
Add Data into Business Process Verification:
Bridging the Gap between Theory and Practice

Riccardo De Masellis,1 Chiara Di Francescomarino,1
Chiara Ghidini,1 Marco Montali,2 Sergio Tessaris2

1 FBK-IRST, Via Sommarive 18, 38050 Trento, Italy
2 Free University of Bozen–Bolzano, piazza Università, 1, 39100 Bozen-Bolzano, Italy

Abstract

The need to extend business process languages with the ca-
pability to model complex data objects along with the control
flow perspective has lead to significant practical and theo-
retical advances in the field of Business Process Modeling
(BPM). On the practical side, there are several suites for con-
trol flow and data modeling; nonetheless, when it comes to
formal verification, the data perspective is abstracted away due
to the intrinsic difficulty of handling unbounded data. On the
theoretical side, there is significant literature providing decid-
ability results for expressive data-aware processes. However,
they struggle to produce a concrete impact as being far from
real BPM architectures and, most of all, not providing actual
verification tools. In this paper we aim at bridging such a gap:
we provide a concrete framework which, on the one hand,
being based on Petri Nets and relational models, is close to
the widely used BPM suites, and on the other is grounded on
solid formal basis which allow to perform formal verification
tasks. Moreover, we show how to encode our framework in an
action language so as to perform reachability analysis using
virtually any state-of-the-art planner.

1 Introduction
The need to extend business processes with the capa-
bility to handle complex data objects has been increas-
ingly recognized both in the BPM and AI areas and has
led to significant practical and theoretical advances in the
BPM field (Hull 2008; Meyer, Smirnov, and Weske 2011;
Reichert 2012; Calvanese, De Giacomo, and Montali 2013;
Hull and Motahari Nezhad 2016). On the practical side,
several well-established suites, capturing both the process
control-flow and its relevant data, are nowadays available
as commercial and non-commercial tools. Examples are the
Bizagi BPM Suite, Bonita BPM, Camunda and YAWL. De-
spite different modeling choices all such tools share a com-
mon feature: the way data are modified is often hidden
inside the logic of activities/tasks implemented, e.g., with
Java classes, hence resulting in an essentially activity-centric
model, where data are introduced in an ad-hoc way as a sort
of “procedural attachment” (Calvanese, De Giacomo, and
Montali 2013). As a consequence, when coming to the for-
mal verification of data related aspects, these tools either

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

offer only basic features (such as Data Type checks) without
considering the interaction between control- and data-flow,
or they fail to incorporate data into verification questions,
thus producing misleading answers. This does not come as a
surprise as, when analyzing the evolution of data in a process
which interacts with the external world, unboundedly many
new, i.e., fresh, data values have (in general) to be considered,
making verification of even simple properties undecidable.
On the theoretical side there is a significant body of litera-
ture on the boundaries of decidability and complexity for the
verification of data-aware processes against different formal
properties. The problem of these frameworks is that either
they are far from the modeling languages used in real BPM
suites, and lacking any tool support, or the data model is not
adequate for expressive scenarios (See § 2 and § 7).
In this paper we aim at bridging the gap between the-

ory and practice by providing a concrete framework, called
RAW-SYS (from: Relational-AWare SYStem) for modeling
and verifying data-aware processes as represented by well
established BPM suites. In particular we provide:
1. a language for modeling the control-flow, the data and
their interaction based on the most popular, yet for-
mal, frameworks for modeling these three components,
namely Petri Net (PN) (Van Der Aalst 1998), relational
models, and actions à la Data Centric Dynamic System
(DCDS) (Bagheri Hariri et al. 2013) (§ 4);

2. a reference architecture that mimics how data-aware pro-
cesses are represented bywell establishedBPMsuites (§ 2)
and an encoding of such an architecture inRAW-SYS (§ 4);

3. a decidable, yet very expressive, customization of the ref-
erence architecture to enable formal verification (§ 5);

4. an actual verification mechanism based on an encoding
of RAW-SYS into an action language which allows for
exploiting automated planners (§ 6).

2 Motivations and Architecture
Commercial and non-commercial BPM suites, such as
the ones listed in Table 1, nowadays support the mod-
eling of both control and data flow and provides con-
sistency and verification support. Focusing on the lat-
ter we can identify three different levels at which con-
trol and data flow are verified. We illustrate them with
the help of the following simple example where activ-
ity A is followed by an exclusive choice (xor-split) that

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1091



Tool
Workflow Data Data Formal
Language Model Handling Verification

Bonita BPMN ER global,local None
Bizagi BPMN ER global,local None
YAWL YAWL XMLschema global,local (1)
Camunda BPMN None global,local None

Table 1: Tool analysis

leads the process either to terminate or to re-execute A.

Activity A
True

False
R(x, y) := S(x, y);

R,S �= ∅ → (∃x, y.R(x, y) ∧ S(x, y))?

Activity A modifies data by setting relation R to be equal
to S and the xor-split requires conditions (on data) to be
specified on each outgoing flow: specifically, whether there
is a common tuple to both R and S, if they are not empty.
At level (1) verification focuses only on the control flow. In
this case the process is considered sound as one path exists
that leads to termination. At level (2) verification takes into
account also the conditions on arcs, e.g., checking whether
they are satisfiable. Again the process is considered sound.
At level (3) verification takes also into account the effects of
activities on data: only in this case we can conclude that the
process never terminates, as all tuples in S are also in R.
Although the process never terminates, when verified by

existing BPM suites such as Bizagi1 or YAWL (ter Hofstede
et al. 2010), this critical issue is not revealed. Indeed YAWL
offers verification features limited to the control flow (i.e., at
level (1)) and thus it wrongly reports that such a process can
always reach the termination state. All other tools in Table 1
instead only offer a simulation environment (i.e., no formal
verification) that checks whether the process passes through
all the sequence flows, without taking into account data.

