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Abstract

In this paper, we present an algorithm and a tool for comput-
ing minimal, equivalent EL concepts wrt. a given ontology.
Our tool can provide valuable support in manual development
of ontologies and improve the quality of ontologies automat-
ically generated by processes such as uniform interpolation,
ontology learning, rewriting ontologies into simpler DLs, ab-
duction and knowledge revision. Deciding whether there ex-
ist equivalent EL concepts of size less than k is known to
be an NP-complete problem. We propose a minimisation al-
gorithm that achieves reasonable computational performance
also for larger ontologies and complex concepts. We evalu-
ate our tool on several bio-medical ontologies with promising
results.

Introduction
Logics allow equivalent facts to be expressed in many dif-
ferent ways. The fact that ontologies are developed by a
number of different people and grow over time can lead to
concepts that are more complex than necessary. For exam-
ple, below is a simplified definition of the medical concept
Clotting from the Galen ontology (Rector et al. 1994):

Clotting ≡ ∃ actsSpecificallyOn.
(Blood � ∃ hasPhysicalState.

(PhysicalState � ∃ hasState.Liquid))�
∃ hasOutcome.SolidBlood)

Galen also defines concepts LiquidBlood and
LiquidState by means of the following axioms:

LiquidBlood ≡ Blood � ∃ hasPhysicalState.LiquidState
LiquidState ≡ PhysicalState � ∃ hasState.Liquid

Using these two concepts, we can find a more concise def-
inition for Clotting and replace the initial one while pre-
serving all logical consequences of the ontology:

Clotting ≡ ∃ actsSpecificallyOn.LiquidBlood �
∃ hasOutcome.SolidBlood

The two definitions of Clotting differ in various aspects.
In addition to the fact that they use different sets of terms,
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we observe that the first is structurally more complex – it
contains more occurrences of logical constructs such as in-
tersection and existential quantification. Furthermore, we
notice that the first definition introduces redundancy within
the ontology. Both unnecessary structural complexity and
redundancy complicate the maintenance of the ontology and
hinder understanding.

Unnecessary structural complexity and redundancy are
not unique to hand-crafted ontologies. On the contrary, they
are a common side effect of processes that generate ontolo-
gies and concept expressions automatically. Examples of
such processes include

computing least common subsumers (Turhan and Zarrieß
2013), concept unification (Baader, Borgwardt, and
Morawska 2012), uniform interpolation (Nikitina and
Rudolph 2012; Lutz, Seylan, and Wolter 2012), ontology
learning (Konev, Ozaki, and Wolter 2016; Lehmann and
Hitzler 2010), rewriting ontologies into less expressive log-
ics (Carral et al. 2014; Lutz, Piro, and Wolter 2011),
abduction (Du, Wang, and Shen 2015; Klarman, Endriss,
and Schlobach 2011), and knowledge revision (Grau, Khar-
lamov, and Zheleznyakov 2012; Qi, Liu, and Bell 2006).
Usually, such tools rely on heuristics that reduce the amount
of redundancy within generated concepts. In this paper,
we present a method that can entirely eliminate redundancy
from EL concepts by computing equivalent concepts of min-
imal size, where concept size is defined as the number of oc-
currences of concept and role symbols. While approaches to
related problems exist, including computing minimal sub-
sets of ontologies (Grimm and Wissmann 2011), rewrit-
ing ALE and ALN concepts using terminologies (Baader,
Küsters, and Molitor 2000) and computing minimal ontolo-
gies in a fragment of EL (Nikitina and Schewe 2013b), to
the best of our knowledge, this is the first method comput-
ing minimal equivalent concepts wrt. EL ontologies.

