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Abstract

In this paper, we propose an approach to ensure the diagnos-
ability of a partially controllable system. Given a model of
correct and faulty behaviors of a partially observable discrete
event system, equipped with a set of elementary actions that
do not intertwine with autonomous events, we search a di-
agnosability plan, i.e., a sequence of applicable actions that
leads the system from an initial belief state (a set of poten-
tially current states) to a diagnosable belief state, in which the
system is then left to run freely. This helps in reducing the di-
agnosis interaction with running systems and can be applied,
e.g., on the output of a repair plan, like in power networks.
The two successive stages of this approach keep diagnos-
ability planning, including diagnosability tests, in PSPACE in
comparison to the EXPTIME test for the more complex ac-
tive diagnosability used usually in such cases. For this, we
propose to construct incrementally the twin plant structure of
the given system and to exploit its parts already constructed
while testing the candidate plans and constructing its next
parts. This helps in pruning the twin plant constructions and
many non-diagnosability plan tests. We have created a special
benchmark and tested three proposed methods, according to
the recycling level of twin plants construction, with one cost
function used for plan optimality and an optional heuristics.

Introduction

In the recent years, discrete event systems (DES) have been
widely used to model and reason about large and complex
systems because of their simplicity and ability to represent
at a certain abstraction level real-world problems in various
domains (Cassandras and Lafortune 2008). These systems
are usually only partially observable and often subject to
faults. In this context, diagnosability (the property that the
faults can always be detected and identified (Sampath et al.
1995)) is an important property to guarantee.

We are interested in the problem of ensuring diagnosabil-
ity of a partially observable DES. Our setting is different
from the classical literature (cf. Section on Related Work).
We assume that the system is partially controllable through
“actions” that can change its state, but we want to minimize
the interactions between the controller and the system, e.g.,
in an electrical power system, to reduce the outage time and
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the wear of expensive equipment. To this end, we assume
that only one sequence of actions (a plan) is allowed to be
performed on a paused system in order to bring it in a di-
agnosable state and let it run freely after that. Our problem
therefore translates as follows: find a plan that leads the sys-
tem from an initial given belief state to a belief state where
diagnosability holds again. Typically, the initial belief could
be the output of a previous operation like a repair plan fol-
lowing a fault occurrence identified thanks to previous diag-
nosability property, but suffering thus in general from uncer-
tainty and from being different from the initial nominal state
for which diagnosability was ensured by design.

We provide a formal definition of Diagnosability Plan-
ning. We analyze the problem and show that it is PSPACE-
COMPLETE, compared to EXPTIME-COMPLETENESS of ac-
tive diagnosability (where control is authorized during ex-
ecution (Haar et al. 2013)). Then we propose a method to
solve it: while searching for a plan, we build a twin plant
(Jiang et al. 2001; Yoo and Lafortune 2002) to verify that the
current belief state is diagnosable and we show how the twin
plant constructed for a belief state can be partially reused for
the diagnosability test of the next one and also prune use-
less plan tests. We present experimental results on a scalable
benchmark. Finally we present related work and conclude
with perspectives for future research.

Diagnosability Planning in DES

Discrete Event Systems

This work is done in the context of DES. We assume that the
system runs in two distinct modes that do not intertwine: the
active one, when the system runs freely, i.e., its states are
changed autonomously through partially observable transi-
tions without any controlled exogenous event, and the reac-
tive one, in which only feasible exogenous actions are ap-
plied to change the system state through reactive transitions.
Definition 1. A Controllable Labeled Transition System
(CLTS) is a tuple G = 〈Q,Σ, δ, I〉, with Σ = A∪E , where:
Q is a finite set of states; E is a finite set of events; A is a
finite set of actions; δ ⊆ Q×Σ×Q is the (active for labels
in E , reactive for labels in A) transition relation; I ⊆ Q is
the initial belief state.

E is partitioned into three finite sets: Σo of observable cor-
rect events, Σu of unobservable correct events and Σf of un-
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observable faulty events. We suppose that every state in Q is
actively reachable from a state in I . We assume complete-
ness for reactive transitions, i.e., every action is applicable
in every state (which can be easily made by modeling every
action missing in a state q as a loop transition in q).
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Figure 1: Illustrative example of a CLTS

Figure 1 shows a CLTS that comprises 9 states with
I = {1n, 2n, 3n, 4n, 5n}, A = {α, β, γ}, Σf = {f},
Σo = {a, b, d} and Σu = {u}. Any action that is miss-
ing in a state is assumed to leave it unchanged (for instance,
applying β in 1n leads to state 1n). Notice that actions, here,
do not affect the possibility of the fault occurrence.

