
Solving Advanced Argumentation Problems
with Answer-Set Programming

Gerhard Brewka
Universität Leipzig, Leipzig, Germany

Martin Diller, Georg Heissenberger, Thomas Linsbichler, and Stefan Woltran
TU Wien, Vienna, Austria

Abstract

Powerful formalisms for abstract argumentation have been
proposed. Their complexity is often located beyond NP and
ranges up to the third level of the polynomial hierarchy. The
combined complexity of Answer-Set Programming (ASP) ex-
actly matches this complexity when programs are restricted
to predicates of bounded arity. In this paper, we exploit this
coincidence and present novel efficient translations from ab-
stract dialectical frameworks (ADFs) and GRAPPA to ASP.
We also empirically compare our approach to other systems
for ADF reasoning and report promising results.

Introduction

Argumentation is an active area of research with applica-
tions in legal reasoning (Bench-Capon and Dunne 2005),
decision making (Amgoud and Prade 2009), e-governance
(Cartwright and Atkinson 2009) and multi-agent systems
(McBurney, Parsons, and Rahwan 2012). Dung’s argumen-
tation frameworks (Dung 1995), AFs for short, are widely
used in argumentation. They focus entirely on conflict reso-
lution among arguments, treating the latter as abstract items
without logical structure. Although AFs are quite popular,
various generalizations aiming for easier and more natural
representations have been proposed, see (Brewka, Polberg,
and Woltran 2014) for an overview.

We focus on two such generalizations, namely ADFs
(Brewka and Woltran 2010; Brewka et al. 2013) and
GRAPPA (Brewka and Woltran 2014), which are expressive
enough to capture many of the other available frameworks.
Reasoning in ADFs spans the first three levels of the poly-
nomial hierarchy (Strass and Wallner 2015). These results
carry over to GRAPPA (Brewka and Woltran 2014). ADFs,
in particular, have received increasing attention recently, see
e.g. (Gaggl and Strass 2014; Booth 2015; Al-Abdulkarim,
Atkinson, and Bench-Capon 2016).

Two approaches to implement ADF reasoning have
been proposed in the literature. QADF (Diller, Wallner,
and Woltran 2014; 2015) encodes problems as quantified
Boolean formulas (QBFs) such that a single call of a
QBF solver delivers the result. DIAMOND (Ellmauthaler and
Strass 2014; 2016), on the other hand, employs ASP. Since

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

DIAMOND relies on static encodings, i.e. the encoding does
not change for different framework instances, this approach
is limited by the data complexity of ASP (which only reaches
the second level of the polynomial hierarchy (Eiter and Gott-
lob 1995; Eiter, Gottlob, and Mannila 1997)). Therefore,
preferred semantics (which comprise the hardest problems
for ADFs and GRAPPA) need a more complicated treatment
involving two consecutive calls to ASP solvers with a pos-
sibly exponential blowup for the input of the second call. A
GRAPPA interface has been added to DIAMOND (Berthold
2016), but we are not aware of any systems for GRAPPA not
requiring a translation to ADFs as intermediate step.

In this paper, we introduce a new method for implement-
ing reasoning tasks related to both ADFs and GRAPPA such
that even the hardest among the problems are treated with
a single call to an ASP solver. The reason for choosing
ASP is that the rich syntax of GRAPPA is much easier cap-
tured by ASP than by other formalisms like QBFs. Our ap-
proach makes use of the fact that the combined complexity
of ASP for programs with predicates of bounded arity (Eiter
et al. 2007) exactly matches the complexity of ADFs and
GRAPPA. This approach is called dynamic, because the en-
codings are generated individually for every instance. We
are not aware of any comparable work in argumentation.

More specifically, we provide encodings for admissible,
complete, and preferred semantics for ADFs and GRAPPA.
Depending on the semantics (and their complexity) the en-
codings yield normal or, in the case of preferred semantics,
disjunctive programs. We specify the encodings in a modular
way, which makes our approach amenable for extensions to
other semantics. We also provide a preliminary experimental
analysis in order to determine the potential of this method.