Framework Form. Verif.
CPN (3−)

Conceptual WF-Nets (3−)
DCDS (3)

Table 2: Framework analysis

Moving from actual
tools to existing theo-
retical frameworks the
situation improves (see
Table 2). Colored Petri
Nets (CPN) and exten-
sions of Workflow-Nets

(WF-Nets) (Sidorova, Stahl, and Trcka 2011) can offer
verification support that take into account both conditions
on labels and some interaction between activities and data.
Nonetheless these frameworks suffer of two problems: first,
they do rely on an explicit data model but rather encode
data within the Net thus making difficult to model tools
which are mostly based on a relational data model; second,
decidability is guaranteed only by strongly limiting the
number of colors/types (CPNs) or abstracting from actual
values (WF-Nets) (see § 7). For the above reasons, they
offer a restricted form of (3), whence (3−), thus posing a
serious limitation to process execution which often need
unboundedly many new, i.e., fresh, data values. Conversely,
Data Centric Dynamic System (DCDS) does offer - from a
theoretical point of view - a more expressive, yet decidable,
reference framework. Thus one may think to provide a

1http://www.bizagi.com/

Taski
o

local

Case
Taski

o
local

Case

globalread
write

Taski
o

local

Case

Figure 1: RAW-SYS architecture.

specific encoding from each BPM tools to DCDS, in order to
perform verification al level (3). Such a solution is however
not practical for (at least) two important reasons: on the one
hand the formalization of control and data flow in DCDS is
provided in terms of a STRIP-like language that is extremely
abstract and far from the languages and system architectures
used in BPM suites, and on the other hand DCDSs do not
have any tool support to concretely perform verification.
This analysis has motivated us towards the introduction

of RAW-SYS, a new framework for modeling and verifying
data-aware processes as represented bywell establishedBPM
suites. To do that RAW-SYS is based on two basic pillars:
first, a conceptual model close to the ones used by BPM
suites and, at the same time, amenable to formal verification;
second, a system architecture that mimics the way BPM
suites deal with processes executions and data.
Concerning the conceptual model, we define RAW-SYS

on top of three reference components: (i) Petri Net (PN), for
specifying the process control-flow; (ii) relational models
with expressive constraints for describing data; and (iii) ac-
tions à la DCDS for expressing the interaction between
control-flow and data. These components are, undoubtably,
among themost popular formal frameworks available in liter-
ature. Also, as we can observe in Table 1, PNs and relational
models act as suitable formal models for the specific work-
flows and data models used by BPM suites2.
Concerning the system architecture, we adopt the one il-

lustrated in Fig. 1. As the majority of BPM suites, we allow
for bothmodeling and executing process (and data) instances.
Therefore, we distinguish the intensional level /schema of a
RAW-SYS systemwhich we callmodel, from the extensional
level/instance, called snapshot, which captures the status of
the system at a certain time. From a high-level perspective,
a RAW-SYS model is made up by a data store and a set
of process models. Following a common practice in BPM
suites (see column Data Handling in Table 1), the data store
is structured in a global data store, that is a standard rela-
tional database schema with integrity constraints common to
all process models and a local data store, which is again a
full-fledged relational database schema, defined within a sin-
gle process model. At runtime processes are instantiated in
a number of cases. Thus a snapshot contains all cases active
in a certain moment of time. Note that each case creates an
instantiation of the local data store private to the case itself,
which is hence used to keep auxiliary information that are

2For the usage of PNs to provide a formal semantics of BPMN
see (Dijkman, Dumas, and Ouyang 2008); for the integration of
XML schemas with relational database systems see (Kappel, Kap-
sammer, and Retschitzegger 2004).

1092



of interest only as long as the case is active. Conversely, the
global data store provides the “stable” memory of the com-
pany, and can be accessed by every case. Note also that tasks
can interact with external (human or system) agents and the
interaction can result in modifying data, including the injec-
tion of new, fresh data into the system (e.g, think of a user
filling a form with arbitrary data).
We conclude this section presenting a reimbursement (RB)

example used throughput the paper to illustrate our work.
Example 1 Company GoodsKit is equipped with an infor-
mative system which manages, among others, the employees’
reimbursement procedure (RB) for their business trips. At
runtime, the system deploys an architecture as in Fig. 1 where
each process is instantiated by a number of cases. E.g., an
RB case deals with the trip reimbursement of employee john
to NewYork. As customary, data are contained in a global
and a local component: an example of local variable is one
that maintains the status of the request.

3 The Workflow Nets modeling language
Petri Nets (PNs) is a widely-known language for modeling
distributed systems that has become the de-facto standard for
the formal representation of (the control-flow of) business
processes (van derAalst and Stahl 2011). Structurally, a PN is
a directed bipartite graph with two node types, called places
and transitions, connected via directed arcs. Connections
between two nodes of the same type are not allowed.
Definition 1 (Petri Net) A Petri Net is a triple 〈P, T, F 〉
where P is a set of places; T is a set of transitions, such
that P ∩T = ∅; F ⊆ (P ×T )∪ (T ×P ) is the flow relation
describing the “arcs” connecting places and transitions.
The preset of a transition t is the set of its input places:
•t = {p ∈ P | (p, t) ∈ F}. The postset of t is the set of its
output places: t• = {p ∈ P | (t, p) ∈ F}. Intuitively, places
represent states/conditions associated to threads (i.e., tokens)
dynamicallymoving through the PN,whereas transitions rep-
resent atomic tasks/operations used to evolve such tokens
from one state to another. To characterize the global con-
figuration of the system, tokens are distributed over places.
Technically, this is done bymarking the net, where a marking
is a total mappingM : P 
→ N indicating how many tokens
are present in each place of the PN.

p0

p1 p2t

Figure 2: A PN.

PNs come with a graphical nota-
tion where places are represented by
circles, transitions by rectangles, and
tokens by full dotswithin places. Fig. 2
depicts a PNwith amarkingM(p0) =
2,M(p1) = 0,M(p2) = 1. The pre-
set and poset of t are {p0, p1} and
{p2}, respectively. The idea of using PNs to model processes
starts from the observation that business processes are basi-
cally ordered set of tasks. Thus they can be mapped onto a
PN in the followingway: tasks aremodeled by transitions and
precedence relations are modeled by places. However, pro-
cesses have specific characteristics: they have a clear starting
and completion state, with control-flows connecting such two
extreme points. This observation resulted in the definition of
workflow nets (WF-nets) (Van Der Aalst 1998).

