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Abstract

Conditional independence (CI) testing is an important tool
in causal discovery. Generally, by using CI tests, a set of
Markov equivalence classes w.r.t. the observed data can be
estimated by checking whether each pair of variables x and
y is d-separated, given a set of variables Z. Due to the curse
of dimensionality, CI testing is often difficult to return a re-
liable result for high-dimensional Z. In this paper, we pro-
pose a regression-based CI test to relax the test of x ⊥ y|Z
to simpler unconditional independence tests of x − f(Z) ⊥
y − g(Z), and x − f(Z) ⊥ Z or y − g(Z) ⊥ Z under the
assumption that the data-generating procedure follows addi-
tive noise models (ANMs). When the ANM is identifiable,
we prove that x − f(Z) ⊥ y − g(Z)⇒ x ⊥ y|Z. We also
show that 1) f and g can be easily estimated by regression,
2) our test is more powerful than the state-of-the-art kernel
CI tests, and 3) existing causal learning algorithms can infer
much more causal directions by using the proposed method.

Introduction

Statistical independence and conditional independence (CI)
are important concepts in statistics, artificial intelligence
(AI) and other related fields. In causal discovery, we con-
sider such a scenario: let X , Y and Z denote sets of random
variables, if the CI between X and Y given Z holds, denoted
by X ⊥ Y |Z, then it means that given Z, further know-
ing X (or Y ) does not provide any additional information
about Y (or X), thus we can deduce that X and Y have no
directed causality. Independence and CI play a central role
in causal discovery. Generally speaking, the CI relationship
X ⊥ Y |Z allows us to separate X − Y when construct-
ing a probabilistic model for P (X,Y, Z), which results in a
parsimonious representation. By using CI tests, the PC algo-
rithm (Spirtes, Glymour, and Scheines 2000), for example,
can determine a set of Markov equivalence classes (Pearl
2009).

However, CI testing is much more difficult than uncon-
ditional independence testing (Bergsma 2004). For CI tests,
traditional methods either focus on the discrete cases (the
conditional set can be combined into a variable according
to the corresponding conditional probability table, hence it
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is easier to handle discrete cases), or impose simplified as-
sumptions to deal with the continuous cases. For example,
under the assumption of Gaussian variables with linear de-
pendence relationships, partial correlation can be used to
test CI (Baba, Shibata, and Sibuya 2004). In such a situa-
tion, X ⊥ Y |Z reduces to zero partial correlation or zero
correlation between X and Y given Z, which can be easily
tested. Nevertheless, nonlinearity and non-Gaussian noises
are popular in practice, hence this assumption is not always
reasonable, and often leads to incorrect results.

Most existing methods are based on explicit estimation
of conditional densities or their variants, or discretize the
conditional set Z to a set of bins, and transform CI to un-
conditional independence in each bin. Due to the curse of
dimensionality, the conditional set becomes very large, in-
evitably the required sample size increases dramatically. For
example, in (Su and White 2008) the authors used a charac-
terization of CI, PX|Y Z = PX|Z , to determine CI by mea-
suring the distance between estimates of conditional densi-
ties. However, accurate estimation of conditional densities
or related quantities is not easy, which deteriorates the test-
ing result, especially when the conditional set is too large.

Generally speaking, CI testing is a nontrivial task, and
the “curse of dimensionality” of the conditional variable Z
makes it even more challenging. When Z takes a finite num-
ber of values {z1, ..., zk}, then X ⊥ Y |Z iff X ⊥ Y |Z = zi
for each value zi. Given a sample of size n, even if the data
points are distributed evenly on the values of Z, we must
show the independence within each subset of the sample
with the same Z value by using only approximately n/k
points in each subset. When Z is real-valued and Pz is con-
tinuous, the observed values of Z are almost surely unique.
To extend the above procedure to the continuous cases, we
must infer conditional independence using nonidentical but
neighboring values of Z, where “neighboring” is quantified
by some distance metric. Finding neighboring points be-
comes more difficult as the dimensionality of Z grows. To
approximate CI to unconditional independence between X
and Y in each subset, we need a large number of subsets of
Z. However, with too many subsets, the subsets may have
not enough data points to evaluate independence.