Diagnosability in DES

Definition 2. An active path (or path) is a sequence of ac-
tive transitions ρ = q0

e1→ · · · en→ qn, with e1, . . . , en ∈ E ,
q0, . . . , qn ∈ Q, and ∀i ∈ {0, . . . , n− 1}, (qi, ei+1, qi+1) ∈
δ. We call e1 . . . en ∈ E∗ the trajectory of ρ.

LI(G) will denote the prefix-closed language of G from
the initial belief state I , i.e., the set of words from E∗ that
are the trajectories of some active paths in G that start from
a state in I . Elements of LI(G) are called I-trajectories.
In the following, sf denotes an I-trajectory ending by the
fault f , LI(G)/s denotes the set of all extensions of s as I-
trajectories and P is the projection of E∗ on Σ∗

o. We denote
the concatenation of two trajectories s1 and s2 by s1.s2.

Definition 3. A fault f ∈ Σf is diagnosable in a system G
with initial belief state I if

∃k ∈ N, ∀sf ∈ LI(G), ∀t ∈ LI(G)/sf , |t| ≥ k ⇒
∀ρ ∈ LI(G), (P (ρ) = P (sf .t) ⇒ f ∈ ρ).

Definition 3 (Sampath et al. 1995) states that for each I-
trajectory sf , and each t that is an extension of sf in G with
enough (depending only on f ) events, every I-trajectory ρ in
G that is equivalent to sf .t in terms of observations should
contain in it f . As usual, it will be assumed that LI(G) is live
(i.e., for any state, there is at least one active transition issued
from this state) and convergent (i.e., there is no active cycle
made up only of unobservable events) and f is permanent.

A system G is said to be diagnosable if and only if (iff)
any fault f ∈ Σf is diagnosable in G. We will consider only
one fault type at a time, for keeping a linear complexity in
the number of fault types, instead of an exponential one if

they are all considered simultaneously. It will thus be as-
sumed that there exists only one fault event f (Σf = {f}),
without restriction on the number of its occurrences. In the
general case of n fault types, we will run our algorithm for
each tested plan on each fault type, and the plan is accepted
iff it achieves the goal in all the n runs. In our example, the
initial belief state is not diagnosable as, from its states 1n
and 2n, an arbitrary long observable sequence of the event a
might represent a faulty or normal I-trajectory.

Diagnosability checking of LTS based on the twin plant
method (Jiang et al. 2001; Yoo and Lafortune 2002) is
known to be polynomial in the number |Q| of states. The
first step in this method is the construction from G of a non-
deterministic automaton, called pre-diagnoser, designed to
preserve all observable information and to append to every
state an estimate of failure information. In the pre-diagnoser,
we only keep the observable events (the unobservable ones
are eliminated as silent transitions) and attach the fault in-
formation to each retained state. If the fault has occurred up
to a given state q from an initial state, the fault label for q is
f . Otherwise, it is empty. For the example in Figure 1, in its
pre-diagnoser, the fault label for all states (1n, 2n, 3n, 4n,
5n) in the initial belief state is empty since there is no fault
occurrence. The fault label for all other states is f . The twin
plant is then obtained as the product of the pre-diagnoser
with itself to get all pairs of trajectories issued from ini-
tial states with the same observations. Each state of the twin
plant is a pair of pre-diagnoser states that provide two pos-
sible diagnoses: if the fault f is contained in exactly one of
them, i.e., the occurrence of f is not certain up to this state,
it is called an ambiguous state w.r.t. f . An ambiguous state
cycle is a cycle containing only ambiguous states. A critical
path is a path in the twin plant issued from a pair of initial
states with a prefix followed by an ambiguous state cycle.

Lemma 1. (Jiang et al. 2001) A system is non-diagnosable
iff its twin plant contains a critical path.

