
Practical TBox Abduction Based on Justification Patterns

Jianfeng Du,1,2 Hai Wan,3,4∗ Huaguan Ma3

1Collaborative Innovation Center for 21st-century Maritime Silk Road Studies,
Guangdong University of Foreign Studies, Guangzhou 510420, P.R.China

2Cisco School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006, P.R.China
jfdu@gdufs.edu.cn

3School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, P.R.China
4Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou 510006, P.R.China

wanhai@mail.sysu.edu.cn

Abstract

TBox abduction explains why an observation is not entailed
by a TBox, by computing multiple sets of axioms, called ex-
planations, such that each explanation does not entail the ob-
servation alone while appending an explanation to the TBox
renders the observation entailed but does not introduce in-
coherence. Considering that practical explanations in TBox
abduction are likely to mimic minimal explanations for TBox
entailments, we introduce admissible explanations which are
subsets of those justifications for the observation that are in-
stantiated from a finite set of justification patterns. A justifica-
tion pattern is obtained from a minimal set of axioms respon-
sible for a certain atomic concept inclusion by replacing all
concept (resp. role) names with concept (resp. role) variables.
The number of admissible explanations is finite but can still
be so large that computing all admissible explanations is im-
practical. Thus, we introduce a variant of subset-minimality,
written ⊆ds-minimality, which prefers fresh (concept or role)
names than existing names. We propose efficient methods for
computing all admissible ⊆ds-minimal explanations and for
computing all justification patterns, respectively. Experimen-
tal results demonstrate that combining the proposed methods
is able to achieve a practical approach to TBox abduction.

Introduction

Ontologies have been used in many real-life applications, in-
cluding e-Commerce, medical informatics, bio-informatics,
and the Semantic Web. As a popular formalism for express-
ing ontologies, description logics (DLs) (Baader et al. 2003)
underpin the standard Web Ontology Language (OWL)
(Horrocks, Patel-Schneider, and van Harmelen 2003). A DL
ontology is often expressed as a knowledge base consist-
ing of both schema information in the TBox and data infor-
mation in the ABox. TBox abduction, advocated in (Elsen-
broich, Kutz, and Sattler 2006), is a pragmatic formalism
for abductive reasoning in DLs. Given a coherent TBox and
an observation which is a concept inclusion not entailed by
the TBox, TBox abduction often explains the observation by
computing multiple sets of axioms called explanations such
that each explanation does not entail the observation alone
while appending an explanation to the TBox renders the ob-
servation entailed but does not introduce incoherence.

∗Corresponding author
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

TBox abduction is particularly useful in handling miss-
ing is-a relations (Lambrix, Dragisic, and Ivanova 2012;
Lambrix and Liu 2013). An is-a relation is a concept inclu-
sion between two concept names, called an atomic concept
inclusion (ACI) in this paper. Simply adding the missing is-a
relations to the TBox may not be a proper way to revise the
TBox since some crucial axioms are still missing. A better
way is to find essential causes of the missing is-a relations
and add axioms in these causes to the TBox. Take a TBox T1
consisting of the following axioms α1, . . . , α6 for example.
α1: GrandFather � Man
α2: GrandFather � ∃hasChild.∃hasChild.Human
α3: GrandMother � Woman
α4: GrandMother � ∃hasChild.∃hasChild.Human
α5: Man � ∃hasChild.Human � Father
α6: Woman � ∃hasChild.Human � Mother

Suppose there is a missing is-a relation GrandFather �
Father and we want to make it entailed by T1. Although sim-
ply adding this relation to T1 will work, this addition cannot
make another missing is-a relation GrandMother � Mother
entailed by T1. This means that such an addition does not
sufficiently improve the quality of T1. In contrast, adding a
crucial axiom ∃hasChild.Human � Human to T1 will make
the above two missing is-a relations entailed by T1. TBox
abduction is required to find such crucial axioms.

Most existing approaches to TBox abduction adopt sim-
ple representation languages for explanations, such as ACI
(Lambrix, Dragisic, and Ivanova 2012; Lambrix and Liu
2013; Wei-Kleiner, Dragisic, and Lambrix 2014) or slightly
extended ACI that allows atomic negation and unqualified
existential or universal restriction (Halland, Britz, and Klar-
man 2014). These representation languages may discard es-
sential causes of non-entailments. For the previous example,
if we disallow qualified existential restrictions, we cannot
discover the explanation {∃hasChild.Human � Human} for
the missing is-a relation GrandFather � Father in T1.

A more practical way is to allow more DL constructors in-
cluding qualified existential restriction to appear in explana-
tions. However, a representation language supporting qual-
ified existential restriction will yield infinitely many expla-
nations since it allows infinitely many nested role names to
appear in a concept. To guarantee a finite space for explana-
tions without losing DL expressivity, we consider patterns.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1100

All entailments have minimal explanations of limited forms,
which are often referred to as justifications. A justification
is a minimal set of axioms responsible for the entailment. It
can be lifted to a justification pattern by replacing all differ-
ent concept (resp. role) names with different concept (resp.
role) variables. Consider a TBox T2 obtained from the afore-
mentioned TBox T1 by adding α7 : ∃hasChild.Human �
Human. A justification for GrandMother � Mother in T2 is
{α3, α4, α6, α7}, which can be lifted to a justification pat-
tern Jp = {X � Z, X � ∃U.∃U.W , Z � ∃U.W � Y ,
∃U.W � W} for the ACI template X � Y .