While it is theoretically possible to compute minimal
equivalent concepts using a naive brute-force approach that
evaluates all possible concepts with the qualifying signature,
it is challenging to compute the solution efficiently. In order
to make concept minimisation feasible in practice, it is nec-
essary to restrict the set of candidate concepts to those that
are semantically related to the initial concept. The founda-
tion of our method is a simple approach based on regular
tree grammars in which we restrict candidate concepts to
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subsumers of the concept in question. Thereby, we signifi-
cantly reduce the number of candidates. We further narrow
down the search space by using dynamic derivation rules—
derivation rules that evolve during minimisation. Rather
than applying the same set of rules to the same non-terminal
over the entire course of minimisation, we compute an up-
dated set of derivation rules on-demand for a particular con-
text and a particular non-terminal based on the information
gathered throughout the minimisation process. During the
evaluation, we found that the average number of derivation
rules applied to each non-terminal over the course of min-
imisation decreased by 8 orders of magnitude due to the use
of dynamic derivation rules.

The evaluation confirms the feasibility of concept min-
imisation in practice. The computation of minimal equiva-
lent concepts took on average 5 minutes for concepts from
Snomed CT (Stearns et al. 2001), and just a few seconds
for concepts from other ontologies including NCI The-
saurus (Sioutos et al. 2007) and Galen. We conclude that
our tool would be a valuable new feature within ontology
editors such as Protégé (Musen 2013).

Preliminaries

In this section, we formally introduce the description logic
EL. Let NC and NR be countably infinite and mutually dis-
joint sets called concept symbols and role symbols, respec-
tively. EL concepts C are defined by

C ::= A | C � C | ∃r.C
where A and r range over NC ∪ {�} and NR, respectively.
In the following, C,D,E, F and G can denote arbitrary con-
cepts, while A,B can only denote concept symbols or �.
An ontology consists of concept inclusion axioms C � D
and concept equivalence axioms C ≡ D, the latter used as
a shorthand for the mutual inclusion C � D and D � C.1
The signature of an EL concept C, an axiom α or an ontol-
ogy O, denoted by sig(C), sig(α) or sig(O), respectively, is
the set of concept and role symbols occurring in it. To dis-
tinguish between the set of concept symbols and the set of
role symbols, we use sigC(·) and sigR(·), respectively.

Further, we use the notation sub(C) to denote the set of all
subconcepts of C, defined as follows. For C ∈ NC ∪ {�},
we have sub(C) = ∅. For C = C1 � · · · � Cn with Ci be-
ing a non-conjunction, we have sub(C) = {C1, · · · , Cn} ∪
sub(C1) ∪ · · · ∪ sub(Cn). For C = ∃r.C1, we have
sub(C) = {C1} ∪ sub(C1). We extend the above notion to
axioms and ontologies as follows. For two concepts C1, C2,
we have sub(C1 � C2) = {C1, C2} ∪ sub(C1) ∪ sub(C2).
For O = {α1, · · · , αn}, we have sub(O) =

⋃
sub(αi).

Next, we recall the semantics of the description logic con-
structs introduced above, which is defined by the means of
interpretations. An interpretation I is given by a set ΔI ,
called the domain, and an interpretation function ·I assign-
ing to each concept A ∈ NC a subset AI of ΔI and to each

1While ontologies in general can also include a specification
of individuals with the corresponding concept and role assertions,
in this paper we concentrate on concept inclusion and equivalence
axioms.

role r ∈ NR a subset rI of ΔI × ΔI . The interpretation
of � is fixed to ΔI . The interpretation of arbitrary EL con-
cepts is defined inductively via (C �D)I = CI ∩DI and
(∃r.C)I = {x | (x, y) ∈ rI and y ∈ CI for some y}. An
interpretation I satisfies an axiom C � D if CI ⊆ DI . I
is a model of an ontology O, if it satisfies all axioms in O.
We say that O entails an axiom α (in symbols, O |= α), if α
is satisfied by all models of O. For EL concepts C,D such
that O |= C � D, we call C a subsumee of D and D a
subsumer of C.