Recently, kernel-based tests were proposed for condi-
tional and unconditional independence testing. With the
ability to represent high order moments, mapping of vari-
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ables into reproducing kernel Hilbert spaces (RKHSs) al-
lows us to infer properties of distributions, such as indepen-
dence and homogeneity (Gretton et al. 2006). In (Fukumizu
et al. 2007), the authors proposed to use the Hilbert-Schmidt
norm of the conditional cross covariance operator, which is
a measure of conditional covariance of the images of X and
Y under the corresponding functions from RKHSs. When
the RKHSs are characteristic kernels, the operator norm is
zero iff X ⊥ Y |Z. We denote this method by CIPERM . A
more recent method (denoted by KCIT in short) proposed
in (Zhang et al. 2011), uses partial association of regression
functions to measure CI, X ⊥ Y |Z iff for all f ∈ L2

XZ
and g ∈ L2

Y (L2
XZ and L2

Y denote the spaces of square
integrable functions of (X,Z) and Y , respectively) such
that E(f̃ g̃) = 0 where f̃(X,Z) = f(X,Z) − rf (Z) and
g̃(Y, Z) = g(Y )− rg(Z) (rf , rg ∈ L2

Z are regression func-
tions). This method relaxes the spaces of functions f , g, rf
and rg to RKHSs, corresponding to kernels defined on these
variables. Compared to discretization-based CI testing meth-
ods, kernel methods exploit more complete information of
the data and involve less random error. It was showed that
causal learning methods based on kernel methods can dis-
cover more accurate causalities.

In causal discovery, the mechanism of data generation
is often assumed. A widely used model is the additive
noise model (ANM) (Shimizu et al. 2006; Hoyer et al.
2009; Peters, Janzing, and Schölkopf 2011), because many
real-world data are regarded to be generated by following
ANM (Peters, Janzing, and Schölkopf 2011). Concretely,
ANM assumes that the observed variables follow a directed
acyclic graph (DAG) with the structure function: Y =
f(X) + ε where X is the parent of Y and ε is a random
noise term that X ⊥ ε. So CI tests in ANM not only use the
three sets of variables X,Y and Z, but also consider random
noise that may be small but really exists.

In this paper, we try to develop a new CI testing method
for causality discovery from the perspective of ANM. Con-
sider a set of variables Z and other two variables x and
y, we show that if the data-generating procedure follows
ANM, then we can relax X ⊥ Y |Z to two conditions
x − f(Z) ⊥ y − g(Z), and x − f(Z) ⊥ Z or y − g(Z) ⊥
Z, where functions f and g are estimated by regression.
When the ANM is identifiable (Zhang and Hyvärinen 2009;
Peters, Janzing, and Schölkopf 2011), we further prove that
x−f(Z) ⊥ y−g(Z) implies x−f(Z) ⊥ Z or y−g(Z) ⊥
Z, which means x − f(Z) ⊥ y − g(Z) is sufficient to sup-
port X ⊥ Y |Z. We also show that f and g can be easily cal-
culated independently by minimizing the residuals of (x, Z)
and (y, Z). With this result, we propose the regression-based
conditional independence test method, which is denoted by
RCIT. RCIT provides a way to relax CI tests to simpler un-
conditional independence tests. Finally, we apply RCIT to
causality discovery.

It is well known that existing causal discovery methods
based on CI tests usually return a set of Markov equiva-
lence classes. In our RCIT, x − f(Z) ⊥ y − g(Z) and
x − f(Z) ⊥ Z or y − g(Z) ⊥ Z implies Z → x or y.
This means that causal discovery methods (e.g. the PC algo-

rithm) using RCIT for CI testing can detect more causal di-
rections (details are in the next section). In our experiments,
we show that on synthetic datasets the proposed method is
more powerful than state-of-the-art approaches, and it can
accurately estimate the distribution of the test statistic un-
der the null hypothesis when the dimensionality of Z grows
to produce a well-calibrated test. We also validate the prac-
ticability of the new test for inferring CI relationships on
real-world datasets.