Definition 2 (WF-net) A Petri net 〈P, T, F 〉 is a WF-net if
it has a single source place i, a single sink place o, and
every place/transition is on a path from i to o, i.e., for all
n ∈ P ∪ T , (i, n) ∈ F ∗ and (n, o) ∈ F ∗, where F ∗ is the
reflexive transitive closure of F .
Example 2 The WF-net modeling the RB control-flow is:

i reviewReq

no-op

fillReimb review
Reimb op0 p1

At the start of the process a request is examined. If it is not
approved the process terminates; if it is approved, the em-
ployee can fill a reimbursement which will be then reviewed
before termination. The no-op transition is needed to prevent
connections between nodes of the same type.
The semantics of a PN (thus also of a WF-net), and in partic-
ular the notion of valid firing, defines how transitions route
tokens trough the net so that they correspond to a process
execution. A firing of a transition t ∈ T from M to M ′ is
valid, in symbols M t0→ M ′, iff (i) t is enabled in M , i.e.,
{p ∈ P | M(p) > 0} ⊇ •t; and (ii) the marking M ′ satis-
fies the property that for every p ∈ P :M ′(p) = M(p) − 1
if p ∈ •t \ t•; M ′(p) = M(p) + 1 if p ∈ t• \ •t and
M ′(p) = M(p) otherwise.
A case of a WF-Net is a sequence of valid firingsM0

t1→
M1,M1

t2→ M2, . . . ,Mk−1
tk→ Mk whereM0 is themarking

with a single token in i. We sat that a WF-Net reaches a
marking M if there exists a finite sequence t1, . . . , tk of
transitions such thatM0

t1→ M1, . . . ,Mk−1
tk→ M .

The number of tokens flowing through a PN is usually
subject to a maximum threshold that is never exceeded. PNs
enjoying this property are called “safe".
Definition 3 (k-safeness) A marking of a PN is k-safe if it
assigns no more than k tokens to each place. A PN is k-safe
if the initial marking M0, and all markings reachable from
M0, are k-safe.

4 The RAW-SYS Framework
We start the formal presentation from the data stores. We fix
once and for all a countably infinite set of constants Δ to be
used as domain and we observe that technically there is no
difference between the global and local data stores.
Definition 4 (Data store) A (local or global) data store is a
tuple D = 〈R, C, I0〉, where:
• R is a database schema, i.e., a set of relation schemas;
• C is a set of safe range FO-constraints3 over R, capturing

the real-world constraints of the application domain;
• I0 is the initial database instance of D, i.e., a data store

instance conforming toR, satisfying the constraints C, and
made of values in Δ.

Example 3 Due to lack of space, we present some relations
of the RB local data store only (underlined attributes are pri-
mary keys): CurrReq(empl , dest , st) listing the employee
that requested a reimbursement, the trip destination and the

3This is standard. Recall that relational algebra is safe range by
construction.

1093



status of the request and TrvlMax (ma) containing the max-
imum amount estimated by the travels office for the trip.

We now move to processes, which are modeled in a
prescriptive fashion leveraging standard WF-nets, but we
notably enrich them with data. We call the resulting nets
Relational-AWare workflow nets (RAW-nets). Intuitively,
RAW-nets are standardWF-nets equipped with a (local) data
store as in Definition 4. We concentrate on 1-safe nets, which
generalize the class of structured workflows and are the ba-
sis for best practices in process modeling (Kiepuszewski, ter
Hofstede, and Bussler 2013). It is important to notice that
our approach can be seamlessly generalized to other classes
of Petri nets, as long as it is guaranteed that they are k-safe.
This reflects the fact that the process control-flow is well-
defined. Also, transitions are data-aware: their execution is
guarded by queries over the local and global data store, and
their effects update the local and the global data store.

Definition 5 (Relational-aware WF-net) A RAW-net over a
global data store DG is a tuple 〈D, P, T, F,F ,A,G〉 where:
• D is the process local data store (as in Def. 4) with I0 = ∅;
• 〈P, T, F 〉 is a WF-net;
• F is a function that associates each transition with a finite

set of functions from
⋃

n≥0(Δn 
→ Δ), each representing
the interface to a (nondeterministic) external service;

• A is a function that associates each transition t with an
action (see later);

• G is a function that associates each transition with a safe
range query over D ∪DG (the guard).

Transition actions may include parameters (see later): in that
case the guard free variables must match the parameters of
the corresponding tasks.

Among the many different data interaction formalisms
existing in the literature, we adopt the approach in
(Bagheri Hariri et al. 2013; Montali and Calvanese 2016),
which allows us to express virtually any pattern of update, in-
cluding CRUD operations over the data stores, but also bulk
operations that simultaneously manipulate large portions of
the data store at once. Intuitively, an action is described by a
set of add and remove operations on data store instances “con-
ditioned” by a domain independent query. More formally an
action act(p1, . . . , pn) : {e1, . . . , em} is characterized by:
(i) the name act; (ii) a list of parameters �p = p1, . . . , pn and
(iii) a set of effect e1, . . . , em. The parameters are substituted
with actual values �d when the action is invoked. Such values
are every answer of of the corresponding guard query given
by G on the local and/or global data source. Each effect ei
is of the form:Q(�p, �x)� add A(�p, �x, �y) del D(�p, �x) where
Q is a domain independent query over a data schema with
open variables �x, while A and D are sets of facts over (pos-
sibly another) schema. Intuitively, Q is used to select some
values (its answers) that are then used to add and/or remove
facts. Notice that added factsAmay include Skolem terms �y
that model the interaction with external services: at runtime
Skolem terms are substituted by the value returned by issu-
ing the corresponding service call given byF . Some of those
services can be guaranteed to return fresh values (i.e. con-
stants not included in the active domain) and this is essential

to enable the creation of new objects via new identifiers. The
effects ei are assumed to take place simultaneously.4
Example 4 We now show a simple action of the running sce-
nario. Activity reviewRequest examines the employee’s re-
quest to leave for a business trip and evaluates the maximum
reimbursable amount. The (only) effect of the corresponding
action rvwReq() (with no parameters) is specified as:

CurrReq(e, d, s)�
del {CurrReq(e, d, s)}
add{CurrReq(e, d, status()),TrvlMax (ma())}

In order to update the request status, the tuple representing
the current travel request in CurrReq must be first deleted
and then added with the new status (recall that additions
have higher priority than deletions). QueryCurrReq(e, d, s)
selects such a tuple, effect del{CurrReq(e, d, s)} deletes
it while add{CurrReq(e, d, status())} adds the same tu-
ple but with a new value for the status. Also, the value
of the max reimbursable amount is added by the fact
TrvlMaxAmnt(ma()). We use of functions status() and
ma() to model unknown values coming from the external
environment, in our case the company travels office5.