To mimic minimal explanations for entailments, it can be
assumed that a practical explanation E for a non-entailment
α in a TBox T is a subset of some justification for α in T ∪E .
By considering that any justification can be instantiated from
a justification pattern by a ground substitution which re-
places all different concept (resp. role) variables with dif-
ferent concept (resp. role) names, we assume that only a fi-
nite set P of justification patterns occurring frequently in the
domain of interest is used to yield such an explanation E .
We call E an admissible explanation w.r.t. P . For example,
given the aforementioned T1 and Jp, {∃hasChild.Human �
Human} is an admissible explanation for both observations
GrandFather � Father and GrandMother � Mother w.r.t.
{Jp}. It shows that finding admissible explanations is able
to discover essential causes of non-entailments.

An admissible explanation is allowed to involve fresh con-
cept or role names that do not appear in the TBox nor in
the observation. These fresh concept (resp. role) names can
be interpreted as arbitrary concept (resp. role) names in a
domain whose vocabulary is larger than that of the given
TBox. Although the set of different admissible explanations
(up to renaming fresh concept or role names) is finite, the
number of different admissible explanations can still be so
large that computing all of them is impractical. To compute
less admissible explanations, we introduce a novel notion of
minimality, called ⊆ds-minimality. By treating fresh (con-
cept or role) names as variables, we call an explanation E
⊆ds-minimal if there is no explanation E ′ such that E ′ ⊆ds E
and E �⊆ds E ′, where we write E ′ ⊆ds E if there is a distin-
guishable substitution θ for E ′, which maps different fresh
names to different fresh names or different existing names
not occurring in E ′, such that E ′θ ⊆ E .

We simply call an admissible ⊆ds-minimal explanation
a justification pattern based or JP-based explanation. The
primary challenge for computing JP-based explanations lies
in discovering justification patterns. Computing all justifi-
cations in a TBox before discovering justification patterns
is infeasible. We propose an efficient method that alter-
nately computes justifications and justification patterns so
that justification patterns can be generated as early as pos-
sible. The method calls a DL reasoner as black-box and
is applied to any DL. Moreover, we propose an efficient
method for computing all JP-based explanations from given
justification patterns in a coherent TBox. To show that the
proposed methods can constitute a practical approach to
TBox abduction, we conduct experiments on ten coherent
TBoxes with various complexity. Full proofs are available at
http://www.dataminingcenter.net/tboxabd/AAAI17.pdf.

Preliminaries

We briefly introduce DLs by taking the DL SROIQ (Hor-
rocks, Kutz, and Sattler 2006) for example. SROIQ is
an expressive DL corresponding to OWL 2 DL, the most
expressive while decidable species in the OWL family. A
SROIQ ontology is composed of a TBox and an ABox,
both of which are sets of axioms. TBox axioms include
concept inclusions C � D, complex role inclusions r1 ◦
. . . ◦ rn � s, role disjointness assertions r � ¬s and
role property assertions that are expressible by other ax-
ioms: a role r being symmetric amounts to r � r−; r
being transitive amounts to r ◦ r � r; r being reflexive
amounts to 	 � ∃r.Self; r being irreflexive amounts to
∃r.Self � ⊥. The semantics for SROIQ is given by in-
terpretations I = (ΔI , ·I) for ΔI the domain of I and ·I a
mapping function. A concept inclusion C � D (resp. a com-
plex role inclusion r1 ◦ . . . ◦ rn � s, or a role disjointness
assertion r � ¬s) is said to be satisfied by an interpretation
I if CI ⊆ DI (resp. rI1 ◦ . . . ◦ rIn ⊆ sI or rI ∩ sI = ∅). An
interpretation I is called a model of a TBox T if it satisfies
all axioms in T . A concept C is said to be unsatisfiable in
T if CI = ∅ for all models I of T . A TBox T is said to be
coherent if all concept names in it are satisfiable. An axiom
α is said to be entailed by T or an entailment of T , written
T |= α, if α is satisfied by all models of T . Given an entail-
ment α of T , a subset J of T is called a justification for α
in T if J |= α and J ′ �|= α for all proper subsets J ′ of J .
By Jst(α, T) we denote the set of justifications for α in T .

The Semantics for JP-Based Explanations

Given a coherent TBox and an observation which is a con-
cept inclusion not entailed by the TBox, TBox abduction of-
ten explains the observation by computing explanations for
it, formally defined below. The requirement that an expla-
nation for a concept inclusion C � D is coherent prevents
meaningless explanations {C � ⊥} from being considered.
Definition 1 Given a coherent TBox T and a concept inclu-
sion α such that T �|= α and T ∪ {α} is coherent, an expla-
nation E for α in T is a set of axioms such that T ∪ E |= α,
E �|= α (simply say E is nontrivial) and T ∪ E is coherent
(simply say E is coherent).

W.l.o.g. we assume that observations in TBox abduction
are ACIs. This assumption does not impair applicability of
TBox abduction because the set of explanations for C � D
in T for C and D general concepts coincides with the set of
explanations for PC � PD in T ∪ {C � PC , PD � D},
where PC and PD are globally unique fresh concept names.