Regression-based conditional independence

test (RCIT)

Generally, ANM is defined as a tuple (S, P (X)), where
S = {S1, S2, · · · , Sn} is a collection of n equations, Si :
xi=fi(paxi)+εi, i=1, 2, · · ·, n, where paxi corresponds to
the set of direct parents of xi in a DAG G, the noise vari-
ables εi have a strictly positive density (with respect to the
Lebesgue measure) and are i.i.d., and εi ⊥ paxi . ANM re-
flects the data-generating processes of X in the DAG G. We
say a ANM is identifiable if it is asymmetrical in cause and
effect and is capable of distinguishing between them. In fact,
ANM is generally identifiable in nonlinear cases, all the non-
identifiable cases are summarized in (Zhang and Hyvärinen
2009) (let the invertible mapping in Post-Nonlinear causal
model (Zhang and Hyvärinen 2009) be identity mapping).

We consider such a scenario: given a DAG G where the
data-generating procedure follows ANM, there are two ran-
domly selected nodes xi and xj , we want to test whether
xi and xj are conditionally independent given a set of vari-
ables Z. By default, throughout this paper we assume that
all variables follow ANM.

In what follows, we present the theoretical results for
characterizing CIs (i.e., xi ⊥ xj |Z) from the perspective
of ANM, which underlie the proposed new method.
Theorem 1. If xi and xj are neither directly connected nor
unconditionally independent, then there must exist a set of
variables Z and two functions f and g such that xi−f(Z) ⊥
xj − g(Z), and xi − f(Z) ⊥ Z or xj − g(Z) ⊥ Z.

Proof. Without loss of generality, assume that xj is an an-
cestor of xi, and let paxi denote the set of direct parents of
xi. Following the data-generating process of ANM, we have
xi = f(paxi

)+εi and εi ⊥ paxi
, i.e., xi−f(paxi

) ⊥ paxi
.

For the reason that εi is an exogenous additive noise that
is independent of xi and all its non-descendant nodes, we
have εi ⊥ (xj , paxi

). Thus, given an arbitrary function g,
we have xi − f(paxi

) ⊥ xj − g(paxi
). Similarly, if xi is

an ancestor of xj , or xi and xj share common ancestors, we
can also obtain xi−f(paxi) ⊥ (paxi , xj−g(paxi)). There-
fore, let paxi (or paxj ) be Z, we complete the proof of this
theorem.

Actually, Z = paxi or Z = paxj is just a sufficient condi-
tion to complete Theorem 1. In many cases, we need not re-
strict Z = paxi

or Z = paxj
to meet xi−f(Z) ⊥ xj−g(Z)

and xi−f(Z) ⊥ Z or xj−g(Z) ⊥ Z. For example, given a
DAG of x1 → z1 → x2 and z2 → x2, if x2 can be expressed
by x2 = f1(z1) + f2(z2) + ε, let Z = z1 and g be an arbi-
trary function, we can also obtain x2 − f1(Z) ⊥ x1 − g(Z)
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and x2 − f1(Z) ⊥ Z. In what follows, we show that xi and
xj are independent given such a Z.

Theorem 2. Given two variables xi and xj , there is a set of
variables Z and two functions f and g such that xi−f(Z) ⊥
xj − g(Z), and xi − f(Z) ⊥ Z or xj − g(Z) ⊥ Z, if
the corresponding ANM is 1) linear, or 2) identifiable and
faithfulness then xi ⊥ xj |Z.

Proof. As I(xi;xj |Z)
=I(xi − f(Z); y − g(Z)|Z)
= I(xi − f(Z); (xj − g(Z), Z))− I(xi − f(Z);Z)
= I(xj − g(Z); (xi − f(Z), Z))− I(xj − g(Z);Z).
In linear case, if xi − f(Z) ⊥ xj − g(Z) and xi − f(Z) ⊥
Z, then I(xi − f(Z); (xj − g(Z), Z)) = 0 and I(xi −
f(Z);Z) = 0, hence I(xi;xj , Z) = 0, i.e., xi ⊥ xj |Z. Sim-
ilarly, we can also deduce I(xj − g(Z); (xi − f(Z), Z)) −
I(xj − g(Z);Z) = 0 in the similar conditions. In the case
that ANM is identifiable and faithfulness, let εi = xi−f(Z),
if xi−f(Z) ⊥ Z, then εi ⊥ Z. Assume that xi �⊥ xj |Z, then
there must be at least one path P from xi to xj , or xj to xi,
and P must via εi. Hence, εi �⊥ xj , as εi ⊥ Z ⇒ εi ⊥ g(Z),
we have εi �⊥ xj − g(Z), that is contradictory.