The valid firing of a transition – in addition to the usual
marking conditions on the input places, as specified by the
RAW-net – is conditioned by the satisfiability of the guard
and the successful application of the action. Note that an
action might be unsuccessful because of a violation of a
constraint in the local data store.
Finally, a RAW-SYSmodel simply incorporates the global

data store together with a set of processes:
Definition 6 (RAW-SYS model) A RAW-SYS model is a tu-
ple 〈DG,W〉 where:
• DG is a global data store as in Definition 4;
• W is a set of RAW-nets as in Definition 5 over the global

data schema DG .
Semantics is provided in term of global states (snapshots)

that include the set of all active cases as well as the instance
of the global data store.
Definition 7 (RAW-SYS snapshot) A snapshot s of a RAW-
SYS model 〈DG,W〉 is a tuple 〈IS ,K〉 where:
• IS is an instance of the global data store DG;
• K is a set of cases, i.e., tuples 〈w, (M, I)〉 where w ∈ W

and (M, I) represents the state of the RAW-net w, namely
its marking M and the instance I of its local data store.

The behavior of the system is described by means of all the
possible sequences of snapshots evolving from the initial one.
The initial snapshot s0 has an empty set of cases (none of the
processes is active), and the global instance I0 specified, i.e.,
s0 = 〈I0, ∅〉. It is worth noting that, due to the presence of
external service calls and also due to the possibility of non-
deterministically spawning new process cases, the execution
semantics of a RAW-SYS needs in general to account for an

4As in STRIPS, additions have higher priority than deletions.
5If we require a function to return a value from a given set, e.g.,

status() from {accp, rejc}, it is enough to include a foreign key
constraint to an auxiliary relation containing accp and rejc.

1094



infinite number of states, as well as truly infinite runs that
may visit infinitely many different data store instances.
Sequences of valid snapshots are defined according to two

types of transitions that makes the system evolve nondeter-
ministically. In what follows we assume the current snapshot
to be s = 〈IS ,K〉.
Creation of a new case: A new case 〈w, (M0, I0)〉 of process
w ∈ W is created, where M0 is the initial marking and
local data store instance I0 is empty. The global data store is
untouched: the new snapshot is therefore s′ = 〈IS ,K′〉 with
K′ = K ∪ {〈w, (M0, ∅)〉}.
Case firing: one of the transitions t ∈ T of an active case
〈w, (M, I)〉 ∈ K with w = 〈D, P, T, F,F ,A,G〉 can be
executed by picking a suitable parameters substitution�d from
the answers of query G(t) evaluated on IS ∪ I and for the
involved service calls F(t). The corresponding action A(t)
with actual parameters �d is fired and possibly updates the
local data store instance from I to I ′ and the global data
store from IS to I ′S . Also the net marking is updated toM ′,
and we distinguish two cases:

(i) ifM ′ is a final marking for w, then the process termi-
nated and it is removed from the set of active cases,
resulting in a new snapshot s′ = 〈I ′S , IA,K′〉 withK′ = K \ {〈w, (M, I)〉};

(ii) otherwise the new snapshot is s′ = 〈I ′S , IA,K′〉 withK′ = K \ {〈w, (M, I)〉} ∪ {〈w, (M ′, I ′)〉}.
Notice that in both cases, if I ′ or I ′S are not legal instances
forD orDG, i.e., they do not satisfy the integrity constraints,
then the transition cannot be fired.

5 Verification of RAW-SYS models
We now consider verification of RAW-SYSmodels, focusing
on fundamental dynamic properties such as reachability as
well as model checking against first-order temporal logics.
In our setting, reachability amounts to check whether there
exists a run of the RAW-SYS under study that starts from the
initial state and eventually achieve a state whose data satisfy
a boolean query of interest. Since the execution semantics
of RAW-SYS gives raise to an infinite-state transition sys-
tem, verification is much more challenging than in the con-
ventional, finite-state setting (Calvanese, De Giacomo, and
Montali 2013). In particular, even the most basic forms of
reachability are highly undecidable in the general case. We
hence exploit reachability as a test for isolating classes of
RAW-SYS: whenever reachability turns out to be undecid-
able for a class, we consider it not amenable to verification.
In this work, we rely on the notion of state-boundedness,

which has been extensively exploited for providing strong,
robust decidability conditions in a plethora of data-aware pro-
cess frameworks (Belardinelli, Lomuscio, and Patrizi 2012;
Bagheri Hariri et al. 2013; De Giacomo, Lesperance, and Pa-
trizi 2012). Essentially, state-boundedness requires to limit,
a-priori, the number of objects that can co-exist in the
same state. A state-bounded system still accepts unbound-
edly many different objects to appear within and across runs.
In all such previous works, there is a single, global data

store, whose size is subject to the (state) bound. In our setting,
there are three information sources to which such notion of

boundedness can be applied: the global data store, the local
data store, and the number of running cases. We respectively
call the three corresponding notions of state boundedness
global size-, local size-, and case-boundedness. Two research
questions consequently arise: (1)Can state-boundedness help
towards decidability of verification over RAW-SYSs? (2) If
so, which of the information sources must necessarily be
bounded towards decidability?
Undecidability. We attack the second research question,
showing that as soon as one the RAW-SYS information
sources is not size-bounded, reachability of a query con-
stituted by an atomic proposition is undecidable even when
the modeling elements of the framework are severely re-
stricted. More specifically, we consider a class of RAW-SYS
called isolated: 〈DG,W〉 is isolated if every RAW-net w in
W satisfies the following two conditions:
1. w has the following shape:

i init(�x) i′ o′

inner(w)

finalize(�y) o

Gi(�x) Gf (�y)

where inner(w) is a workflow net.
2. All guards and actions attached to inner(w) refer only to
the local data store of the RAW-net (i.e., they do not read,
nor write, DG).