To guarantee a finite space for explanations without los-
ing DL expressivity, we consider patterns for explanations.
We notice that justifications for an entailment are irreducible
sets of axioms that are responsible for the entailment. Hence
we assume that an explanation for an ACI in TBox abduction
has the same pattern as a justification for the ACI. To define
patterns for justifications, we introduce variational axioms
in which variables may appear. A variational axiom is ob-
tained from an axiom by replacing some concept (resp. role)
names with concept (resp. role) variables. It is called a fully
variational axiom if no concept or role names appear in it. A

1101

fully variational axiom does not alter the top (bottom) con-
cept 	 (⊥) and individuals in its original axiom.

To make a pattern generalize as many justifications for
ACIs as possible, we use a set of fully variational axioms
to denote a pattern for justifications. This pattern should
have some correspondence to a justification. Thus, we intro-
duce substitutions for variational axioms, which map con-
cept variables to concept names or other concept variables
and map role variables to role names or other role variables.
A substitution is said to be ground if it maps concept (resp.
role) variables to concept (resp. role) names only.

One may only confine that a pattern for justifications gen-
eralizes a justification by applying some ground substitution.
However, this restriction does not reject arbitrarily large pat-
terns. For example, consider the justification J = {A � B}
for the ACI A � B. It can be seen that Jp = {X1 � Y1,
X2 � Y2, . . . , Xn � Yn} for n an arbitrarily large inte-
ger is a pattern generalizing J , because θ = {Xi
→ A,
Yi
→ B | 1 ≤ i ≤ n} is a ground substitution for
Jp such that Jpθ = J . To reject arbitrarily large pat-
terns, we introduce differentiated substitutions which map
different concept (resp. role) variables to different concept
(resp. role) names. Intuitively, a differentiated substitution
is a ground substitution that keeps a one-to-one correspon-
dence between variables and names. We confine that a pat-
tern generalizes at least one justification by applying some
differentiated substitution. Moreover, an ideal pattern should
generalize justifications only, hence we also confine that a
pattern for the ACI template X � Y keeps entailment of
Xσ � Y σ for all ground substitutions σ. We call a pattern
satisfying the above restrictions a justification pattern.

Definition 2 A set Jp of fully variational axioms is called a
justification pattern for X � Y in T for X and Y different
concept variables, if (1) there is a differentiated substitution
θ for Jp such that Jpθ ∈ Jst(Xθ � Y θ, T), and (2) Jpσ |=
Xσ � Y σ for all ground substitutions σ for Jp.

Consider the pattern Jp = {X1 � Y1, X2 � Y2, . . . ,
Xn � Yn} for n ≥ 2 again. As required, Definition 2 pre-
vents Jp from being a justification pattern for any Xi � Yj

(where 1 ≤ i, j ≤ n) in any TBox T .
By lift(S, A, B) we denote the set of fully variational

axioms obtained from a set S of axioms by replacing the
concept name A with X , the concept name B with Y , other
concept names C with concept variables ZC and role names
r with role variables Ur. The following proposition provides
a method for generating justification patterns for the ACI
template X � Y from justifications for ACIs.

Proposition 1 Let T be a TBox, A � B an ACI entailed by
T , and J a justification for A � B in T . Then lift(J , A,B)
is a justification pattern for X � Y in T .

To make explanations E for an ACI α in a coherent TBox
T mimic the way justification patterns are generated, we re-
strict E to be a subset of a certain justification for α in T ∪E ,
where this justification is obtained from a given justification
pattern by applying some differentiated substitution.

Definition 3 Given a coherent TBox T , a set P of justifica-
tion patterns for X � Y and an ACI observation α such that

T �|= α and T ∪{α} is coherent, an explanation E for α in T
is said to be admissible w.r.t. P if there is a justification pat-
tern Jp ∈ P and a differentiated substitution θ for Jp such
that α = Xθ � Y θ, E ⊆ Jpθ and Jpθ ∈ Jst(α, T ∪ E).
Example 1 Consider the justification pattern Jp = {X �
Z, X � ∃U.∃U.W , Z � ∃U.W � Y , ∃U.W � W} for
X � Y . Suppose n ≥ 2, T = {A � ∃r.∃r.C, ∃r.C � C,
D1 � B} ∪ {Di � C | 2 ≤ i ≤ n}, P = {Jp} and the
observation is A � B. Then E = {A � D1, D1 � ∃r.C �
B} is an admissible explanation for A � B in T w.r.t. P ,
because T ∪ E |= A � B, E �|= A � B, T ∪ E is coherent
and θ = {X
→ A, Y
→ B, Z
→ D1, W
→ C, U
→ r}
is a differentiated substitution for Jp such that A � B =
Xθ � Y θ, E ⊆ Jpθ and Jpθ ∈ Jst(A � B, T ∪ E).

Users of abduction often prefer explanations E that are
subset-minimal, i.e., any proper subset of E is not an expla-
nation. Admissible explanations are not necessarily subset-
minimal. For example, the admissible explanation E in Ex-
ample 1 is not subset-minimal because E ′ = {A � D1} is
an explanation for A � B in T such that E ′ ⊂ E . We call
a subset-minimal explanation an admissible subset-minimal
explanation if it is also admissible.