In (Zhang and Hyvärinen 2009), the authors showed that
only very carefully chosen parameters can lead to a non-
identifiable ANM in nonlinear cases. Therefore, Theorem 2
means that xi − f(Z) ⊥ xj − g(Z) and xi − f(Z) ⊥ Z
or xj − g(Z) ⊥ Z are generally sufficient to support
xi ⊥ xj |Z. Combining Theorem 1 and Theorem 2, we can
see that the CI test of xi ⊥ xj |Z can be replaced by two
unconditional independent tests xi−f(Z) ⊥ xj−g(Z) and
xi − f(Z) ⊥ Z or xj − g(Z) ⊥ Z.

Therefore, according to the above two theorems, we can
relax a CI test to at most three unconditional independent
tests. In causal discovery, we need at most 3 ∗∑|S|

i=1 C
i
|S|

(S denotes the maximum conditional set, Z ∈ S) uncondi-
tional independent tests to determine whether xi and xj are
CI in the worst case, while the existing CI testing methods
need

∑|S|
i=1 C

i
|S| CI tests. In what follows, we try to further

simplify the conditions.
Let us consider the scenario that the data-generating pro-

cedure follows nonlinear ANM. Inspired by plenty of empir-
ical results, we find that in practice only one unconditional
independence test is enough. Thus, we have the following
conjecture.

Conjecture 1. Given a set of variables Z, two variables xi

and xj and two functions f and g such that xi − f(Z) ⊥
xj − g(Z), a necessary condition for xi �⊥ xj |Z is that the
corresponding ANM is not identifiable1.

To rationalize this conjecture, without loss of generality
we assume that xi is the ancestor (or parent) of xj . If xi −
f(Z) ⊥ xj − g(Z) and xi − f(Z) ⊥ Z or xj − g(Z) ⊥ Z,
then we have xi ⊥ xj |Z according to Theorem 2. If xi −
f(Z) �⊥ Z and xj − g(Z) �⊥ Z, we can generate two nodes
vi and vj to extend the corresponding DAG with vi = xi −

1We found a flaw in the proof of this result given in an earlier
version, and therefore, here it is treated as a conjecture.

f(Z) + εi and vj = xj − g(Z) + εj where εi and εj are
additive noise generated randomly, thus we have vi �⊥ Z
and vj �⊥ Z. If xi − f(Z) ⊥ xj − g(Z), then we obtain
vi ⊥ vj .

Combining vi �⊥ Z and vj �⊥ Z with vi ⊥ vj , we can
deduce that vi, Z and vj form a V-structure (Cai, Zhang, and
Hao 2013), i.e., both vi and vj are the parents of Z. Recall
that vi = xi − f(Z) + εi and vj = xj − g(Z) + εj imply
Z → vi and Z → vj respectively, then there are two cases:
1) the distribution is faithful to the original DAG with added
edges Z → vi or Z → vj , 2) the distribution is neither
faithful to the original DAG with added edges Z → vi nor
that with added edges Z → vj such that vi and vi can be
expressed by a function of the other nodes but Z.

Therefore, in case 1, Z can be both the cause and
the effect of vi (or vj). According to the mechanism of
ANM (Hoyer et al. 2009), this can occur only in case that
the ANM is not identifiable. All non-identifiable cases of
ANM (let the invertible mapping in Post-Nonlinear causal
model (Zhang and Hyvärinen 2009) be identity mapping)
are summarized in (Zhang and Hyvärinen 2009), and they
showed that only very carefully chosen parameters can lead
to a non-identifiable ANM in nonlinear cases. That is, if the
ANM is not identifiable, then the ANM is generally linear,
strictly speaking, the causal relationship between vi and z is
linear, i.e., vi = xi− f(Z)+ εi where f is a linear function.
In case 2, if both Z → vi and Z → vj can be removed, con-
sidering that vi = xi− f(Z)+ εi and vj = xj − g(Z)+ εj ,
then xi (xj) is the parent of vi (vj). As xi is the ancestor (or
parent) of xj , vi cannot be independent of vj .