Intuitively, in an isolated system each case interacts with the
global data store only when it is created, for initializing the
local data store, or when it completes its execution, for de-
termining which local data have to be persistently stored.
All other guards and actions only operate over the local data
store, thus limiting the interactions with the other, simulta-
neously running, cases.
We report in the following the results for each of the three

dimensions of state-boundedness: isolatedRAW-SYSswhere
no bound is imposed on the local data stores, on the global
data stores and on cases. The proofs of the first two theorems
are by reduction from the halting problem for deterministic
two-counter machines (2CMs), well-known to be undecid-
able, which can be simulated by isolated global size- (local-
size) and case-bounded RAW-SYSs. The proof of the third
theorem requires instead a more convoluted approach.
Theorem 1 Checking reachability of an atomic proposition
is undecidable over isolated, global size-bounded and case-
bounded RAW-SYSs, where: (i) the global data store contains
only propositions; (ii) there is only one RAW-net equipped
with a local data store constituted by two unary relations;
(iii) there is at most one running case.
Proof 1 (Proof Sketch) The proof is by reduction from the
halting problem for deterministic, two-counter machines
(2CMs), well-known to be undecidable (Minsky 1967).
We fix a simple, isolated RAW-SYS S with the following

features: (i) the global data source contains only a single
proposition Hit used as a flag; (ii) the single RAW-net w
of S has a data store equipped with two unary relations C1

and C2. Net w has a init transition that lets only one single
token flow into the internal isolated workflow net, and a
finalize transition that raises the Hit flag in the global store.
The internal workflow net inner(w), in turn, encodes a 2CM

1095



as follows. The instruction identifiers of the 2CM become
places of inner(w), where the first instruction corresponds
to the input place of inner(w), and the halting state of the
2CM corresponds to its output place. The values of the two
counters correspond to the size of the extensions of the two
relations C1 and C2, which are initially empty. In this light,
increment and conditional decrement of the first counter are
simulated as follows:
• An increment operation “k1 : c1++; goto k2” is sim-
ulated in inner(w) by the net fragment below where
inck1,k2

() : {true � add{C1(newval())}} injects
a new value inC1 through the fresh service callnewval().

k1 inck1,k2
() k2

• A conditional decrement operation “k3 : if
c1==0 then goto k4; else goto k5” is in-
stead simulated using the net fragment below.

k3

noopk3,k4
() deck3,k4

(x)k4 k5

¬∃x.C1(x)
C1(x)

The left branch captures the case where the counter is 0,
which only requires to update the program counter, and in fact
noopk3,k4() : {}. The right branch captures the case where
the counter is positive, and must consequently decrease by
one unit. This is captured by guard C1(x), which nondeter-
ministically picks an element from C1, and by the related
action deck3,k4

(x) : {true � del{C1(x)}}, which removes
it. Similar structures are used to simulate increment and con-
ditional decrement for counter 2. It is then easy to see that the
2CM halts if and only if S reaches a state where Hit holds.
Theorem 2 Checking reachability of an atomic proposition
is undecidable over isolated, local size-bounded and case
bounded RAW-SYS, where: (i) the global data store con-
tains only propositions and two unary relations; (ii) there is
only one RAW-net equipped with an empty local data store;
(iii) there is at most one running case.

Proof 2 (Proof Sketch) The proof is similar to that of The-
orem 1, with the difference that the unary relations used to
simulate the counters are now in the global data store. The
global data store is also equipped with a finite set of atomic
propositions, one per state of the 2CM. In a given snapshot,
only one of such atomic propositions holds (modeling that
the 2CM is in a certain current state). The singleRAW-net has
a trivial structure with an input and output places connected
by a single, no-op transition. Upon creation of an instance of
such aRAW-net, it is checkedwhich of such propositions cur-
rently holds, triggering a suitable, immediate update of the
current state (i.e., substituting the current proposition with
the next one, in accordance to the control-state update of the
2CM), and an update on the extension of the two counter
relations, with the same strategy discussed in the proof of
Theorem 1.
Theorem 3 Checking reachability of an atomic proposition
is undecidable over isolated, local and global size-bounded
RAW-SYSs, where: (i) the global and local data stores contain

only unary relations, whose extension contains at most one
tuple (i.e., they act as registers); (ii) there is only one RAW-
net equipped with an empty local data store; (iii) there is at
most one running case.

Proof 3 (Proof Sketch) This case is the trickiest as we can-
not anymore exploit the same technique adopted in the pre-
vious two cases, because it is not possible anymore to exploit
the local/global data store to remember the value of the two
counters. Furthermore, when a certain process case becomes
running, its evolution cannot be affected by that of other
running cases, since it only works on its own local data.
Let w be the single RAW-net of S. The WF-net of w is

again the trivial net containing a single, no-op transition.
However, it is now associated to two sophisticated updates to
be applied when an instance of w is created or terminates its
execution,
The two counters are simulated using two “chains” of

running cases, where the value of the counter is the length
of the chain minus 1. The main difficulty is how to rigidly
keep track of the ordering between cases in a chain, and
how to properly manipulate the chain, given the fact that the
information about the chain itself cannot be stored anywhere,
being all the data stores bounded. We attack this problem as
follows. First of all, each instance of w exposes itself via a
“ticket”, i.e., a unique identifier that is made explicit in the
global data store (this is necessary, since the internal case
identifiers are not visible). The global data store remembers
the current, control-state of the 2CM by adopting the same
technique as in the proof of Theorem 2. It also remembers
the extreme points of the two chains (i.e., the tickets of the
instances at their top/bottom).
Since the 2CM is deterministic, we can assume that each

control-state has a unique successor state obtained via a
counter-increment operation, or two successor states, one
achieved when a counter is positive and gets decremented,
the other achieved when the same counter is zero. Increment
is then simulated by allowing for the creation of a new w-
instance only if the current control-state has an increment
transition. Upon creation, the instance consumes the infor-
mation about the instance that is currently at the top of the
corresponding chain, remembering the corresponding ticket
in a local, “previous ticket” relation. At the same time, it gen-
erates a fresh ticket identifying itself, and updates the global
data store by declaring that this ticket is now at the top of the
chain. This immediately simulates increment, and therefore
the very same update also updates the control-state.
Decrement transitions for a counter are simulated by the

termination of the running w-instance that is at the top of
the corresponding chain. However, termination is not explic-
itly controllable in the specification: all running w-instances
evolve in parallel and in isolation to each other, and conse-
quently there is no explicit way of selecting only the instance
at the top of the chain and induce its termination. To enforce
this, we leverage the fact that a RAW-net case can properly
terminate only if the corresponding update satisfies the con-
straints of the global data store. In particular, we make sure
that whenever a w-instance wants to terminate, a constraint
is violated if the ticket of that instance does not correspond to