Since admissible subset-minimal explanations do not con-
tain axioms in the given TBox, it is natural to allow fresh
names to appear in these explanations. We call a concept or
role name a fresh name if it does not appear in the given
TBox nor in the given observation, or an existing name oth-
erwise. Consider Example 1. E1 = {A � CZ , CZ �∃r.C �
B} is an admissible subset-minimal explanation for A � B
in T w.r.t. P , where CZ is a fresh concept name.

The introduction of fresh names enables a compact rep-
resentation for all admissible subset-minimal explanations.
We treat fresh names as variables and define a substitution
for explanations as a mapping from fresh names to existing
or fresh names. The set of admissible subset-minimal ex-
planations can be compacted using substitutions. Consider
Example 1 again. Ei = {A � Di, Di � ∃r.C � B} for
i ∈ {2, . . . , n} are also admissible subset-minimal explana-
tions for A � B in T w.r.t. P . The set of admissible subset-
minimal explanations {Ei | 1 ≤ i ≤ n} for A � B in T
w.r.t. P can be compacted as {E1} and recovered from {E1}
by applying certain substitutions.

To reduce the number of explanations that need to be com-
puted, one may consider computing only those explanations
that cannot be obtained from others by applying substitu-
tions. However, the verification of such explanations needs
to consider longer explanations (i.e. those explanations hav-
ing larger cardinalities) and thus is inefficient. For example,
the explanation {A � ∃r.A} can be obtained from a longer
explanation {A � ∃r.CX1 , CX1 � ∃r.CX2 , . . . , CXn−1 �
∃r.CXn} by applying θ = {CXi
→ A | 1 ≤ i ≤ n},
where n ≥ 2 and CXi

are fresh. To improve efficiency, we
introduce the notion of distinguishable substitutions. A dis-
tinguishable substitution θ for E is a substitution for E that
maps different fresh names to different fresh names or dif-
ferent existing names not occurring in E . Intuitively, the set
of concept (resp. role) names in Eθ has a one-to-one corre-
spondence to the set of concept (resp. role) names in E . For

1102

the above example, θ is not a distinguishable substitution for
E since it maps CX1 to A which appears in E .

For two explanations E and E ′, we write E ′ ⊆ds E if there
is a distinguishable substitution θ for E ′ such that E ′θ ⊆ E ,
or write E ′ �⊆ds E otherwise. We call an explanation E for
an observation α in a TBox T ⊆ds-minimal if there is no ex-
planation E ′ for α in T such that E ′ ⊆ds E and E �⊆ds E ′.
The following proposition shows that ⊆ds-minimality im-
plies subset-minimality.

Proposition 2 A ⊆ds-minimal explanation for an axiom α
in a TBox T is a subset-minimal explanation for α in T .

The checking of ⊆ds-minimality does not need to con-
sider longer explanations. In fact, it only needs to consider n
explanations that are not longer than E , where n is the sum
of the number of axioms in E and the number of existing
names in E . To show this checking method, we introduce
two variant sets for a set S of axioms. Firstly, we define a
closest lift set of S as a set of axioms obtained from S by
replacing an existing name with a fresh name not occurring
in S. By lifts1(S) we denote the set of closest lift sets of S.
For example, there are two closest lift sets of {A � ∃r.A},
namely {A � ∃rU .A} and {CX � ∃r.CX}, where rU is a
fresh role name and CX is a fresh concept name. Secondly,
we define a closest proper subset of S as a proper subset of
S that consists of all but one axioms in S. By subs1(S) we
denote the set of closest proper subsets of S. The follow-
ing proposition shows that checking ⊆ds-minimality can be
reduced to linearly many entailment tests w.r.t. the size of E .

Proposition 3 An explanation E for an axiom α in a TBox
T is a ⊆ds-minimal explanation for α in T if and only if
T ∪ E ′ �|= α for all E ′ ∈ subs1(E) ∪ lifts1(E).

By combining ⊆ds-minimality with admissibility, we ob-
tain a new class of explanations named justification pattern
based (simply JP-based) explanations, defined below.

Definition 4 A ⊆ds-minimal explanation for α in T is said
to be a justification pattern based (simply JP-based) expla-
nation for α in T w.r.t. P if it is admissible w.r.t. P .

We call two explanations different if they cannot be con-
verted to each other by renaming fresh names. We propose
to compute all different JP-based explanations rather than all
different admissible subset-minimal explanations, because
(1) by Proposition 2, a JP-based explanation must be admis-
sible and subset-minimal, and (2) the number of different
JP-based explanations can be much smaller than the number
of different admissible subset-minimal explanations.

How to Compute JP-based Explanations

Proposition 1 has indicated that we are able to compute jus-
tification patterns from a given TBox by first computing all
justifications for ACIs entailed by the TBox and then lifting
computed justifications to justification patterns. However,
this method is infeasible because computing all justifications
for a single ACI is already time consuming (Kalyanpur et al.
2007; Du, Qi, and Fu 2014) even if it is optimized by mod-
ularization (Suntisrivaraporn et al. 2008). A practical way
should compute justification patterns as early as possible.