In the twin plant of our example, ((1n, ∅)(2n, ∅)) a−→
((1n, ∅)(2f, f)) a−→ ((1n, ∅)(2f, f)) is a critical path since
it is issued from a pair of initial states 1n, 2n and contains
a self cycle with an ambiguous state ((1n, ∅)(2f, f)) asso-
ciated with an observable event a. Thus, this system is not
diagnosable since one can never be sure about the fault oc-
currence with an arbitrary number of a observed.

Planning

Definition 4. A plan π for a CLTS G is a sequence of ac-
tions ai ∈ A.

Applying the plan π = a1 . . . am from a current belief
state (set of states) S ⊆ Q leads to the belief state π(S)
defined recursively by π(S) = S if m = 0 and π(S) =
π′(S′) if m > 0, where S′ = {q′|∃q ∈ S (q, a1, q

′) ∈ δ}
and π′ = a2 . . . am. In our example, αβ(I) = β(α(I)) =
β({3n, 4n, 5n}) = {1n, 3n, 4n}.

In planning, the objective is generally to find a plan π that
leads the system into a belief state that is included in one
among a given set of “acceptable” states (e.g., states where
the system is safe or where the system provides the service
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that we expect from it): π(I) ⊆ B for some B ⊆ Q, B ac-
ceptable. Here the definition of the objective is at the level of
a belief state instead of an individual state and moreover B
is not explicitly given however it is specified by a property.
Definition 5. A planning problem is a pair 〈G,O〉, where
G = 〈Q,Σ, δ, I〉 is a CLTS and O ⊆ 2Q is a collection of
goal belief states. The solution to the planning problem is a
plan π such that π(I) ⊆ B, with B ∈ O.

Problem Definition

In our problem, the objective of planning is to find a plan
that leads the system to a diagnosable belief state.
Definition 6. Given a CLTS G = 〈Q,Σ, δ, I〉, diagnosabil-
ity planning is the problem of finding a plan π such that
〈Q,Σ, δ, π(I)〉 is diagnosable.

Diagnosability planning can be equivalently phrased as
the problem of solving the planning problem 〈G,O〉, where
O is the set of maximal belief states from where G is di-
agnosable: O = {I ′ ⊆ Q|〈Q,Σ, δ, I ′〉 is diagnosable and
I ′ maximal}. Notice that this framework allows easily the
specification of vacuous solutions that would ensure diag-
nosability but of no practical interest and thus from which
one wants to stay away. We have just to remove from O
the corresponding states (which may be explicitly defined
as well as implicitly by a property to be checked as done
for diagnosability). Our goal is to find an optimal plan for a
given criterion, that will be here to minimize the length (or
cost) of the plan (number of actions in the sequence or sum
of their costs). We denote by π� an optimal plan. In our ex-
ample, the plan π� = αββ is an optimal diagnosability plan
that leads the system to the belief state π�(I) = {1n, 3n}
from which no critical path can be constructed.

Complexity

In this section, we determine the complexity of the decision
problem associated with diagnosability planning.
Theorem 1. Diagnosability planning with explicit states
representation is PSPACE-COMPLETE.

Hardness can be shown by reducing classical proposi-
tional planning with succinct representation to Conformant
Planning (i.e., with undeterminism of initial state and/or ac-
tions, thus belief-space planning as defined in definition 5)
with eXplicit States (CPXS), and then CPXS to diagnosabil-
ity planning. Classical propositional planning with succinct
representation is known to be PSPACE-COMPLETE (Bylan-
der 1994), which will give the result. A classical propo-
sitional planning is defined in a succinct way by a set of
propositional variables and a set of actions. Each action has
a precondition (subset of variables that must be True for
the action to be applicable) and two sets of positive/negative
effects (variables that become True/False upon the appli-
cation of the action). Furthermore, the problem specifies the
list of variables True in the initial state and the list of vari-
ables True in the goal states. The objective is to find a se-
quence that leads from the initial state to one goal state. For
each variable v, we create two states v0 and v1 in the CPXS
problem that represent respectively the fact that the variable

v has False or True assignment in the classical planning
problem. A state in the classical planning problem is there-
fore represented by a belief state in the CPXS problem. The
initial belief state and the final goal belief states are set ac-
cordingly. For any action a and any variable v, we create in
the CPXS problem a transition labeled by a from vi to vj
that models the effect of a from the perspective of variable
v, so according to the precondition/effects of a and the se-
mantics of v0/v1 described above. Thus, the solutions for the
reduced CPXS problem are the same as the solutions for the
original classical planning problem. The second reduction
can be done by adding active transitions labeled by events,
in such a way that no ambiguous state cycle can be reached
from any CPXS goal belief state while any other belief state
gives birth to an ambiguous state cycle. A solution plan to
the CPXS problem corresponds thus to a diagnosability plan
for the controllable DES obtained.