1096



that at the top of the chain. When the top-instance is picked,
it successfully terminates by updating the control-state, and
declaring that the top ticket is now the one store in its “pre-
vious ticket” relation.
Transitions triggered by a zero test are simulated in a

similar way, discriminating them from decrement transitions
by simply checking whether the selected, runningw-instance
is not only at the top of the chain, but also at the bottom (i.e.,
the chain contains only such an instance).

Decidability for Bounded RAW-SYSs. The undecidability
results in Theorem 1–3 show that as soon as one of the three
information sources has unbounded size, reachability turns
out to be undecidable. We thus analyze the situation where
all of them are bounded. We simply refer to such systems
as size-bounded RAW-SYSs. We stress that such systems are
by no means finite-state: they allow for storing unboundedly
many data within and across system runs, provided that such
data do not accumulate in the same snapshot.
For bounded RAW-SYSs, we prove the following positive

result, thanks to a reduction to DCDSs.
Theorem 4 Checking reachability over size-bounded RAW-
SYSs is decidable in PSPACE in the size of the initial global
data store.
Proof 4 (Proof Sketch) The proof is done in three steps:
(1) we provide a behavior-preserving encoding of RAW-
SYSs into DCDSs; (2)we argue that if the input RAW-SYS is
bounded, then the DCDS obtained via the encoding is state-
bounded in the sense of (Bagheri Hariri et al. 2013); (3) we
formulate reachability over the input RAW-SYS as a verifi-
cation problem over the corresponding DCDS - decidability
is then obtained by (Bagheri Hariri et al. 2013), in which
verification over state-bounded DCDSs has been shown to
be decidable. The main guideline for the encoding is as fol-
lows. The DCDS data component is obtained by combining
the global data store together with the local data stores. All
such relations are augmented with an additional attribute that
explicitly accounts for the “provenance” of each tuple, that is,
the case id of the process that generated it (through actions).
In addition, an accessory relation is added so as to track
the control-flow state of each such instance. The dynamic
component is obtained by introducing dedicated actions for
the creation/dismissal of cases. In addition, each RAW-net is
translated into a set of dedicated actions (one per transition in
the net), following the same strategy as in (Hariri et al. 2014).
The fact that the obtained DCDS is state-bounded, which is
essential for decidability, derives from the size-boundedness
of the input RAW-SYS, and from the fact that we focus on
bounded Petri nets. As for the complexity, in general verifi-
cation over state-bounded DCDSs requires to explore, in the
worst-case, a number of states that is exponential in the size
of the initial database. However, in the case of reachability,
this exploration can be done on-the-fly, using space that is
polynomial in the size of the initial data store.
Thanks to the reduction to DCDS, we also get a stronger

result: RAW-SYSs can be model checked against sophisti-
cated temporal properties expressed in a first-order variant
of μ-calculus called μLp (Bagheri Hariri et al. 2013).

Corollary 1 Verification of μLp properties over size-
bounded RAW-SYSs is decidable

We close this section by briefly discussing why size-
bounded RAW-SYS are reasonable in practice. Bounding
the number of simultaneously running instances can be seen
as a sort of “limited resources” assumption: recalling our
running example, the GoodsKit travel office has only n peo-
ple taking care of reimbursement procedures, and hence,
assuming each person to handle at most c cases in paral-
lel, only m = n · c RB cases can be running at the same
time. Still, un unbounded number of different RB cases can
be executed during GoodsKit life. Bounding the size of the
local and global data stores reflects the fact that the progres-
sion of cases depends only on a limited, i.e., not unbounded,
amount of data. As for local data stores, size-boundedness
immediately applies to all practical frameworks that rely on
“local variables” as case data. Concerning the global data
store, it can still be unbounded in practice: we only require
a bound on the part used to decide about the progression
of currently running cases. Therefore we can easily imag-
ine an unbounded “archival memory” that is used only for
other forms of analysis, such as reporting, auditing, and min-
ing. The unboundedness of the archival memory does not
undermine our decidability results as, from the verification
perspective, it can be seen as a “write-only” component.

6 Implementing Verification using Planning
To support automated verification of RAW-SYSmodels from
a practical point of viewwe encode themodel and verification
problemusing theC action language (Lifschitz 1999;Gelfond
and Lifschitz 1998). We selected this language because it
enables a simple and clear encoding of both the dynamic and
static (i.e., data constraints) aspects of RAW-SYS; moreover
there are different state of the art systems implementing it
(e.g. the DLVK planner (Eiter et al. 2003)). However, the
same encoding can be easily adapted to different planners
and similarly expressive planning representation languages,
e.g., ADL (Calvanese et al. 2016). For the sake of space
constraints we will sketch the main ideas of the encoding.
States are represented by means of so called fluents and

the dynamics of the planning domain is specified by means
of actions and rules. Actions may have preconditions, and
rules, defining how fluents change, may mention them. This
allow rules to be used as action postconditions.
The data component is encoded using a fluent for every re-

lation name, and the initial data instance is the planner initial
state. Integrity constraints of the data model are encoded by
means of denial constraints; that is, rules with false in the
head. To ensure separation between different processes, each
relation includes an additional attribute holding the process
id and queries and constraints are modified in such a way that
processes can only access local data, i.e., tuples marked with
the corresponding process id. Processes control-flow, defined
by means of workflow nets, is encoded using an additional
fluent (mrk) representing the marking (similar to what done
in (Di Francescomarino et al. 2015)).
A case transition associated to a guard/action pair are en-