Algorithm 1 ComputeJustificationPatterns(T)
1: P ← ∅ // P stores justification patterns for X � Y
2: for all ACIs A � B such that A �= B and T |= A � B do
3: S ← {Jpθ | Jp ∈ P , θ is a differentiated substitution for

Jp such that Xθ = A, Y θ = B, Jpθ ⊆ T and J �|= A �
B for all J ∈ subs1(Jpθ)}

4: while S = ∅ (then H is set as ∅) or there is a minimal hitting
set H for S such that T \H |= A � B do

5: J ← FindJustification(∅, T \H , A � B)
6: Jp ← lift(J , A,B)
7: P ← P ∪ {Jp}
8: S ← S ∪ {Jpθ | θ is a differentiated substitution for Jp

such that Xθ = A, Y θ = B, Jpθ ⊆ T and J �|= A �
B for all J ∈ subs1(Jpθ)}

9: end while
10: end for
11: return P
Function FindJustification(Su, Sc, A � B) // Return a minimal

subset S of Sc such that Su ∪ S |= A � B.
1: if Sc = ∅ or Su |= A � B then
2: return ∅
3: else if |Sc| = 1 then
4: return Sc

5: else
6: Divide Sc into two disjoint subsets S1 and S2 such that S1∪

S2 = Sc, S1 ∩ S2 = ∅ and 0 ≤ |S1| − |S2| ≤ 1
7: Δ2 ← FindJustification(Su ∪ S1, S2, A � B)
8: Δ1 ← FindJustification(Su ∪Δ2, S1, A � B)
9: return Δ1 ∪Δ2

10: end if

Thus, we propose a method that alternately computes justi-
fications and justification patterns, formally shown in Algo-
rithm 1. This method is extended from the method proposed
in (Du, Qi, and Fu 2014) by adapting it to an incremental one
and by embedding the computation of justification patterns.

The main function ComputeJustificationPatterns(T) in
Algorithm 1 handles every entailed ACI one by one. For an
ACI A � B entailed by T , it computes all justifications
for A � B that can be retrieved from computed justifica-
tion patterns for X � Y before computing new justifications
(line 3). It then incrementally computes a new justification
for A � B using the same search strategy given by (Du, Qi,
and Fu 2014). A new justification for A � B exists if and
only if there is a minimal hitting set (MHS) H for the set of
computed justifications such that T \ H |= A � B, where
an MHS H for a set S of sets of axioms is a minimal set
of axioms such that H ∩ S �= ∅ for all S ∈ S . When there
is an MHS H such that T \ H |= A � B, a new justifica-
tion for A � B in T is computed from T \ H by a apply-
ing divide-and-conquer method developed in (Junker 2004;
Du, Qi, and Fu 2014) (line 5). After a new justification J is
computed, it is lifted to a justification pattern Jp for X � Y
in T (line 6). Afterwards the main function retrieves more
justifications for A � B from Jp (line 8) and tries to find a
new justification (line 4). Algorithm 1 eventually computes
a set of justification patterns for X � Y that generalizes all
justifications for all ACI entailments, as shown below.

Theorem 1 ComputeJustificationPatterns(T) returns a set
P of justification patterns for X � Y in T such that for

1103

all ACIs A � B entailed by T and all justifications J for
A � B in T , there exists a justification pattern Jp ∈ P and
a differentiated substitution θ for Jp such that Jpθ = J .

After a set P of justification patterns for X � Y in T is
obtained, we are able to compute all JP-based explanations
for A � B in T w.r.t. P by bipartition of every justification
pattern in P and by treating one part of the pattern as a sub-
set of T and the other part as a JP-based explanation. Given
a justification pattern Jp, we define a bipartition of Jp as a
pair (J1,J2) such that J1 ∩ J2 = ∅ and J1 ∪ J2 = Jp.
By bipart(Jp) we denote the set of bipartitions of Jp. For
a set S of variational axioms, by inst(S) we denote the set
of axioms obtained from S by replacing all different con-
cept (resp. role) variables with different fresh concept (resp.
role) names. The following theorem provides a method for
computing all different JP-based explanations.
Theorem 2 Given a coherent TBox T , a set P of justifica-
tion patterns for X � Y in T , and an observation A � B
such that T �|= A � B and T ∪ {A � B} is coher-
ent, the set of different JP-based explanations for A � B
in T w.r.t. P amounts to S = {inst(J1θ) | Jp ∈ P ,
(J1,J2) ∈ bipart(Jp) and θ is a differentiated substitu-
tion for J2 ∪ {X � Y } such that Xθ = A, Y θ = B,
J2θ ⊆ T , inst(J1θ) �|= A � B, T ∪ inst(J1θ) is coherent,
J2θ ∪ inst(J1θ) ∈ Jst(A � B, T ∪ inst(J1θ)), and no ex-
planation E ′ for A � B in T fulfills E ′ ⊆ds inst(J1θ) and
inst(J1θ) �⊆ds E ′} up to renaming fresh names.

For efficiency, the above method can be optimized by sim-
plifying the tests for non-triviality, ⊆ds-minimality and ad-
missibility, as shown in the following corollary.
Corollary 1 The set of different JP-based explanations for
A � B in T w.r.t. P amounts to {inst(J1θ) | Jp ∈ P ,
(J1,J2) ∈ bipart(Jp) and θ is a differentiated substitution
for J2 ∪ {X � Y } such that ∅ ⊂ J2 ⊂ Jp, Xθ = A, Y θ =
B, J2θ ⊆ T , T ∪ inst(J1θ) is coherent, J ∪ inst(J1θ) �|=
A � B for all J ∈ subs1(J2θ), and T ∪ E ′ �|= A � B
for all E ′ ∈ lifts1(inst(J1θ)) ∪ subs1(inst(J1θ))} up to
renaming fresh names.