Regular Tree Grammars Next, we recall regular tree
grammars on ranked ordered trees. A ranked alphabet F
is a set of pairs of alphabet symbols and arities from N.
We use superscripts to denote the corresponding arity of
an alphabet symbol (if it is not 0), e.g., f2(g1(a), a). For
the sake of simplicity, we allow the same alphabet symbol
to assume different arities within the same alphabet, e.g.,
F = {g2, g1, · · · }. The set of ground terms over the alpha-
bet F (which are also simply referred to as trees) is denoted
by T (F). Let X be a set of variables. Then, T (F ,X ) de-
notes the set of terms over the alphabet F and the set of
variables X . A term C ∈ T (F ,X ) containing each vari-
able from X at most once is called a context. A regular tree
grammar G = (nS ,N ,F , R) is composed of a start sym-
bol nS , a set N of non-terminal symbols (of arity 0) with
nS ∈ N , a ranked alphabet F of terminal symbols such that
F ∩N = ∅, and a set R of derivation rules, each of which is
of the form n → t where n is a non-terminal from N and t is
a term from T (F ∪ N ). Let X be a set of variables disjoint
from the ranked alphabet F∪N with X ∈ X . Given a regu-
lar tree grammar G = (nS ,N ,F , R), the derivation relation
→G associated with G is a relation on terms from T (F∪N )
such that s →G t if and only if there is a rule n → t′ ∈ R and
there is a context C ∈ T (F∪N , {X}) such that s = C[n/X]
and t = C[t′/X]. The subset of T (F∪N ) which can be gen-
erated by successive derivations starting with the start sym-
bol is denoted by Lu(G) = {t ∈ T (F ∪ N ) | nS →+

G t}
where →+

G is the transitive closure of →G. We omit the
subscript G when the grammar G is clear from the context
or is arbitrary. The language generated by G is denoted by
L(G) = T (F) ∩ Lu(G). For further details on regular tree
grammars, we refer the reader to (Comon et al. 2008).

Minimising Concepts

We define the size of concepts in an ontology O as the num-
ber of role and concept symbol occurrences:
• S(A) = 1 for A ∈ sigC(O) ∪ {�};
• S(∃r.C) = S(C) + 1 for a concept C and a role r ∈

sigR(O);
• S(C1 � C2) = S(C1) + S(C2) for concepts C1, C2.

Given an EL ontology O and a concept C, deciding
whether a concept of size less than k equivalent to C wrt. O
exists, is an NP-complete problem (Nikitina and Schewe
2013a). Thus, while it is possible to find a simple approach
that works in theory, minimising EL concepts wrt. an ontol-
ogy within a reasonable time is challenging. Consider the
following example:
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Example 1. The ontology Oex consists of the following ax-
ioms:

A1 �A2 �A3 � ∃r.(∃s.A3 �A4) (1)
∃r.A4 � A1 (2)

A1 � A3 (3)

Let Cex = A2 � ∃r.(∃s.A3 � A4). If we look for a minimal
concept Dex equivalent to Cex wrt. Oex for the purpose of
substituting Cex in an axiom α ∈ Oex, we find A1 �A2.

In order to find Dex, we could theoretically generate all
concepts C ′ of size up to S(Cex) − 1 from the ontology
signature sig(Oex) and test for each of those 265 concepts
whether Oex |= Cex ≡ C ′. While this would work in the
case of our simple example concept and ontology, for larger
concepts and ontologies with large signatures, this approach
is not feasible in practice.

In order to achieve higher efficiency, we need to restrict
the set of candidate concepts to those that are semantically
related to Cex. Next, we discuss an approach in which every
candidate concept is a subsumer of the concept to be min-
imised.

Computing Subsumers

Our computation of subsumers is inspired by the approach to
uniform interpolation presented by Nikitina et al. (Nikitina
and Rudolph 2014). We construct subsumer grammars —a
set of regular tree grammars that generate subsumers of sub-
concepts of O. Since equivalent concepts have the same sub-
sumers, we group subconcepts of O into equivalence classes
EO = {E ⊆ sub(O) | ∀C1, C2 ∈ E : O |= C1 ≡ C2} such
that for each D ∈ sub(O) there is an E ∈ EO with D ∈ E.
We then assign a single non-terminal nE and a subsumer
grammar, denoted by G�(O, E), to each equivalence class
E from EO. We denote the entire set of non-terminals used
in all subsumer grammars of O by NO = {nE | E ∈ EO}.