Background

ADFs. An ADF is a directed graph whose set of nodes S
represents statements. The links represent dependencies: the
status of a node s only depends on the status of its parents
(denoted par(s)), that is, the nodes with a direct link to s. In
addition, each node s has an associated acceptance condition
Cs specifying the conditions under which s is acceptable.

It is convenient to represent the acceptance conditions as
a collection C = {ϕs}s∈S of propositional formulas. This
leads to the logical representation of ADFs we will use in
this paper where an ADF D is a pair (S,C) with the set of

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1077

links L implicitly given as (a, b) ∈ L iff a appears in ϕb.
Semantics assign to ADFs a collection of (3-valued) in-

terpretations, i.e. mappings of the statements to truth values
{1, 0, u}, denoting true, false and undecided, respectively.
The three truth values are partially ordered by ≤i according
to their information content: we have u <i 1 and u <i 0 and
no other pair in <i. The information ordering ≤i extends in
a straightforward way to interpretations v1, v2 over S in that
v1 ≤i v2 iff v1(s) ≤i v2(s) for all s ∈ S.

An interpretation v is 2-valued if all statements are
mapped to 1 or 0. For interpretations v and w, we say that w
extends v iff v ≤i w. We denote by [v]2 the set of all com-
pletions of v, i.e. 2-valued interpretations that extend v.

For an ADF D = (S,C), s ∈ S and an interpretation v,
the characteristic function ΓD(v) = v′ is given by

v′(s) =

⎧⎨
⎩
1 if w(ϕs) = 1 for all w ∈ [v]2
0 if w(ϕs) = 0 for all w ∈ [v]2
u otherwise

That is, the operator returns an interpretation mapping a
statement s to 1 (resp. 0) iff all 2-valued interpretations ex-
tending v evaluate ϕs to true (resp. false). Intuitively, ΓD

checks which truth values can be justified based on the in-
formation in v and the acceptance conditions. Note that ΓD

is defined on 3-valued interpretations, while we evaluate ac-
ceptance conditions under their 2-valued extensions.

Given an ADF D = (S,C), an interpretation v is ad-
missible w.r.t. D if v ≤i ΓD(v); it is complete w.r.t. D if
v = ΓD(v); it is preferred w.r.t. D if v is maximal admissi-
ble w.r.t. ≤i. As shown in (Brewka et al. 2013) these seman-
tics generalize the corresponding notions defined for AFs.
For σ ∈ {adm, com, prf}, σ(D) denotes the set of all admis-
sible (resp. complete, preferred) interpretations w.r.t. D.
Example 1. Given the ADF D = ({a, b}, {ϕa=a ∨
¬b, ϕb=¬a}) and v1 = {a→u, b→u}, v2 = {a→1, b→u},
v3 = {a→1, b→0}, v4 = {a→0, b→1}, we get
adm(D) = {v1, v2, v3, v4}, com(D) = {v1, v3, v4} (note
that ΓD(v2)=v3, thus v2 /∈com(D)), and prf(D) = {v3, v4}.

GRAPPA. ADFs are particularly useful as target formal-
ism of translations from graph-based approaches. This raises
the question whether an ADF style semantics can be directly
defined for arbitrary labelled graphs, thus circumventing the
need for any translations. GRAPPA (Brewka and Woltran
2014) fulfills exactly that goal. GRAPPA allows argumen-
tation scenarios to be defined using arbitrary directed edge-
labelled graphs. The nodes in S represent statements, as be-
fore. Labels of links, which may be chosen as needed, de-
scribe the type of relationship between a node and its par-
ents. As for ADFs, each node has its own acceptance con-
dition, and the semantics of a graph is defined in terms of
3-valued interpretations. The major difference is that accep-
tance conditions no longer depend on the acceptance status
of the parents of a node, but on the labels of its active incom-
ing links, where a link is active if its source node is true and
a label is active if it is the label of an active link. More pre-
cisely, since it can make an important difference whether a
specific label appears once or more often on active links, the

acceptance condition depends on the multiset of active la-
bels of a node, that is, an acceptance condition is a function
c : (L → N) → {t, f}, where L is the set of all labels.