Experimental Evaluation
We implemented both the method for computing all justifi-
cation patterns and the method for computing all JP-based
explanations in Java, using the Pellet (Sirin et al. 2007) API
(version 2.3.1) to discover and check entailments, and using
MySQL to manage justification patterns. The implementa-
tion of the former method computes justifications in the syn-
tactic locality-based module (Grau et al. 2007) for the left-
hand side of the given entailment rather than in the whole
TBox. This optimization has been proved to be sound and
complete (Suntisrivaraporn et al. 2008). The implementation
of the latter method computes JP-based explanations for an
observation from lower to higher levels, where at level k it
computes all JP-based explanations whose cardinalities are
k. This way enables us to stop computing JP-based explana-
tions at a certain level when time resource is limited.

We collected ten coherent TBoxes. Some of their statis-
tics are reported in Table 1. The first TBox is the well-
known LUBM (Guo, Pan, and Heflin 2005) TBox. The next

Table 1: The characteristics of every test TBox
TBox DL Expressivity #C #R #A #E

LUBM ALEHI+(D) 43 32 93 76
UOBM-Lite ALEHIN+(D) 52 43 145 86
UOBM-DL SHOIN (D) 69 44 206 113
generations ALCOIF 18 4 38 45

wine SHOIN (D) 77 14 657 322
philosurfical AL 377 313 1465 2981

not-galen ALEHF+ 3097 413 5771 32475
physiology ALEI 2129 134 2256 2146

drugs ALEHIF(D) 4258 89 5042 17103
pathology ALEI(D) 7378 258 7159 14235

Note: #C is the number of concept names; #R is the number of role
names; #A is the number of axioms in the TBox; #E is the number
of ACIs that are entailed by the TBox; The DL expressivity was
detected by Pellet (version 2.3.1).

two are the UOBM (Ma et al. 2006) TBoxes. They extend
LUBM by adding OWL Lite features and OWL DL fea-
tures, respectively. The next four were collected from http:
//protegewiki.stanford.edu/wiki/Protege Ontology Library. They
describe family relationships, the philosophical domain,
wines and an early prototype GALEN model, respectively.
The last three TBoxes are large TBoxes about medical ex-
tensions and were collected from http://www.opengalen.org/
download/opengalen8-owl-sources.zip.

To show whether the proposed methods can constitute a
practical approach to TBox abduction, we carried out two
experiments. One computes up to the initial 1000 justifica-
tion patterns in every test TBox. These justification patterns
are ranked in descending order of their supports, where the
support of a justification pattern Jp in a TBox T is defined
as the number of justifications that can be instantiated from
Jp in T . The other experiment computes JP-based expla-
nations whose cardinalities are respectively 1 and 2 for 50
randomly generated observations from the top 100 justifi-
cation patterns computed in the former experiment. Each
generated observation is an ACI that is not entailed by the
given TBox while adding it to the TBox does not intro-
duce incoherence. The top justification patterns have the
largest supports in a given TBox, thus the JP-based expla-
nations derived from them are more likely to mimic the
way the TBox is modeled than other explanations. We set
a time limit of 10000 seconds for computing JP-based ex-
planations whose cardinalities are k (where k ∈ {1, 2}) for
all 50 generated observations in a test TBox. When time-
out incurs we can also see how many top justification pat-
terns are completely handled for all 50 generated observa-
tions. All experiments were conducted on a laptop with Intel
Dual-Core 2.60GHz CPU and 8GB RAM, running Windows
7 (64 bit) with the maximum Java heap size set to 8GB.
The implemented system and test TBoxes are available at
http://www.dataminingcenter.net/tboxabd/.

The “JP-Comp” part in Table 2 shows the statistics about
every test TBox in computing up to the initial 1000 justifi-
cation patterns. If the number of justification patterns is less
than 1000, the actual number is shown. The reported execu-
tion time includes the time for loading the TBox and com-

1104

Table 2: The running statistics for every test TBox
JP-Comp JPBE1-Comp JPBE2-Comp

TBox #P T(s) #TP T1(s) #E #TP T2(s) #E
LUBM 17 *1.0 17 3.9 253 17 178.8 18898

UOBM-Lite 23 *1.3 23 5.5 342 23 250.5 39870
UOBM-DL 44 *2.3 44 6.1 255 44 290.7 40659
generations 31 *0.9 31 2.7 182 – – –

wine 894 *86.6 100 66.7 0 100 188.9 10948
philosurfical 12 *7.6 12 89.7 1834 7 7111.4 724961

not-galen 1000 1340.9 100 72.0 1384 3 5637.8 144626
physiology 274 *14.8 100 108.7 477 98 9996.8 398521

drugs 289 *69.6 100 193.3 617 4 2749.2 49650
pathology 1000 122.8 100 112.6 935 7 4161.8 29759

Note: #P is the number of computed justification patterns; T is the
execution time in seconds for computing up to the initial 1000 jus-
tification patterns (leading with * if all justification patterns are
computed); #TP is the number of top justification patterns that are
completely handled (for all 50 generated observations) in 10000
seconds; T1 (T2) is the execution time in seconds for completely
handling the top #TP justification patterns; #E is the total number
of JP-based explanations computed for all 50 generated observa-
tions after completely handling the top #TP justification patterns.

puting syntactic locality-based modules. The results show
that justification patterns can efficiently be computed in ex-
pressive DLs. Except for not-galen (resp. pathology)
that costs 1340.9 (resp. 122.8) seconds to compute the initial
1000 justification patterns, other test TBoxes only cost less
than two minutes to compute all justification patterns.