Thus, if xi − f(Z) ⊥ xj − g(Z) and xi − f(Z) �⊥ Z and
xj−g(Z) �⊥, the corresponding ANM is not identifiable and
generally we have either f or g is linear.

For example, consider a DAG of x→ (y, Z) and Z → y,
where Z = f(x)+εz (f is a linear function) and y = h(x)+
g(Z)+εj . Then x−f(Z) = εz is independent of y−g(Z) =
h(x) + εy . In practice, even in such a case, it is not easy to
find appropriate f and g to guarantee x− f(Z) ⊥ y− g(Z).

In the context of nonlinear ANM, for two arbitrary vari-
ables, if they are not directly connected, we can surely
find two nonlinear functions f and g to meet the condition
xi − f(Z) ⊥ xj − g(Z) according to Theorem 1. As shown
in Theorem 3, xi−f(Z) ⊥ xj−g(Z) covers xi−f(Z) ⊥ Z
or xj − g(Z) ⊥ Z, which leads to xi ⊥ xj |Z according to
Theorem 2. Thus, instead of testing xi ⊥ xj |Z, we need
only to check whether there exist two nonlinear functions f
and g such that xi − f(Z) ⊥ xj − g(Z).

A consequent advantage is that it is easy to find the tar-
get functions independently. We need only do nonlinear
regression to find the minimum residuals of (xi, Z) and
(xj , Z) respectively. Moreover, in causal discovery, causal
directions are usually detected by determining V-structure
and consistent propagation (Pearl 2009). For the reason that
xi − f(Z) ⊥ xj − g(Z) implies xi − f(Z) ⊥ Z or
xj − g(Z) ⊥ Z according to Theorem 3, RCIT can cap-
ture more information about causal directions than deter-
mining only V-structure. This is because in nonlinear ANM,
if x − f(Z) ⊥ Z, it rarely occurs that Z contains a child
of x, which was also suggested in (Mooij et al. 2009):
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whenever {z1, ..., zl} contains a child of x, independence
of Residuals({z1, ..., zl}, x) (fits x as a function of Z and
returns the residuals) and {z1, ..., zl} is rejected.

Compared with CI tests, RCIT can detect more causal di-
rections even though there is no V-structure contained in
the corresponding DAG. Consider a simple example, give
a DAG: x1 ← x2 → x3, it is easy to find two functions f
and g such that x1−f(x2) ⊥ x2 and x3−g(x2) ⊥ x2, so we
can infer x1 ← x2 and x2 → x3. However, it is difficult for
CI tests to distinguish the three structures x1 ← x2 → x3,
x1 ← x2 ← x3 and x1 → x2 → x3, because all of them fit
the observed conditional and unconditional independence,
though obviously with completely different structures.

Causal discovery based on RCIT

In this section, we present a new method of causality discov-
ery based on the PC algorithm and RCIT. For convenience,
the method is called PCRCIT , which means PC algorithm
based on RCIT. PCRCIT is developed based on the PC algo-
rithm, in which we use RCIT to replace CI, and use existing
methods (e.g., KCIT (Zhang et al. 2011)) to test uncondi-
tional independence.

We perform RCIT simply by estimating f̃ of f and g̃ of g,
then we can test whether x− f̃(Z) ⊥ y− g̃(Z), x− f̃(Z) ⊥
Z or y − g̃(Z) ⊥ Z. If there is sufficient priori knowledge
showing that the corresponding data-generating procedure
follows nonlinear ANM, we can test only x − f̃(Z) ⊥ y −
g̃(Z) according to Conjecture 1.

Our method is outlined in Algorithm 1. The first step
(Line 1 – 6) is to construct the causal skeleton by employing
RCIT. The procedure follows the PC algorithm. That is, we
form the complete undirected graph G on the set X of vari-
ables, then check whether every two variables xi and xj are
conditional independent, given a set Z of variables, while
saving the results of independence (e.g. recording that Z is
the ancestor or parent of xi if xi − f(Z) ⊥ Z).

After obtain the causal skeleton, we orient the edges ac-
cording to the results of independence and do consistent
propagation (Line 7).