coded with (i) a C action having the guard and the specific

1097



marking as precondition and (ii) rules asserting straight facts
if added by the effects and asserting negated facts if deleted
by the effects (iii) rules taking care of updating themrk fluent.
Functional terms are not directly available in most of the

implementations of C-based action languages, therefore we
simulate them by means of predicates and denial constraints
enforcing functionality. Moreover, nondeterministic selec-
tion of the value is forced by means of default negation
through a commonly used ASP pattern of rules. Using the
results outlined in § 5 we can restrict to a domain of con-
stants for the planning problem including those appearing in
the initial instance, actions, and the (finite) set of constants
obtained by abstracting the infinite elements from the orig-
inal domain. The finiteness of the domain is guaranteed by
the fact that the model is state-bounded.
Soundness and completeness of such an encoding w.r.t.

the reachability problem are inspired by the results presented
in (Calvanese et al. 2016). In particular, we establish a corre-
spondence between state transitions in RAW-SYS and states
of the action language specification.
The verification of reachability properties of the model

is encoded with a query describing the goal state for the
planner. These properties can be related to the state of the
(global) data store as well as more general conditions over
the dynamic of the system, e.g., the verification that there are
no running processes can be performed by checking that no
places are in the mrk relation (i.e. there are no tokens).

An experiment with a concrete planner. As a proof of
the feasibility of the proposed approach we investigated the
applicability of RAW-SYS with a concrete reasoning system
(DLVK) in the realistic setting of the RB example.

Query ADOM PR Time(ms)
2 482.2

5
5 499.2
2 3278.8
5 3950.410
10 3840.3
2 41660.1
5 64515.9

Q1

20
10 50019.9
2 982.2

5
5 9805.8
2 7143.2
5 7577.310
10 62415.5
2 90709.1
5 98616.2

Q2

20
10 116554.4

Table 3: Performance results

Specifically, we tested
the encoding ofRB on dif-
ferent scenarios in which
we varied the following
two dimensions: (i) the
size of the set of values of
the active domain of em-
ployees and destinations
(ADOM); specifically,
ADOM ∈ {5, 10, 20}
(ii) the number of pending
requests (PR); specifi-
cally PR ∈ {2, 5, 10}.
Considering the range of
these parameters, we ob-
tain a total of 8 scenar-
ios per query.We focus on
the following two existen-
tially quantified queries (i.e., goals in the planning encoding):
Q1. a pending request has been processed;
Q2. a pending request has been accepted;
The experimentation has been performed on a pc running
Windows 8 with 8GB RAM and a 2.4 GHZ Intel-core i7
and the results averaged on 10 iterations. Table 3 shows
the performance of RAW-SYS on the RB example: the time
required by RAW-SYS for achieving the goal ranges from

about 0.5s (482.2 ms) forQ1with very small active domains,
to about a couple of minutes (116554.4 ms) for Q2 with a
size of active domains (ADOM) and pending requests (PR)
which is realistic for a small enterprise. An execution time
of two minutes looks reasonable for a verification system
dealing with complex data that has not been optimized, thus
giving the glimpse of the applicability of the approach to
realistic scenarios. Moreover the required time seems to be
not particularly affected by the number of pending requests
(PR),while it seems to strongly depend on the size ofADOM.

7 Related Work and Concluding Remarks
On the theoretical side, a number of works exist both in
the area of data-aware processes and of (variants of) PNs.
Unfortunately, when combining processes and data, verifi-
cation problems suddenly become undecidable (Calvanese,
De Giacomo, and Montali 2013). We can divide this litera-
ture in two streams. In the first stream, variants of PNs are
enriched, by making tokens able to carry various forms of
data, and by making transitions aware of such data, such in
CPNs (van der Aalst and Stahl 2011) or data variants such as
(Structured) DataNets (Badouel, Hélouët, andMorvan 2015;
Lazić et al. 2007), ν-PNs (Rosa-Velardo and de Frutos-
Escrig 2011) and Conceptual WF-nets with data (Sidorova,
Stahl, and Trcka 2011). For full CPNs, reachability is un-
decidable and usually obtained by imposing finiteness of
color domains. Data variants instead weaken data-related as-
pects. Specifically Data Nets and ν-PNs consider data as
unary relations, while semistructured data tokens are lim-
ited to tree-shaped data structures. Also, for these mod-
els coverability is decidable, but reachability is not. The
work in (Sidorova, Stahl, and Trcka 2011) considers data
elements (e.g., Price) that can be used on transitions’ pre-
conditions. However, reasoning does not consider data val-
ues (e.g., 50$) but only whether the value is “defined”
or “undefined”. The second stream contains proposals that
take a different approach: instead of making the control-
flow model increasingly data-aware, they consider stan-
dard data models and make them increasingly “dynamics-
aware”. Notable examples are relational transducers (Abite-
boul et al. 2000), active XML (Abiteboul, Segoufin, and
Vianu 2009), the artifact-centric paradigm (Gerede, Bhat-
tacharya, and Su 2007; Damaggio, Deutsch, and Vianu 2011;
Bagheri Hariri et al. 2013), and DCDSs (Bagheri Hariri et
al. 2013). Such works differ on the limitations imposed to
achieve decidability, but they all lack an intuitive control-flow
perspective. RAW-SYS instead directly combines a control-
flow model based on PNs and standard data models (à la
DCDS) as first class citizens.
As futurework,we plan to set up an extensive experimental

evaluation optimizing our DLVK encoding, aswell as to tackle
verification properties beyond reachability, allowed by the
result of DCDS state boundedness, through an encoding in
state-of-the-art model checkers.

Acknowledgement. This research has partially been carried
out within the Euregio IPN12 KAOS, which is funded by
the “European Region Tyrol-South Tyrol-Trentino” (EGTC)
under the first call for basic research projects.