The “JPBEk-Comp” part of Table 2 shows the statistics
about every test TBox in computing all JP-based explana-
tions whose cardinalities are k for top 100 justification pat-
terns and all 50 generated observations. When k = 1, up
to the top 100 justification patterns are completely handled
in at most a few minutes. But the setting of k = 1 cannot
guarantee that at least one JP-based explanation is generated
(see 0 for wine), hence it may need to compute JP-based
explanations with cardinality 2. The case where k = 2 is
inapplicable to generations because all JP-based expla-
nations in generations have cardinality 1. For each of
other TBoxes, when k = 2, there are at least several top jus-
tification patterns that can be completed handled in 10000
seconds with a number of JP-based explanations generated.
These results show that a practical use of the proposed meth-
ods is to compute JP-based explanations with cardinality 1
or from several top justification patterns. The results also
indicate that we may need to postprocess the computed JP-
based explanations by choosing several best ones from them.
This can be done, either by ranking the computed JP-based
explanations, or by exploiting an interactive debugging ap-
proach such as (Shchekotykhin and Friedrich 2010).

Related Work

For abductive reasoning in DLs, there are three different
general problems advocated in (Elsenbroich, Kutz, and Sat-
tler 2006). They are concept abduction (Colucci et al. 2004;
Bienvenu 2008; Noia, Sciascio, and Donini 2009), ABox ab-
duction (Klarman, Endriss, and Schlobach 2011; Du et al.

2011; Calvanese et al. 2013; Du, Wang, and Shen 2014)
as well as TBox abduction targeted in this work. There are
several slightly different problem settings for TBox abduc-
tion. All of them typically target computing explanations E
for an observation α in a TBox T such that T ∪ E |= α.
In (Elsenbroich, Kutz, and Sattler 2006) T and E are al-
lowed to be expressed in different DLs, but no method is pro-
vided with this general setting. In (Hubauer, Lamparter, and
Pirker 2010) E is defined as a set of concept inclusions hav-
ing specified patterns. An automata-based method for this
setting is proposed but no evaluation is provided. In (Lam-
brix, Dragisic, and Ivanova 2012; Lambrix and Liu 2013;
Wei-Kleiner, Dragisic, and Lambrix 2014) E is restricted to
be a set of ACIs. Some methods are provided with this set-
ting for concept taxonomy (Lambrix and Liu 2013), acyclic
ALC TBox (Lambrix, Dragisic, and Ivanova 2012) and
EL++ TBox (Wei-Kleiner, Dragisic, and Lambrix 2014),
respectively. In (Halland, Britz, and Klarman 2014) E is de-
fined as a set of concept inclusions allowing only concept
name, atomic negation and unqualified existential or uni-
versal restriction. A tableau-based method for this setting
is proposed but no evaluation is provided. In (Koopmann
and Schmidt 2015) E is restricted to be of the form {A �
∀r.(B1 � . . . � Bn)}, computed by the uniform interpolant
of the negated observation ¬α and a given acyclic ALCH
TBox. Compared to (Hubauer, Lamparter, and Pirker 2010),
our problem setting restricts the pattern of an explanation as
a whole rather than patterns of individual axioms, thus mak-
ing the computation of explanations more practical. Com-
pared to other existing problem settings, our setting allows
arbitrary DL constructors to be used in explanations. More
importantly, we have provided evaluation results to show
that our setting enables a practical approach to TBox ab-
duction that works well with complex TBoxes.

Conclusion and Future Work

For practical TBox abduction in complex TBoxes, we made
the following contributions in this paper. First of all, we pro-
posed a novel class of preferred explanations in TBox ab-
duction, namely JP-based explanations. The restriction of
being derivable from justification patterns guarantees a finite
space for explanations. The ⊆ds-minimality further reduces
the space for preferred explanations. Secondly, we proposed
an efficient method for computing all justification patterns
from a TBox expressible in any DL. Thirdly, we proposed
an efficient method for computing all JP-based explanations
from a given set of justification patterns. Finally, we em-
pirically showed that the proposed methods are efficient for
complex TBoxes.

For future work, we plan to explore real-life applications
of TBox abduction based on justification patterns besides
repairing missing is-a relations. One potential application
is recognizing textual entailment, in which some promising
results achieved by applying abduction have already been
shown (Raina, Ng, and Manning 2005). We also plan to
study practical criteria for ranking JP-based explanations in
TBox abduction and to investigate methods for computing
high-ranked JP-based explanations as early as possible.

1105

Acknowledgements

This work was partly supported by National Natural Science
Foundation of China under grants 61375056 and 61573386,
Natural Science Foundation of Guangdong Province under
grant 2016A030313292, Guangdong Province Science and
Technology Plan projects under grant 2016B030305007,
and Sun Yat-sen University Cultivation Project (16lgpy40).