Finally, as a refinement step, we deal with the remaining
unoriented edges by detecting V-structures and doing con-
sistent propagation as in the PC algorithm. That is, to check
whether a local structure xi−xj−xk can form a V-structure.
If it is, orient it as xi → xj ← xk (Line 8).

Note that in the case of nonlinear ANM, the performance
of testing x − f̃(Z) ⊥ y − g̃(Z), x − f̃(Z) ⊥ Z or
y − g̃(Z) ⊥ Z is slightly different from that of testing only
the first term. For example, the ground true is xi �⊥ xj |Z,
let a and b denote the error rate of regression of f and
g respectively. If we assume that unreliable f̃ (or g̃) will
cause xi − f̃(Z) ⊥ xj − g̃(Z)|Z and xi − f̃(Z) ⊥ Z (or
xj − g̃(Z) ⊥ Z), then the error rate of RCIT of testing 2 (or
3) terms is a ∗ b, while the error rate of RCIT of testing 1
term is a + b. However, different assumptions may lead to
different results, which is difficult to generalize. According
to our observation, in many cases, the two kinds of RCIT
testing are very close to each other in performance.

Algorithm 1 PC algorithm based on RCIT (PCRCIT )

Input: variables set X = {x1, ..., xn}, threshold k.
Output: partial DAG G.

1: Form the complete undirected graph G on the variables
set X .

2: for ∀xi, xj ∈ X and adjacent in G do
3: if ∃Z ∈ X \ {xi, xj} and (|Z| < k) such that xi ⊥

xj |Z (estimated by RCIT) then
4: delete edge xi − xj from G and save the results

of independence (e.g. record ‘Z to xi’ if xi − f(Z) ⊥
Z).

5: end if
6: end for
7: orient the edges of skeleton according the results of in-

dependence and then do consistent propagation.
8: orient the remaining un-oriented edges and do consis-

tent propagation.

Performance evaluation

We apply the proposed method to both synthetic and real
data to evaluate its practical performance and compare it
with KCIT, CIPERM and partial correlation and their ap-
plications of PC algorithm. In our implementation, we per-
form the regression using Gaussian Processes (Rasmussen
2006) and the unconditional independence tests of RCIT us-
ing KCIT (Zhang et al. 2011).

Effect of Z’s dimensionality and sample size

We first examine how the probabilities of Type I (where
the CI hypothesis is incorrectly rejected) and Type II er-
rors (where the CI hypothesis is not rejected although being
false) of RCIT change along with the size of the condition-
ing set Z (D = 1, 2, ..., 5) and the sample size (n = 100 and
200) in particular situations by simulation. Here we consider
two cases as follows.

In Case I, only one variable in Z, denoted by Z1, is ef-
fective, i.e., other conditioning variables are independent of
X , Y , and Z1. We generate X and Y from Z1 according to
the ANM data generating procedure: they are generated as
f(g(Z1))+ε where f and g are randomly selected from sin,
cos, tanh, square and cubic functions and are different for X
and Y , and ε ∼ U(−0.2, 0.2). Hence, X ⊥ Y |Z holds. In
our simulations, Zi is i.i.d. uniform U(0, 1).

In Case II, all variables in the conditioning set Z are ef-
fective in generating X and Y . We first generate the in-
dependent variables Zi, then X and Y are generated as∑

i fi(gi(Zi)) + ε where fi and gi are randomly selected
from sin, cos, tanh, square and cubic functions.

We compare RCIT with KCIT, CIPERM (with the stan-
dard setting of 500 bootstrap samples) and partial correlation
test in terms of both types of errors. The significance level is
fixed at 0.01. Note that for a good testing method, the prob-
ability of Type I error should be as close to the significance
level as possible, and the probability of Type II error should
be as small as possible. To see how large they are for RCIT,
we increase the dimensionality of Z and the sample size n,
and repeat the tests 1000 random times.
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We calculate Type I and II errors like this: for example
D = 3, in Case I x should be independent of y given (Z1),
(Z1, Z2), (Z1, Z3) and (Z1, Z2, Z3), then Type I error =1-
the number of CIs/4. On the other side, x is independent
of y given ∅, (Z2), (Z3) and (Z2, Z3), then Type II error =
the number of CIs/4. Similarly, we can calculate Type I
and II errors in Case II.