Membership to PSPACE has a proof similar to that for
classical propositional planning. We iterate over all the pos-
sible belief states (PSPACE), verify that this belief state is di-
agnosable (PTIME), and search for a conformant plan from
the initial belief state to this belief state (PSPACE).

This result has to be compared to the EXPTIME-
COMPLETENESS of the active diagnosability decision prob-
lem with explicit states (Haar et al. 2013). And instead of
having to synthesize an active diagnoser of exponential size
w.r.t. the system size, a passive diagnoser is enough to rec-
ognize online the observable sequences that will signal the
presence of a fault basing on its diagnosability fulfillment.

Solving the Diagnosability Planning Problem

Analyzing the Problem

Solving the Diagnosability Planning problem requires find-
ing a plan that leads the system from a given belief state into
a diagnosable belief state (goal belief state). This consists in
alternating the generation of candidate plans and the diag-
nosability test of the belief state reached by each one. Thus,
one must ensure the absence of any critical path issued from
this final belief state. The traditional way to test diagnosabil-
ity is just applying from scratch the twin plant approach: we
call this approach the Normal method. Regarding the plan-
ning steps, the candidate plan is generated by traversing the
candidates search space with an algorithm such as Breadth
First Search (BFS) which ensures plan size minimality. The
search space size can vary depending on the initial belief
state and the type of available actions. For example, if we
had a single state initial belief state with deterministic ac-
tions, then the worst case for a solution plan size would be
|Q|. If the initial belief state contains more than one state or
the actions are not deterministic, and we assume both cases
in this paper, this worst case is 2|Q|.

From another hand, during the search of the intended plan,
the different twin plants constructed starting from different
belief states will generally share some states with each other.
This makes interesting the idea of recycling previously built
parts of these twin plants. In particular, if we find any critical
path during the test of a candidate plan, we know that each
time we will meet again its starting state, which is the root of
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this constructed twin plant, we will be sure to recover a crit-
ical path. This state represents a pair of states in the source
belief state. Hence, the idea is to label such a pair as a bad
pair after each test in order to avoid re-testing it later if it oc-
curs in another planned belief state. More interestingly, these
pairs can be used to prune the next twin plants construction
and even to guide the search of a diagnosability plan.

Definition 7. We call {q1, q2} ∈ Q × Q a bad pair iff
((q1, ∅), (q2, ∅)) is the starting state of a critical path in the
twin plant of G. If q1 = q2, then it is called a bad unit. We
denote the set of all currently known bad pairs as B.

Actually, when a critical path is discovered, not only its
starting state but all its non-ambiguous states (i.e., before
the fault occurrence) give rise to bad pairs. Notice that the
system G = 〈Q,Σ, δ, I〉 is not diagnosable iff I×I contains
a bad pair. So, for a current state of knowledge, a sufficient
condition for the non-diagnosability of G is (I×I)∩B �= ∅.

In a similar way if the diagnosability test failed to find any
critical path issued from a non-ambiguous pair of states we
call this pair a good pair.

Definition 8. We call {q1, q2} ∈ Q × Q a good pair iff
there is no critical path in the twin plant of G issued from
((q1, ∅), (q2, ∅)). If q1 = q2, then it is called a good unit. We
denote the set of all currently known good pairs as G.

Actually, when no critical path exists, not only the starting
state of the twin plant but all its non-ambiguous states give
rise to good pairs. Notice that the system G = 〈Q,Σ, δ, I〉
is diagnosable iff I × I contains only good pairs. So, for
a current state of knowledge, a sufficient condition for the
diagnosability of G is I × I ⊆ G.

In our example, {1n, 2n} is a bad pair, since from it a crit-
ical path can be constructed as shown before, and {1n, 3n}
is a good pair, because no critical path is issued from it.