References

Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.
Bienvenu, M. 2008. Complexity of abduction in the EL fam-
ily of lightweight description logics. In Proceedings of the
11th International Conference on Principles of Knowledge
Representation and Reasoning (KR), 220–230.
Calvanese, D.; Ortiz, M.; Simkus, M.; and Stefanoni, G.
2013. Reasoning about explanations for negative query an-
swers in DL-Lite. Journal of Artificial Intelligence Research
48:635–669.
Colucci, S.; Noia, T. D.; Sciascio, E. D.; Donini, F. M.; and
Mongiello, M. 2004. A uniform tableaux-based approach to
concept abduction and contraction in ALN . In Proceedings
of the 17th International Workshop on Description Logics.
Du, J.; Qi, G.; Shen, Y.; and Pan, J. Z. 2011. Towards prac-
tical ABox abduction in large OWL DL ontologies. In Pro-
ceedings of the 25th National Conference on Artificial Intel-
ligence (AAAI), 1160–1165.
Du, J.; Qi, G.; and Fu, X. 2014. A practical fine-grained
approach to resolving incoherent OWL 2 DL terminologies.
In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management
(CIKM), 919–928.
Du, J.; Wang, K.; and Shen, Y. 2014. A tractable approach to
ABox abduction over description logic ontologies. In Pro-
ceedings of the 28th AAAI Conference on Artificial Intelli-
gence (AAAI), 1034–1040.
Elsenbroich, C.; Kutz, O.; and Sattler, U. 2006. A case
for abductive reasoning over ontologies. In Proceedings of
the 3rd OWLED Workshop on OWL: Experiences and Direc-
tions.
Grau, B. C.; Horrocks, I.; Kazakov, Y.; and Sattler, U. 2007.
Just the right amount: extracting modules from ontologies.
In Proceedings of the 16th International Conference on
World Wide Web (WWW), 717–726.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web Seman-
tics 3(2-3):158–182.
Halland, K.; Britz, A.; and Klarman, S. 2014. TBox abduc-
tion in ALC using a DL tableau. In Proceedings of the 27th
International Workshop on Description Logics, 556–566.
Horrocks, I.; Kutz, O.; and Sattler, U. 2006. The even more
irresistible SROIQ. In Proceedings of the 10th Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), 57–67.

Horrocks, I.; Patel-Schneider, P. F.; and van Harmelen, F.
2003. From SHIQ and RDF to OWL: the making of a web
ontology language. Journal of Web Semantics 1(1):7–26.
Hubauer, T.; Lamparter, S.; and Pirker, M. 2010. Automata-
based abduction for tractable diagnosis. In Proceedings of
the 23rd International Workshop on Description Logics.
Junker, U. 2004. QUICKXPLAIN: Preferred explanations
and relaxations for over-constrained problems. In Proceed-
ings of the 19th National Conference on Artificial Intelli-
gence (AAAI), 167–172.
Kalyanpur, A.; Parsia, B.; Horridge, M.; and Sirin, E. 2007.
Finding all justifications of OWL DL entailments. In Pro-
ceedings of the 6th International Semantic Web Conference
(ISWC), 267–280.
Klarman, S.; Endriss, U.; and Schlobach, S. 2011. ABox ab-
duction in the description logic ALC. Journal of Automated
Reasoning 46(1):43–80.
Koopmann, P., and Schmidt, R. A. 2015. LETHE:
saturation-based reasoning for non-standard reasoning tasks.
In Informal Proceedings of the 4th International Workshop
on OWL Reasoner Evaluation (ORE), 23–30.
Lambrix, P., and Liu, Q. 2013. Debugging the missing is-a
structure within taxonomies networked by partial reference
alignments. Data & Knowledge Engineering 86:179–205.
Lambrix, P.; Dragisic, Z.; and Ivanova, V. 2012. Get my
pizza right: Repairing missing is-a relations in ALC ontolo-
gies. In Proceedings of the 2nd Joint International Semantic
Technology Conference (JIST), 17–32.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G.; Pan, Y.; and Liu, S. 2006.
Towards a complete OWL ontology benchmark. In Sure,
Y., and Domingue, J., eds., Proceedings of the 3rd European
Semantic Web Conference (ESWC), 125–139.
Noia, T. D.; Sciascio, E. D.; and Donini, F. M. 2009. A
tableaux-based calculus for abduction in expressive descrip-
tion logics: Preliminary results. In Proceedings of the 22nd
International Workshop on Description Logics.
Raina, R.; Ng, A. Y.; and Manning, C. D. 2005. Robust
textual inference via learning and abductive reasoning. In
Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI), 1099–1105.
Shchekotykhin, K. M., and Friedrich, G. 2010. Query
strategy for sequential ontology debugging. In Proceedings
of the 9th International Semantic Web Conference (ISWC),
696–712.
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz,
Y. 2007. Pellet: A practical OWL-DL reasoner. Journal of
Web Semantics 5(2):51–53.
Suntisrivaraporn, B.; Qi, G.; Ji, Q.; and Haase, P. 2008. A
modularization-based approach to finding all justifications
for OWL DL entailments. In Proceedings of the 3rd Asian
Semantic Web Conference (ASWC), 1–15.
Wei-Kleiner, F.; Dragisic, Z.; and Lambrix, P. 2014. Ab-
duction framework for repairing incomplete EL ontologies:
Complexity results and algorithms. In Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI),
1120–1127.

1106