We first examine the Type I error in both case I and II.
As shown in Fig. 1(a) and 1(c), the Type I error of RCIT is
close to the significance level, and as D increases, the prob-
ability of Type I error slightly increases. One can see that
in Case I, even when D = 3, the probability of Type I er-
ror of the other three methods is clearly larger than the sig-
nificance level. Furthermore, KCIT and CIPERM are very
sensitive to D. The curve of partial correlation tends to be
a straight line parallel to the x axis, for the reason that all
the experimental data follow nonlinear generating procedure
aforementioned. A significant observation is that increasing
sample size (from 100 to 200) does not reduce the Type I
errors of the four methods.

In many scenarios, two disjoined variables are CI given a
set of variables, thus a good test is expected to have a small
probability of Type II error. As shown in Fig. 1(b) and 1(d),
RCIT obtains clearly the best result. As D increases, the
probability of Type II error always increases. Intuitively, this
is reasonable: due to the finite sample size effect, as the con-
ditioning set becomes larger and larger, X and Y tend to be
considered as conditionally independent. On the other hand,
as the sample size increases from 100 to 200, the probabil-
ity of Type II error quickly approaches zero. In particular,
as shown in Fig. 1(b), the curves of RCIT under 200 sam-
ple size keep close to zero. In contrast to the case of Type I
error, the increasing sample size (from 100 to 200) can dra-
matically reduce Type II error.

Note that KCIT and RCIT have very similar performance
when the dimensionality of Z is 1 and 2, which means that
when a given DAG is very small, the two methods should
perform similarly in discovering causal skeleton. However,
RCIT can learn more information about the causal direc-
tions, which will be discussed in the next subsection.

Performance in causal discovery

CI tests are frequently used in causal inference where one
assumes that the true causal structure of n random vari-
ables x1, ..., xn can be represented by a directed acyclic
graph (DAG) G. More specifically, the causal Markov con-
dition assumes that the joint distribution satisfies all CIs
that are imposed by the true causal graph (note that this is
an assumption about the physical generating process of the
data, not only about their distribution). The constraint-based
methods like the PC algorithm make additional assumption
of faithfulness (i.e., the joint distribution does not allow any
CIs that are not entailed by the Markov condition) and re-
cover the graph structure by exploiting the (conditional) in-
dependence that can be found in the data. Obviously, this is
only possible up to Markov equivalence classes, which are
sets of graphs that impose exactly the same independence
and CIs. Hence, the PC algorithm based on existing CI test
methods orients causal directions by finding V-structure and
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Figure 1: The probabilities of Type I and Type II errors ob-
tained by simulation in various situations. Top: Case I (only
one variable in Z is effective to X and Y ). Bottom: Case II
(all variables in Z are effective).

consistent propagations (Pearl 2009). In our experiments, we
show that the PC algorithm based on RCIT can reveal much
more causal directions as mentioned above.

We generate data from a random DAG G. In particular,
we sample four random variables x1, ..., x4 and allow arrows
from xi to xj only for i < j. With probability 0.5 each pos-
sible arrow is either present or absent. The root variables are
generated by N(0, 1) and the leaf variables xi are generated
by f(g(

∑
i fi(gi(paxi

))))+ ε where f , g, fi and gi are ran-
domly selected from sin, cos, tanh, square and cubic func-
tions and are different for X and Y , and ε ∼ U(−0.2, 0.2)
independent across paxi . For significance level 0.01 and
sample sizes between 25 and 400 we simulate 1000 DAGs,
and evaluate the performance of different methods on dis-
covering the causal skeleton and PDAG (including identifi-
able causal directions).

For the reason that RCIT and KCIT work significantly
better than CIPERM and partial correlation as shown in
Fig. 1 (for the performance comparison between KCIT,
CIPERM and partial correlation in PC, see (Zhang et al.
2011)), here we compare PCRCIT with PC based on KCIT
(denoted by PCKCIT ) for performance evaluation. To the
best of our knowledge, in generic cases KCIT outperforms
the other existing methods in term of discovering causality
with PC when the input data are continuous.