One natural way to build the twin plant for any belief
state S is to process S globally by reducing it to only
one virtual initial state qS related by unobservable transi-
tions to any state in S and to take into account learned la-
beled pairs while constructing the traditional twin plant from
((qS , ∅), (qS , ∅)). We call this approach the Lazy Learning
method, as it will learn only bad pairs and so will not ex-
ploit the good pairs. Nevertheless, this approach may lead
to small size constructed twin plants by concentrating only
on bad pairs. Another way to a better exploitation of the la-
beled pairs is to construct the twin plants for each pair of
states in the belief state, i.e. for each element of S×S. Thus
we stop the process immediately if we meet any known bad
pair and, before this, we prune developing any branch of the
twin plants each time we meet a known good pair. We call
this approach, allowing learning both good and bad pairs and
a useful recycling of both, the Eager Learning method.

Learning and exploiting Bad and Good pairs

In Diagnosability Test: As said above, meeting a known
bad pair during a twin plant construction predicts the exis-
tence of a critical path and allows us to stop this construction
and learn at least one new bad pair (the one corresponding
to the starting state of the twin plant). Many other bad pairs

can actually be learned in general, corresponding to all non-
ambiguous states in the critical path discovered. Moreover,
we can avoid testing any candidate plan that leads to a be-
lief state that contains a known bad pair. The Lazy Learning
method concentrates only on exploiting those bad pairs. But
the Eager Learning method exploits also the good pairs gen-
erated after each twin plant construction to guide the plan
generation and to prune the further parts of twin plants con-
struction. Discovering a good pair means that the twin plant
constructed starting from this pair does not contain any crit-
ical path. This can be exploited in two ways. The first is that
each non-ambiguous state in the constructed twin plant rep-
resents a good pair, that can be learned. The second is that
in any next twin plant, meeting a good pair allows pruning
the construction of branches from this state (construction in
other branches has to be continued). Moreover, for a candi-
date plan, we can avoid testing all known good pairs in its
reached belief state.

In Planning: We can use all discovered pairs in guiding a
greedy algorithm for the plan generation. Let call g(π) the
cost of plan π, which is the sum of its elementary actions
costs (e.g., its length if all actions have cost 1), that we want
to minimize. The idea is to order the possible plans accord-
ing not only to their cost but also to the chance of reaching
a diagnosable belief state, heuristically evaluated by the ra-
tio of good pairs in this belief state, denoted by h(π). For
this, we classify, in a priority queue, the candidate plans π
(those obtained by adding one action to a previous failed
candidate plan) by partitioning π(I)× π(I) into, a structure
of three classes 〈Bπ,Gπ,Uπ〉, which represent respectively
known bad, known good and unlabeled pairs. We rank first
those π with Bπ = ∅ and the best candidate plan, i.e., the one
that optimizes the global objective function (combination of
g(π) and h(π) minimizing the first and maximizing the sec-
ond) is chosen among them. Then we test for diagnosability
Uπ for the plan π chosen, by the same previous iterative twin
plant construction. The new bad and good pairs discovered
at this occasion are used to update or compute the classes
〈Bπ,Gπ,Uπ〉 for the next candidate plans π considered in
order to proceed to their ranking. The process is repeated
until finding a diagnosability plan or proving its absence.
The labeled pairs (good and bad) are propagated into all the
classes, so any pair is never tested more than once with the
Eager Learning method and is used to prune or stop the con-
struction of the further twin plants.

One can learn three things by observing iteratively this
structure: the first is the existence of a diagnosability plan
π that can be directly deduced if (Bπ = ∅ ∧ Uπ = ∅),
the second is the absence of a diagnosability plan deduced
if no more candidate plans exist and the third is that, if none
of the two stopping conditions is satisfied, the next possible
candidate to test is the one on the top of the priority queue.

General algorithm

We describe the algorithm 1 which contains the general pro-
cedure that learns bad and good pairs and uses them to prune
the search space, i.e., the Eager Learning method. This prun-
ing is twofold: pruning the search space of the candidate
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plans and pruning the construction of the twin plants.

