustrate the potential
advantages of symbolic optimization. The computation of an
MDP value function corresponds to the following first-order
logical LP:

min.
∑

s:state(s)
v(s) , s.t. {s : state(s), a : act(a)} :

v(s) ≥ rew(s) + γ
∑

s′:state(s′)
tprob(s, a, s′)v(s′)

where s, s′, a are vectors of Boolean variables, state is a
Boolean formula whose models are the possible states of
the MDP, act is a formula that models the possible actions,
and rew and tprob are pseudo-Boolean functions that model
the reward and the transition probability from s to s′ under
the action a. We compared our approach to a matrix imple-
mentation of the primal-dual barrier method, both algorithms
terminate at the same relative residual, 10−5. The results are
summarized in Fig. 2(top).

The symbolic IPM outperforms the matrix-based IPM on
the larger instances. The most striking observation is that the
running time depends mostly on the size of the ADD, which
practically translates to scaling sublinearly in the number of
nonzeroes (nnz(A)). This is illustrated on the bottom-left of
Fig. 2, where these running times are plotted versus nnz(A)
and compared with a hypothetical linear running time with
a slope of 0.001. To the best of our knowledge, no generic
method, sparse or dense, can achieve such scaling behavior.
This answers (Q1) and (Q2) affirmatively.
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Problem Statistics Symbolic IPM Ground IPM
name #vars #constr nnz(A) |ADD| time[s] time[s]
factory 131.072 688.128 4.000.000 1819 6899 516
factory0 524.288 2.752.510 15.510.000 1895 6544 7920
factory1 2.097.150 11.000.000 59.549.700 2406 34749 159730
factory2 4.194.300 22.020.100 119.099.000 2504 36248 ≥ 48hrs.

Problem Statistics Symbolic IPM FWHT IPM
n m time[s] time[s]

212 210 8.3 18
213 211 20.2 28.2
214 212 46.5 43.9

215 213 99.2 65.7

Figure 2: Evaluations on MDP (top), with a graphical comparison (bottom-left) and compressed sensing (bottom-right).

Our second illustration concerns the problem of com-
pressed sensing (CS). That is, we are interested in recov-
ering the sparsest solution to the problem ||Ax − b||2, where
A ∈ Rm×n and n >> m where n is the signal length and m
the number of measurments. While this is a hard combinato-
rial problem, if the matrix A admits the so-called restricted
isometry property, the following convex problem (Basis Pur-
suit Denoising, or BPDN): min.x∈Rn τ||x||1 + ||Ax − b||22 re-
covers the exact solution. The matrices typically used in CS
tend to be dense, yet highly structured, often admitting an
O(n log n) FFT-style recur-and-cache matrix-vector multipli-
cation scheme, making BPDN solvers efficient. A remarkable
insight is that these fast recursive transforms are very sim-
ilar to the ADD matrix-vector product. In fact, if we take
A to be the Walsh matrix Wlog(n) which admits an ADD of
size O(log n), the ADD matrix-vector product resembles the
Walsh-Hadamard transform (WHT). Moreover, this compact
ADD is extracted automatically from the symbolic specifica-
tion of the Walsh matrix. We illustrate this in the following
experiment. We apply the Symbolic IPM to the BPDN re-
formulation of (Fountoulakis, Gondzio, and Zhlobich 2014),
with the Walsh matrix specified symbolically, recovering
random sparse vectors. We compare to the reference MAT-
LAB code provided by Fountoulakis et al. using MATLAB’s
implementation of WHT. The task is to recover a sparse ran-
dom vector with k = 50 normally distributed nonzero entries.
Results are reported in Fig. 2(bottom).

While the method does not scale as well as the hand-
tailored solution, we demonstrate that the symbolic approach
can handle dense matrices reasonably well, supporting an
affirmative answer of (Q3).

Related Work

There has been a long-standing interest in modeling lan-
guages for optimization, e.g. (Fourer, Gay, and Kernighan
1993; Wallace and Ziemba 2005). While they provide a syn-
tax for sets of objects to index LP variables, they do not
provide a high-level logical language for the constraints. Dis-
ciplined programming (Grant and Boyd 2008) enables an

object-oriented approach to constructing optimization prob-
lems, and provides a structured interface between the model
and the solver by means of which geometric properties such
as the curvature of the objective can be inferred. In contrast
to our goals, the language is also not logical, and the solver
not generic in the way we suggest. (That is, in our setting,
high-level logical constraints are all that are expected from
the user.) In more recent work, (Diamond and Boyd 2015)
also advocate matrix-free methods for optimization problems
expressed in human-readable forms. However, they assume
that the user has already analyzed her model and identified
that it could be broken down into efficient operations. They
provide the environment to implement these operations in a
way in which the solver can exploit them. In that sense, their
approach also differs from ours, where the user provides her
logical constraints, and the solver takes it from there.

First-order logical representations for mathematical pro-
grams are also considered in (Gordon, Hong, and Dudík 2009;
Kersting, Mladenov, and Tokmakov 2015; Cussens 2015).
However, the rely on matrix-vector normal forms for solving
them, whether lifted or not, and do not employ ADDs.

The efficiency of ADDs for matrix-vector algebra was
established in (Clarke, Fujita, and Zhao 1996). In particular,
the use of ADDs for compactly specifying (and solving)
Markov decision processes (i.e. representing transitions and
rewards as Boolean functions) was popularized in (Hoey et al.
1999); see (Zamani et al. 2013; Cui and Khardon 2016) for
recent offerings. We differ fundamentally from these strands
of work in that we are advocating the realization of solution
methods for generic optimization problems using ADDs,
which (surprisingly) has never been studied in great detail
to the best of our knowledge. Therefore, we call our line of
research as symbolic numerical optimization.

Conclusions

A long-standing goal in machine learning and AI, which is
also reflected in the philosophy on the democratization of
data, is to make the specification and solving of real-world
problems simple and natural, possibly even for non-experts.
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To this aim, we considered first-order logical mathematical
programs that support individuals, relations and connectives,
and developed a new line of research of symbolically solving
these programs in a generic way. In our case, a matrix-free
interior point method was argued for. Our empirical results
demonstrate the flexibility of this research direction. The
most interesting avenue for future work is to explore richer
modeling languages paired with more powerful circuit repre-
sentations.
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