Within the subsumer grammars, we use the ranked alpha-
bet FEL = sigC(O) ∪ {�} ∪ {∃r1 | r ∈ sigR(O)} ∪ {�i |
2 ≤ i}, where � and concept symbols in sigC(O) are con-
stants, ∃r1 for r ∈ sigR(O) are unary functions and �i

are functions of arity greater than 2. For brevity, we omit
the arity of the above functions if it is clear from the con-
text. We use the notation

�
(S) to refer to terms constructed

from a set S ⊆ EO as follows:
�
(S) = � if S = ∅,�

(S) = nE if S = {E} and
�
(S) = �(nE1 , · · · , nEn)

if S = {E1, · · · , En}.
In the subsequent definition, we use the following two sets

for constructing each subsumer grammar G�(O, E):

1. The set S ��
E of subsumer successors —a set of equivalence

classes that contain subsumers of concepts from E. Since
equivalence classes consisting of a single conjunction are
not required to compute all subsumers (as shown later on
in Lemma 1), but make our computations more expensive,
we exclude those equivalence classes from S ��

E . The set
S ��
E is given by {E′ ∈ EO | E = E′, E′ = {C1 � C2} for

some concepts C1, C2, and there exist C ∈ E,C ′ ∈ E′
such that O |= C � C ′}. In Table 1, we show the values

E elements of E S ��
E

E� {�} ∅
E1 {A1} E�, E3

E2 {A2} E�
E3 {A3} E�
E4 {A4} E�
E5 {Cex, A1 �A2 �A3} E�, E1, E2, E3, E8, E9

E6 {∃s.A3} E�
E7 {∃s.A3 �A4} E�, E4, E6

E8 {∃r.(∃s.A3 �A4)} E�, E1, E3, E9

E9 {∃r.A4} E�, E1, E3

Table 1: Values of S ��
E for E ∈ EO′

ex
with O′

ex = Oex ∪
{Cex � �}.

nE5 → �(nE1 , nE2) (4)
�(nE1

, nE2
) → �(A1, nE2

) (5)
�(A1, nE2

) → �(A1, A2) (6)

Figure 1: Derivation of the term tDex = �(A1, A2) from nE5

given in Example 1.

of S ��
E for each E ∈ EO′

ex
with O′

ex = Oex ∪ {Cex � �}
from Example 1.

2. The set ExE of existentially qualified successors—a set
of role and equivalence class pairs representing each ex-
istentially qualified expression from E. ExE is given by
{〈r, E′〉 | r ∈ sigR(O), E′ ∈ EO such that there ex-
ists a concept C ′ ∈ E′ with ∃r.C ′ ∈ E}. In Example
1, there are three non-empty sets ExEi

, namely ExE6
=

{〈r, E3〉}, ExE8
= {〈r, E7〉} and ExE9

= {〈r, E4〉}.

We construct subsumer grammars from S ��
E and ExE for a

particular EL ontology O as follows:

Definition 1. Let O be an EL ontology and E0 ∈ EO.
A subsumer grammar G�(O, E0) for E0 wrt. O is given
by (nE0

,NO,FEL, R�), where R� includes the following
rules for each E ∈ EO:

(R1) nE → A for each A ∈ E ∩ (sigC(O) ∪ {�});
(R2) nE → �

(S) for each S ⊆ S ��
E with S = ∅;

(R3) nE → ∃r(nE1) for each 〈r, E1〉 ∈ ExE .

Rules of type R1 have a concept symbol or � on the right-
hand side and are used for deriving ground terms. Within
R2, we introduce a rule for each element of 2S

��
E \ {∅},

thereby covering all possibilities to introduce a conjunction
within a subsumer term or simply replace a non-terminal by
another representing a more general term. Rules of type
R3 generate existentially qualified terms for each element
of E that is an existentially qualified expression. If we
construct the set of derivation rules R� from the values of
S ��
Ei

and ExEi
given in Example 1, we can derive the term

tDex = �(A1, A2) using the grammar G�(O′
ex, E5) with

O′
ex = Oex ∪ {Cex � �} as shown in Fig. 1.
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As stated in the lemma below, this grammar-based gen-
eration of subsumers for subconcepts of EL ontologies is
sound and complete.
Lemma 1. Let O be an EL ontology, E ∈ EO and D a
concept with D ∈ E.