Algorithm 1 General algorithm
1: procedure FINDDIAGNOSABILITYPLAN(G, I, g, h)
2: π ← ∅; Π ← ∅; EBS ← {I}; B ← knownBad; G ←

knownGood

3: � Initialization of the last candidate explored, the set of current candidates, the
belief states explored, the bad and good pairs (known from test of GI )

4: Π ← genCandidateP lan(Π, π, EBS,G, I, g)

5: while Π �= ∅ do

6: π ← getBestCandidate(Π,B,G, g, h)
7: EBS ← EBS ∪ {π(I)}
8: Pairs ← getAllPossiblePairs(π(I))

9: while (Pairs ∩ B = ∅) ∧ (Pairs \ G �= ∅) do

10: {q1, q2} ← chooseOne(Pairs \ G)
11: DGπ

(q1,q2) ← getPreDiag(G{q1,q2})
12: TPπ

(q1,q2) ← getTP (DGπ
(q1,q2),Σo,B,G)

13: � B and G are used to prune TP building
14: newBad ← CPPairs(TPπ

(q1,q2))

15: if newBad �= ∅ then

16: B ← B ∪ newBad

17: � unambiguous states of the found critical path give bad pairs
18: else

19: G ← G ∪ StatesOf(TPπ
(q1,q2))

20: � all TP states give good pairs

21: if Pairs \ G = ∅ then

22: return π

23: � π is a diagnosability plan
24: else

25: Π ← genCandidateP lan(Π, π, EBS,G, I, g)

26: return ∅
27: � there is no diagnosability plan

28: procedure GETBESTCANDIDATE(Π,B,G, g, h)
29: Π ← sortByCostandGoodness(Π,B,G, g, h)
30: � those ρ ∈ Π with (ρ(I)× ρ(I))∩B �= ∅ are the last in the sort; others

are sorted first according to cost function g and G-based heuristics h
31: ρ ← removeTop(Π)

32: return ρ

33: procedure GENCANDIDATEPLAN(Π, π, EBS,G, I, g)
34: CurrentActions ← Actions(G); newΠ ← ∅
35: while CurrentActions �= ∅ do

36: a ← removeOne(CurrentActions)

37: ρ ← πa

38: if � ∃BS ∈ EBS | BS ⊆ ρ(I) then

39: � if ρ(I) contains an already explored belief state, then ρ is closed
40: newΠ ← newΠ ∪ {ρ}
41: while newΠ �= ∅ do

42: ρ ← removeOne(newΠ)

43: if � ∃ρ′ ∈ newΠ | ρ′(I) ⊆ ρ(I) ∧ g(ρ′) ≤ g(ρ) then

44: � if a plan candidate ρ′ is better than ρ, then ρ is closed
45: Π ← Π ∪ {ρ}
46: return Π

The procedure genCandidatePlan closes candidate plans
that lead to a belief state which is a superset of the belief
state of a previously explored plan or of another candidate
plan generated with a lower cost. Therefore no candidate
plan will be generated if all nodes are closed, which is the
stopping criterion for the algorithm (independently of the
use or not of an heuristics h), meaning the nonexistence
of a diagnosability plan. Then, the procedure getBestCan-
didate ranks the candidate plans according to their costs g

(i.e., using BFS for example if all elementary actions have
the same cost) and optionally favoring the goodness-based
heuristics h (ratio of good pairs in the belief state), and
ranking last those whose belief space contains a bad pair.
It returns the best candidate plan π for this ranking, which
gives the current belief state π(I) to be tested for diagnos-
ability. Then if π(I) does not contain any known bad pair
and contains at least one unlabeled pair, iteration is done
on these unlabeled pairs of states to check their goodness.
That is, a pair {q1, q2} is chosen and (part of, in the light
of known labeled pairs) the twin plant TPπ

(q1,q2)
of the sub-

system G{q1,q2} (having q1 and q2 as initial states) is built.
If a critical path (which may be predicted just by meeting
a bad pair) is found in TPπ

(q1,q2)
, all the pairs of states cor-

responding to the new non-ambiguous states of this critical
path (so, at least {q1, q2}) are added to the bad pairs list. In
case TPπ

(q1,q2)
does not contain any critical path, all pairs

represented by its non-ambiguous states are learned as good
pairs and the iteration continues. The iteration stops either
because all pairs of π(I) × π(I) are found to be good, and
then π is a diagnosability plan (necessarily optimal for the
cost g if h has not been used), which ends the algorithm,
or because a bad pair is found in π(I). In this last case, π
is failed and its candidate successors are generated by gen-
CandidatePlan and the next best candidate plan is chosen by
getBestCandidate. So the algorithm always terminates and
returns a diagnosability plan if it exists (guaranteed optimal
if h is not used, the role of h is to guide the search in order to
get a solution in less steps at the expense of its optimality).