1098



References
Abiteboul, S.; Vianu, V.; Fordham, B. S.; andYesha, Y. 2000.
Relational transducers for electronic commerce. Journal of
Computer and System Sciences 61(2):236–269.
Abiteboul, S.; Segoufin, L.; and Vianu, V. 2009. Model-
ing and verifying Active XML artifacts. Bull. of the IEEE
Computer Society Technical Committee on Data Engineering
32(3):10–15.
Badouel, E.; Hélouët, L.; and Morvan, C. 2015. Petri nets
with semi-structured data. In Proc. of 36th International
Conference on Application and Theory of Petri Nets and
Concurrency.
Bagheri Hariri, B.; Calvanese, D.; De Giacomo, G.; Deutsch,
A.; and Montali, M. 2013. Verification of relational data-
centric dynamic systems with external services. In 32nd
Symposium on Principles of Database Systems (PODS ’13),
163–174. ACM.
Belardinelli, F.; Lomuscio, A.; and Patrizi, F. 2012. An
abstraction technique for the verification of artifact-centric
systems. In Proc. of 13th Int. Conf. on Principles of Knowl-
edge Representation and Reasoning, KR 2012, 319–328.
Calvanese, D.; Montali, M.; Patrizi, F.; and Stawowy, M.
2016. Plan synthesis for knowledge and action bases. In
Proc. of the 25th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2016). AAAI Press.
Calvanese,D.;DeGiacomo,G.; andMontali,M. 2013. Foun-
dations of data-aware process analysis: A database theory
perspective. In 32nd Symposium on Principles of Database
Systems (PODS ’13), 1–12. ACM.
Damaggio, E.; Deutsch, A.; and Vianu, V. 2011. Artifact
systems with data dependencies and arithmetic. In Proc. of
the 14th Int. Conf. on Database Theory (ICDT 2011), 66–77.
De Giacomo, G.; Lesperance, Y.; and Patrizi, F. 2012.
Bounded situation calculus action theories and decidable
verification. In 13th Int. Conf. on Principles of Knowledge
Representation and Reasoning, KR 2012, 467–477.
Di Francescomarino, C.; Ghidini, C.; Tessaris, S.; and San-
doval, I. V. 2015. Completing workflow traces using action
languages. In Proc. of 27th Int. Conf. on Advanced Infor-
mation Systems Engineering (CAiSE 2015), volume 9097 of
LNAI, 314–330. Springer.
Dijkman, R. M.; Dumas, M.; and Ouyang, C. 2008. Se-
mantics and analysis of business process models in bpmn.
Information and Software Technology 50(12):1281–1294.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres,
A. 2003. A logic programming approach to knowledge-
state planning, II: The DLVK system. Artificial Intelligence
144(1-2):157–211.
Gelfond, M., and Lifschitz, V. 1998. Action Languages.
Electronic Transactions on AI 2(3-4):193–210.
Gerede, C. E.; Bhattacharya, K.; and Su, J. 2007. Static anal-
ysis of business artifact-centric operational models. In IEEE
Int. Conf. on Service-Oriented Computing and Applications,
SOCA 2007, 133–140. IEEE Computer Society.
Hariri, B. B.; Calvanese, D.; Montali, M.; and Deutsch, A.
2014. State-boundedness in data-aware dynamic systems.

In Proc. of 14th Int. Conf. on the Principles of Knowledge
Representation and Reasoning, KR 2014. AAAI Press.
Hull, R., and Motahari Nezhad, H. R. 2016. Rethinking
BPM in a cognitive world: Transforming how we learn and
perform business processes. In 14th Int. Conf. on Business
Process Management, BPM 2016, volume 9850 of LNCS,
3–19. Springer.
Hull, R. 2008. Artifact-centric business process models:
Brief survey of research results and challenges. In Proceed-
ings of the OTM 2008 Confederated International Confer-
ences, volume 5332 of LNCS, 1152–1163. Springer.
Kappel, G.; Kapsammer, E.; and Retschitzegger, W. 2004.
Integrating xml and relational database systems. World Wide
Web 7(4):343–384.
Kiepuszewski, B.; ter Hofstede, A. H. M.; and Bussler, C. J.
2013. On structuredworkflowmodelling. In 12th Int. Conf on
Advanced Information Systems Engineering (CAiSE 2000),
volume 1789 of LNCS. Springer. 431–445.
Lazić, R.; Newcomb, T.; Ouaknine, J.; Roscoe, A. W.; and
Worrell, J. 2007. Nets with Tokens Which Carry Data. In
28th Int. Conf. on Applications and Theory of Petri Nets and
Other Models of Concurrency, (ICATPN 2007), volume 4546
of LNCS, 301–320. Springer.
Lifschitz, V. 1999. Action languages, answer sets and plan-
ning. In The Logic Programming Paradigm: a 25-Year Per-
spective. Springer Verlag. 357–373.
Meyer, A.; Smirnov, S.; and Weske, M. 2011. Data in
business processes. Technical Report 50, Hasso-Plattner-
Institut for IT Systems Engineering, Universität Potsdam.
Minsky, M. L. 1967. Computation: Finite and Infinite Ma-
chines. Prentice-Hall, Inc.
Montali, M., and Calvanese, D. 2016. Soundness of data-
aware, case-centric processes. International Journal on Soft-
ware Tools for Technology Transfer 18(5):535–558.
Reichert, M. 2012. Process and data: Two sides of the same
coin? In Proceedings of the OTM 2012 Confederated Inter-
national Conferences, volume7565 ofLNCS, 2–19. Springer.
Rosa-Velardo, F., and de Frutos-Escrig, D. 2011. Decid-
ability and complexity of petri nets with unordered data.
Theoretical Computer Science 412(34):4439 – 4451.
Sidorova, N.; Stahl, C.; and Trcka, N. 2011. Soundness
verification for conceptual workflow nets with data: Early
detection of errors with the most precision possible. Infor-
mation Systems 36(7):1026–1043.
ter Hofstede, A. H. M.; van der Aalst, W. M. P.; Adams,
M.; and Russell, N., eds. 2010. Modern Business Process
Automation - YAWL and its Support Environment. Springer.
van der Aalst, W., and Stahl, C. 2011. Modeling Business
Processes: A Petri Net-Oriented Approach. MIT Press.
Van Der Aalst, W. M. P. 1998. The application of petri nets
to workflow management. Journal of Circuits, Systems and
Computers 08:21–66.

1099