1. Let D′ be a subsumer of D wrt. O. Then, there exists a
syntactic variant2 D′′ of D′ with the corresponding term
representation tD′′ such that tD′′ ∈ L(G�(O, E)).

2. Let D′ be an EL concept with the corresponding term
representation tD′ such that tD′ ∈ L(G�(O, E)). Then,
D′ is a subsumer of D wrt. O.

Dynamic Derivation Rules

Since the above grammars compute all subsumers of a con-
cept D, a large proportion of derived concepts is neither
equivalent to D nor minimal in size. We can further reduce
the number of candidates and the number of rules applied by
making the set of derivation rules dynamic— allowing it to
evolve during minimisation. Rather than applying the same
set of rules to the same non-terminal over the entire course
of minimisation, we compute a set of rules that is specific to
a particular context and non-terminal and incorporates our
requirements concerning size and equivalence to D.

For convenience, we extend the notion of size to terms
and contexts as follows: S(nE) = 1 for a non-terminal
nE , S(X) = 1 for a variable X , S(�(t1, · · · , tn)) =∑

1≤i≤n S(ti) for terms ti and S(∃r(t)) = S(t) + 1 for a
role r and a term t.

Additionally, we use the notation conf (t) to refer to the
concept representation of a term t wrt. a representative se-
lection function f : EO → sub(O) ∪ {�} that assigns a
representative C ∈ E to each E ∈ EO. If the choice of rep-
resentatives from equivalence classes is irrelevant in a par-
ticular context, we omit the superscript f to indicate that the
concept representation con(t) is based on an arbitrary repre-
sentative selection function.

Dynamic derivation rules are motivated by the following
observations regarding subsumer grammars:

1. Terms never become smaller over the course of deriva-
tion. Thus, once an non-ground term t reaches an un-
acceptable size, we can discard all terms that can be de-
rived from t due to their size. We refer to this property
of subsumer grammars as size monotonicity and use it to
filter out rules where the term on the right-hand side is
too large. For instance, once we have derived the term
t = �(nE2 , ∃r(�(nE6 , nE4))) from nE5 in Example 1,
we can skip the rule nE6 → ∃r(nE3), since the resulting
term t′ = �(nE2

, ∃r(�(∃r(nE3
), nE4

))) would become
as large as Cex.

2. Terms never become more specific over the course of
derivation. Thus, if we find that O |= D ≡ con(t) for
the concept D ∈ E to be minimised and some term t
with nE →+ t, we can discard all terms t′ derived from
2Within this context, we are referring to syntactic variations due

to the associativity and commutativity of � as well as the possibil-
ity of multiple occurrences of the same conjunct within conjunc-
tions.

t, since O |= D ≡ con(t′). We refer to this property
as subsumption monotonicity and use it to filter out rules
where the term on the right-hand side is too general. For
instance, we can skip the rule nE5

→ nE3
in Example 1,

since O |= con(nE5
) ≡ con(nE3

).

We formalise the above monotonicity properties of sub-
sumer grammars as follows:

Lemma 2. Let O be an EL ontology and E ∈ EO.
Further, let t1, t2 be two terms such that nE →+

G�(O,E)

t1 →+
G�(O,E)

t2. The following is true:

1. S(t1) ≤ S(t2).
2. If O |= con(nE) ≡ con(t1), then also O |= con(nE) ≡

con(t2).

Looking back at subsumer grammars, we can further ob-
serve that a large proportion of rules of type R2 introduce
redundant conjuncts—conjuncts that are not necessary for
preserving the equivalence between the concept D to be
minimised and the derived concept D′. When computing
minimal equivalent concepts, such rules can be skipped as
they never lead to minimal terms preserving equivalence to
D. For instance, when applying rules to the term nE5

in
Example 1, we can skip the rule nE5

→ �(nE1
, nE2

, nE8
),

since O′
ex |= con(�(nE1

, nE2
, nE8

)) ≡ con(�(nE1
, nE2

)).
We formalise this observation within the following defini-
tion of irreducible sets of equivalence classes—sets that do
not contain redundant elements:

Definition 2. Let O be an EL ontology and S a subset of
EO. The set S is irreducible wrt. O if and only if there is no
subset S′ of S such that O |= con(

�
(S)) ≡ con(

�
(S′)).