Notice that handling multiple faults is straightforward.
For each candidate plan, we build successively twin plants
for each unlabeled pair and for each fault (all other faults
being thus considered as unobservable correct events) un-
til a critical path is found for one pair and one fault (and
we learn bad pairs, and possibly good pairs for successful
tries before) or all pairs are diagnosable for all faults, i.e.,
we found a diagnosability plan. Good pairs have to be stored
with their related fault for being reused properly (differently
from bad pairs which still bad even for at least one fault).

Experimental Results

In order to test our proposed approaches on a benchmark,
we created a rectangular grid of components by repeating
the active model (i.e., without its actions) of our running
example in Figure 1 and we reconfigured the actions in all
components and added global actions between components.
We defined two actions models that are applied to a com-
ponent according to its position in the grid (given by line
index i and column index j, with the origin at the left top
corner). The first one is adopted for all top and bottom bor-
der components and allows the planner, for an initial belief
state chosen inside one of these components, to find a short
plan, of length two or three, made up of local actions inside
this component. The second one is adopted for all other (in-
ternal) components and does not allow reaching a diagnos-
able belief state inside this component, but allows reaching
a belief state inside the component just below or above it
by using global actions that connect any internal component
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with its two neighbors on the same column. We designed
the actions in order the diagnosability plan to be, starting
from any internal component belief state, the one obtained
by selecting “downward” global actions to the successive
below neighbors until reaching the bottom line of the grid.
Moving upward is also always an option but will not give a
diagnosability plan. We also connect actively by event tran-
sitions each component with its (at most four) neighbors, by
adding an observable communication event c that connects
each state 3n (resp. 1n) at the position (i, j) in the grid to
the state 2n (resp. 4n) at the position (i+1, j), each state 3f
(resp. 4f ) at the position (i, j) to the state 1f (resp. 2f ) at the
position (i, j+1) and each state 1f (resp. 2f ) at the position
(i, j) to the state 3f (resp. 4f ) at the position (i, j − 1).

We have tested three search algorithms of the intended
diagnosability plan. The first algorithm uses the Normal
method, i.e., without any recycling. The second algorithm
uses the Lazy Learning method which concentrates on learn-
ing only the bad pairs, which it later uses to prune another
plan test or to stop another twin plant construction if it meets
such a pair again. The third algorithm uses the Eager Learn-
ing method (the one described Algorithm 1).

Concerning the search strategy, firstly we applied to the
planner the BFS strategy (i.e., without h and with equal ele-
mentary actions costs in g) which guarantees optimal length
of the plan, and tested the three methods. Secondly we ap-
plied our greedy strategy, limited to the use of the only
heuristic function h (without g), computed from the learned
pairs and maximizing the ratio of good pairs in the belief
state reached by the chosen candidate plan. This approach is
applicable to the third method, the only one to have the in-
formation about good pairs but we adapted it to the second
method by minimizing the number of unlabeled pairs.

We have first tested the 5 different methods on increasing
grid heights (with width 3) with the initial belief state made
up of the five normal states in the central component of the
grid. Figure 2 shows the efficiency of recycling learned pairs
even if they are not exploited in guiding the planning step.
For example, the Eager Learning method is 15 times faster,
for a grid of height 50 (the length of the optimal diagnos-
ability plan being 74), than the Normal method, that tests di-
agnosability without any learning. But the benefit of Using
the greedy heuristics in the two learning methods appears
clearly even if the Eager Learning method does not give an
optimal diagnosability plan (actually it scales well up to a
180× 3 grid with a plan of length 355).

The tests reported Figure 3 are more challenging as we
suppose an initial belief state composed of the normal states
of two scattered internal components. The largest the height
of the grid (with width 5), the farthest they are. The search
space of the plan is much bigger, but still, even without guid-
ing the plan search by learned pairs, the performances of the
two learning methods are better than the performance of the
Normal method which explodes for the height 17. Results
improve dramatically when exploiting the learned pairs in
guiding the planning search and the Eager Learning method
scales well up to a 100×5 grid. However, the greedy heuris-
tics used here does not return an optimal length of the in-
tended plan as does BFS strategy. But we can notice that it is

very close to the optimal one for the Lazy Learning method
(which is not the case for the Eager Learning method).