As shown in Fig. 2(a), we can see that when the sam-
ple size is small (e.g. less than 200), PCRCIT performs
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significantly better than PCKCIT . As the sample size in-
creases, the performance of PCKCIT tends close to that of
PCRCIT . When the sample size up to 400, the F1 curves
of PCRCIT and PCRCIT tend to overlap, but the former
is still slightly (about 0.016) better than that of the latter.
That is, although both RCIT and KCIT utilize regression,
PCRCIT performs significantly better than PCKCIT in term
of discovering causal skeleton when the sample size is small,
which is the frequently-encountered case in reality. Obvi-
ously, our method is advantageous over the existing CI tests
where a larger conditional set with a smaller sample will al-
ways lead to an incorrect conclusion, while in our method
regression with unconditional test can perform significantly
better.

We also evaluate the two methods in discovering PDAG.
The results are presented in Fig. 2(b). We can see that
PCRCIT achieves the best result in all cases, though the
performance of PCKCIT in discovering causal skeleton is
very close to that of PCRCIT when the sample size is large
enough. The reason is that PCKCIT orients causal direc-
tions only based on V-structures and consistent propaga-
tions (Pearl 2009), in other words, returns only a set of
Markov equivalence classes, while PCRCIT can uncover
more causal directions by checking whether x− f(Z) ⊥ Z.
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(b) Discovering PDAG

Figure 2: Performance comparison between PCRCIT and
PCKCIT for various sample sizes in term of discovering (a)
causal skeleton and (b) PDAG.

Performance in causal direction inference We apply
PCRCIT to the data set presented in (Mooij et al. 2009),
which was generated following ANM w.r.t. a DAG con-
sisting seven variables as shown in Fig. 3(a). For per-
formance comparison in discovering causal direction, we
choose two similar skeletons reconstructed by PCRCIT and
PCKCIT with 1000 samples, which are shown in Fig. 3(b)
and Fig. 3(c). We can see that all the causal edges discover-
ing by PCRCIT are correct. However, as shown in Fig. 3(c),
the directions of edges 2→4, 6→7 and 6→5 are incorrectly
inferred by PCKCIT . By taking the advantage of RCIT,
existing constraint-based methods (e.g. the PC algorithm)
can greatly improve the performance in causal discovery as
RCIT helps to break the Markov equivalence classes.
Graphical modeling from medical data We finally apply
RCIT to a real-word dataset used in a previous work (Fuku-
mizu et al. 2007). The data consists of three variables, crea-

(a) (b) (c)

Figure 3: Performance comparison in causal direction in-
ference. (a) ground truth causal model; (b) reconstructed
DAG based on PCRCIT ; (c) reconstructed DAG based on
PCKCIT . Here, the red arrows indicate error directions.

.

tinine clearance (C), digoxin clearance (D), and urine flow
(U ). These were taken from 35 patients, and analyzed by
graphical models in (Edwards 2012). Based on medical
knowledge, D should be independent of U when control-
ling C, i.e., D ⊥ U |C is known as the ground truth. The
results are presented in Table 1. We can see that D ⊥ U |C
is strongly affirmed by using RCIT, while is not found by
using partial correlation.

Table 1: Results on real medical data.

Methods on testing D ⊥ U |C P -value
RCIT 0.1827

part.corr. 0.0037

Conclusion

In this paper, we propose a novel regression-based con-
ditional independence testing approach based on additive
noise model. In contrast to the existing CI testing methods,
it makes use of the characterization of conditional indepen-
dence in term of residuals (or exogenous noise) between
variables. We show that once the causal process is assumed,
the general CIs can be replaced by some weaker conditions.
We relax the test of x ⊥ y|Z to simpler unconditional inde-
pendence tests of x−f(Z) ⊥ y−g(Z), and x−f(Z) ⊥ Z or
y−g(Z) ⊥ Z under the assumption that the data-generating
procedure follows ANM. When the ANM is identifiable, we
prove that x− f(Z) ⊥ y − g(Z)⇒ x ⊥ y|Z. Compared to
the exiting methods, our method is less sensitive to the di-
mensionality of Z. Experiments on both simulated and real
world data show that the new method outperforms the exist-
ing techniques in discovering causality.
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