We now incorporate the above observations into a defi-
nition of dynamic derivation rules by imposing suitable re-
strictions onto the set of rules R� given in Definition 1.

Definition 3. Let O be an EL ontology, E0 ∈ EO and t
a term such that nE0

→+
G�(O,E0)

t. Let further k ≥ 0

and let C ∈ T (FEL ∪ NO, {X}) be a context contain-
ing the variable X such that C[nE/X] = t for some non-
terminal nE occurring in t. The dynamic set of derivation
rules RE,k,C,O for E with size limit k preserving equiva-
lence within C wrt. O is then given by ∅ in case k = 0 and,
otherwise, as follows:

(DR1) nE → A for each A ∈ E ∩ (sigC(O) ∪ {�});
(DR2) nE → �(S) for each S ⊆ S ��

E such that S = ∅,
|S| ≤ k, O |= con(t) ≡ con(C[�(S)/X]) and, unless
S = {E�}, S is irreducible wrt. O;

(DR3) nE → ∃r(nE1) for each 〈r, nE1〉 ∈ ExnE
in case

k ≥ 2.

Algorithm 1 shows the computation of ground terms rep-
resenting minimal equivalent concepts based on dynamic
derivation rules. Given an EL ontology O and some con-
cept D ∈ E0 for some E0 ∈ EO, we call the recursive
function MINIMISE with O as the ontology, the term rep-
resentation tD of D as the smallest known ground term tmin,
and nE0

as the starting point for further derivations t. In ev-
ery call of MINIMISE, we first test whether the current term
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Algorithm 1: MINIMISE function computing a term rep-
resenting a minimal equivalent concept.

Input: Ontology O, smallest known ground term tmin,
starting point for further derivations t

1 if t is ground then
2 return t;
3 〈nE , C〉 ← pick a non-terminal occurring in t and

generate the corresponding context;
4 for rule ∈ RE,S(tmin)−S(C),C,O do
5 t′ ← apply rule to C;
6 tmin ← MINIMISE(O, tmin, t

′);
7 return tmin;

t is ground, in which case we return t as the new smallest
known ground term. If t is not ground, we randomly pick
a non-terminal nE occurring in t and obtain the correspond-
ing context C by replacing nE with a variable X . We then
compute the dynamic set of derivation rules R for E. The
size limit k = S(tmin) − S(C) ensures that terms produced
by rules from R are always smaller than tmin. Since the val-
ues E and C are used as arguments when computing R, all
rules from R preserve equivalence to con(t). Since we start
the computation with t = tD, all generated terms have con-
cept representations equivalent to D wrt. O. In lines 4-6,
we apply each derivation rule from R and call the function
MINIMISE with a potentially updated value of tmin and the
new term t′ as the starting point for further derivations.

We obtain the following result for computing terms rep-
resenting minimal equivalent concepts using the function
MINIMISE:
Theorem 1. Let O be an EL ontology and D an EL concept
represented by a term tD. Further, let O′ = O ∪ {D � �}
and E ∈ EO′ such that D ∈ E. MINIMISE(O′, tD, nE)
computes a minimal ground term t such that O |= D ≡
con(t).