Finally, in order to show how changing the size of the ini-
tial belief state can affect the results, we fixed the size of the
system to a 10×10 grid and incrementally increased the size
of the initial belief state by adding at each increment i the
five normal states of the component at the position (i, i), so
up to 45 states. Then, the Normal method explodes and we
continued adding randomly normal states from other compo-
nents to the initial belief state to compare the Eager and Lazy
Learning methods. As shown Figure 4, the first one scales up
to the maximum of 500 states (i.e., the normal states of all
the 100 components of the grid, representing complete un-
certainty on the belief state).

Figure 2: I contains the normal states of one central compo-
nent.

Figure 3: I contains the normal states of two scattered inter-
nal components.

Figure 4: Changing initial belief state size in a fixed system
of (10× 10) components.

Related Work

In (Sampath et al. 1995), the authors introduced the first
definition of diagnosability for DES and proposed a neces-
sary and sufficient condition for testing it by constructing
a deterministic diagnoser. The main drawback is its expo-
nential space complexity in the number of system states.
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Then, the authors of (Jiang et al. 2001; Yoo and Lafor-
tune 2002) proposed new algorithms with polynomial com-
plexity, which is the classical twin plant method. After
that, distributed approaches to solve diagnosability problem
based on twin plant have been investigated (Pencolé 2004;
Schumann and Huang 2008; Schumann and Pencolé 2007).
However, all of them return only information about whether
the systems are diagnosable or not, and can do nothing
for non-diagnosable systems. But diagnosability is a quite
strong property, which is often not satisfied in real systems.

On the other hand, planning techniques have been devel-
oped over the last decades, whose idea is to find a plan satis-
fying the desired goals. In (Barveau, Kabanza, and St-Denis
1998), a synthesis method was presented that automatically
generates controllers on timed transition graphs, where the
specification of control requirements is expressed by metric
temporal logic (MTL) formulas. However, the authors as-
sumed the full observability, i.e., every state variable can be
observed at each step. Considering that planning domains
are often partially observable and non-deterministic, new
approaches for planning under partial observability, dealing
with uncertainty about the states, were proposed in (Bertoli
et al. 2001; 2006). The search space is no longer the set
of states of the domain, but its power-set. A close work
was presented in (Ciré and Botea 2008), where a goal state
represented in LTL is calculated and verified on the fly. In
their model, all transitions are deterministic while they are
non-deterministic in ours. Furthermore, their online learning
component has, for each step, to construct a Boolean for-
mula that can explain the violation of the considered prop-
erty, which could be quite complex since different rules have
to be applied at the atomic level.

The work in (Grastien 2015) addressed the self healing as
a combination between conformant planning and diagnosis
steps to repair the system without explicitly computing its
belief state. Given the goal states, an optimal plan is com-
puted for a sample of the belief state that leads to a goal state,
then the plan is refined depending on the result of a special
diagnoser that tries to find a behavior of the system which
contradicts the current plan. Once a behavior is found, it can
enrich the sample to recompute a better plan. Our work can
be seen as a continuation of this work, where the goal states
are described implicitly by the diagnosability property.

Conclusion and Future Work
In this paper, we defined the problem of Diagnosability Plan-
ning before demonstrating that it is PSPACE-COMPLETE.
We provided an algorithm to search for an optimal diagnos-
ability plan: the twin plant is incrementally constructed by
updating the set of learned bad and good pairs, which helps
in pruning its further construction and in defining an heuris-
tics to guide the plan search. Experimental results demon-
strated the efficiency of the approach by exploiting the dif-
ferent learning strategies (code and benchmark are available
upon request to the first author). Considering more infor-
mative heuristics (if possible finding an admissible one, but
this is a difficult problem with non-explicit goals) and en-
coding the whole problem in SAT (already done for the di-
agnosability test) is our current work. We will extend our ap-

proach to bounded k-diagnosability and to other twin plant-
based properties, such as predictability (Genc and Lafortune
2009). Merging successive repair and diagnosability plans
construction will be also studied to achieve global optimal-
ity for these two tasks together.
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