Computing Dynamic Derivation Rules

While computing rules of types DR1 and DR3 is straight-
forward and the corresponding computational effort is neg-
ligible, the challenging task is to efficiently compute rules
of type DR2. Algorithm 2 shows the computation of the lat-
ter type of rules. Within the algorithm, we first compute for
each rule the corresponding non-empty set of equivalence
classes that form the right-hand side of that rule. The algo-
rithm iteratively builds subsets of S ��

E , as required by Defi-
nition 3, starting with the smallest and extending the size of
considered sets by one in each iteration. For each set, we en-
force the size requirement in lines 8 and 12, the equivalence
requirement in line 12, and the irreducibility requirement in
line 26. The algorithm contains several optimisations based
on observations from our experiments. These optimisations
aim to reduce the number of considered sets as early within
the computation process as possible:

1. In many cases, no equivalence-preserving subset of S ��
E

exists. In order to avoid unnecessary computation, we test

Algorithm 2: COMPUTERULES function computing
rules of type DR2 for RE,k,C,O

Input: Equivalence class E, size limit k ≥ 1, context
C ∈ T (FEL ∪NO, {X}) containing the
variable X , ontology O

1 D ← con(C[nE/X]);
2 M res ← ∅;
3 if O |= D ≡ con(C[�(S ��

E)/X]) then
4 return ∅;

5 Sreq ← compute the required subset of S ��
E ;

6 M test ← {Sreq};
7 s ← |Sreq|;
8 while s ≤ k and M test = ∅ do
9 s ← s+ 1;

10 M expand ← ∅;
11 for S ∈ M test do
12 if S = ∅ and O |= D ≡ con(C[�(S)/X]) then
13 M res ← M res ∪ {S};
14 else
15 reducible← false;
16 for S′ with 〈S′, S〉 ∈ SUCC do
17 if O |= con(

�
(S)) ≡ con(

�
(S′)) then

18 reducible ← true;
19 for S′′ with 〈S′, S′′〉 ∈ SUCC do
20 EXCL ← EXCL ∪ {〈S′′, E′〉 |

E′ ∈ S \ S′};

21 if reducible = false then

22 M expand ← M expand ∪ {S};

23 M test ← ∅;
24 for S ∈ M expand do

25 for E′ ∈ S ��
E do

26 if 〈S,E′〉 ∈ EXCL and E′ ∈ S and there is
no S′ ∈ M res with S′ ⊆ S ∪ {E′} then

27 M test ← M test ∪ {S ∪ {E′}};
28 SUCC ← SUCC ∪ {〈S, S ∪ {E′}〉};
29 EXCL ← EXCL ∪ {〈S ∪ {E′}, E′′〉 |

E′′ ∈ S ��
E′ or 〈S,E′′〉 ∈ EXCL};

30 return {nE → C[�(S)/X] | S ∈ M res};

in lines 3-4 of Algorithm 2 whether the entire set S ��
E of

conjuncts is sufficient to preserve equivalence within C
wrt. O and, otherwise, return an empty set.

2. There is often a required set of conjuncts—a set of con-
juncts that is shared among all conjunctions preserving
equivalence. By computing it in line 5 and using it as the
starting point for the iterative part of the algorithm, we
avoid subsets of S ��

E that clearly do not preserve equiva-
lence.

3. A large number of elements from S ��
E are subsumer suc-

cessors of other elements within S ��
E or conjunctions
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Ontology #Ax. S(C)
S ≥ 2 S ≥ 5 S ≥ 10

Time(s) Red. Red.by Time(s) Red. Red.by Time(s) Red. Red.by
Snomed CT 320,335 5.4 268.0 36% 54% 333.3 50% 28% 704.1 33% 32%
Galen 51,320 3.1 1.8 27% 43% 7.0 86% 47% 15.2 100% 72%
Genomic CDS 4,322 14.2 0.2 14% 76% 0.4 32% 90% 0.5 37% 90%
FYPO 12,265 2.9 1.4 16% 48% 5.4 76% 48% 1.0 0% 0%
NCIT 204,976 3.0 2.6 5% 26% 5.5 33% 26% 4.1 40% 14%

Table 2: Evaluation results.

thereof. Thus, adding those to the corresponding sets
makes those sets reducible. In order to avoid creating
sets that cannot be extended into irreducible ones, we
record the corresponding relationships between subsets
of S ��

E and equivalence classes by means of the relation
EXCL ⊆ 2S

��
E × EO. This relation is gradually constructed

in lines 20 and 29. In line 26, we use known EXCL rela-
tionships to avoid creating subsets of S ��

E that will lead to
reducible sets only.

We obtain the following result for Algorithm 2:

Theorem 2. Let O be an EL ontology, E0 ∈ EO and t a
term such that nE0

→+
G�(O,E0)

t. Further, let k ≥ 1 and let
C ∈ T (FEL ∪ NO, {X}) be a context containing the vari-
able X such that C[nE/X] = t for some non-terminal nE
occurring in t. The function COMPUTERULES(E, k, C,O)
computes rules of type DR2 for RE,k,C,O in time exponential
in the size of S ��

E in the worst case.

Evaluation

We evaluate our method on concepts from Snomed Clin-
ical Terms (Snomed CT) (Stearns et al. 2001), National
Cancer Institute Thesaurus (NCIT) (Sioutos et al. 2007),
Galen (Rector et al. 1994), Fission Yeast Phenotype Ontol-
ogy (FYPO) (Harris et al. 2013) and Genomic Clinical De-
cision Support Ontology (Genomic CDS) (Samwald 2013).
For each ontology O, we selected 100 EL concepts occur-
ring in the axioms of O with the size at least 2. The order
of the axioms was determined by the iterator over the set of
axioms retrieved by the OWL API (Horridge and Bechhofer
2011). We then minimised each concept D with respect to
the ontology O\{α}, where α is the axiom in which the con-
cept D occurred. We set a timeout of 5 minutes for all on-
tologies except Snomed CT, for which we increase the time-
out to 30 minutes due to longer reasoner response times.3

In Table 2, we first list for each ontology the total number
of axioms (#Ax.) and the average size of the 100 evaluated
concepts (S(C)). We then separately show evaluation results
for concepts of size at least 2, at least 5 and at least 10. For
each size category, we include the average processing time
in seconds (Time), the percentage of concepts for which a

3The ELK reasoner (Kazakov, Krötzsch, and Simančı́k 2014)
used in our evaluation took 6 times longer to update classification
results for Snomed CT in comparison to the average time it took
for other ontologies. Therefore, we use a sixfold timeout in case of
Snomed CT.

smaller equivalent concept existed (Red.), and the average
achieved size difference for those concepts (Red.by).

We can see that, while the number of axioms and the aver-
age size of evaluated concepts differ significantly, we could
find a smaller equivalent concept for a notable proportion
of concepts from all ontologies. As expected, this effect is
more prominent in the size categories S ≥ 5 and S ≥ 10.
An exception is FYPO, which had only 1 concept of size
at least 10, for which no smaller representation existed. In
many cases, a notable reduction in size has been achieved.

We measured how the number of applied rules changes
when the computation is based on a dynamic rather than
static set of derivation rules. We found that, on average,
the number of applied rules per non-terminal decreased by 8
orders of magnitude. We also found that, on average, the op-
timisations included within the function COMPUTERULES
reduced the number of considered subsets of S ��

E by 5 orders
of magnitude.

In terms of computation time, we observe that, while a
timeout occurred for 1 concept in NCIT and 4 concepts in
Snomed CT, on average, concept minimisation takes just a
few seconds for all ontologies except Snomed CT. We con-
clude that, for ontologies of an average size and complexity,
concept minimisation could be made available as a feature
within interactive ontology editors such as Protégé (Musen
2013).

Discussion and Outlook

This work can be extended in various directions. For in-
stance, one open question is whether concepts expressed in
more expressive DLs can be minimised efficiently as well.
This work addresses the problem to a certain extent—the
presented method can be used to compute small equiva-
lent concepts for EL concepts within ontologies expressed
in more expressive DLs without a guarantee of minimal-
ity. However, different optimisations might be more effec-
tive and different methods are required to achive an optimal
result. We plan to investigate this in future work.

Another open question is how and to what extent the pre-
sented results can be generalised to support other refactoring
tasks. The presented algorithm can be made more flexible,
e.g. in order to compute all equivalent concepts up to a cer-
tain size and, thereby, enable the user to choose the most
appropriate meaning-preserving concept. The presented re-
sults are also directly relevant for minimising EL ontologies
as a whole. A systematic analysis of benefits for supporting
various refactoring tasks has been left for future work.
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