The characteristic function ΓG of a graph G needs to be
adapted accordingly: again the function takes a 3-valued in-
terpretation v and produces a new one v′; again v′ is con-
structed by considering all 2-valued extensions v′′ of v, pick-
ing a classical truth value only if all extensions produce the
same result. But this time an intermediate step is needed to
determine the truth value of a node s: one first has to deter-
mine the multiset of active labels of s generated by v′′. The
acceptance function c then takes this multiset as argument
and produces the truth value induced by v′′.

With this new characteristic function the semantics of a
graph G can be defined as for ADFs, that is, an interpretation
v is admissible w.r.t. G if v ≤i ΓG(v); it is complete w.r.t.
G if v = ΓG(v); it is preferred w.r.t. G if v is maximal
admissible w.r.t. ≤i. As before σ(G) (σ ∈ {adm, com, prf})
denotes the set of all respective interpretations.

GRAPPA acceptance functions are specified using accep-
tance patterns over a set of labels L defined as follows:
• A term over L is of the form #(l), #t(l) (with l ∈ L), or

min, mint, max, maxt, sum, sumt, count, countt.
• A basic acceptance pattern (over L) is of the form a1t1+
· · ·+ antn Ra, where the ti are terms over L, the ais and
a are integers and R ∈ {<,≤,=, �=,≥, >}.

• An acceptance pattern (over L) is a basic acceptance pat-
tern or a Boolean combination of acceptance patterns.
A GRAPPA instance is a tuple G = (S,E, L, λ, π) where

S is a set of statements, E a set of edges, L a set of labels,
λ an assignment of labels to edges, and π an assignment of
acceptance patterns over L to nodes. For a multiset of labels
m : L → N and s ∈ S the value function valms is:

valms (#l) = m(l)
valms (#tl) = |{(e, s) ∈ E | λ((e, s)) = l}|
valms (min) = min{l ∈ L | m(l) > 0}
valms (mint) = min{λ((e, s)) | (e, s) ∈ E}
valms (max) = max{l ∈ L | m(l) > 0}
valms (maxt) = max{λ((e, s)) | (e, s) ∈ E}
valms (sum) =

∑
l∈L m(l)

valms (sumt) =
∑

(e,s)∈E λ((e, s))
valms (count) = |{l | m(l) > 0}|
valms (countt) = |{λ((e, s)) | (e, s) ∈ E}|

min(t), max(t), sum(t) are undefined in case of non-
numerical labels. For ∅ they yield the neutral element of the
corresponding operation, i.e. valms (sum) = valms (sumt) =
0, valms (min) = valms (mint) = ∞, and valms (max) =
valms (maxt) = −∞.

Let m and s be as before. For basic acceptance patterns
the satisfaction relation |= is defined by

(m, s) |= a1t1+· · ·+antnRa iff
n∑

i=1

(
ai val

m
s (ti)

)
R a.

The extension to Boolean combinations is as usual. For
each node s the associated acceptance function c(s) is ob-

1078

Table 1: Complexity results for ADFs, GRAPPA and ASP.
ADF and GRAPPA ASP bounded arity
adm com prf normal disjunctive

cred ΣP
2 ΣP

2 ΣP
2 ΣP

2 ΣP
3

skept trivial coNP ΠP
3 ΠP

2 ΠP
3

tained from the corresponding pattern π(s) by c(s)(m) =
1 iff (m, s) |= π(s).
Example 2. Consider the GRAPPA instance G with S =
{a, b, c}, E = {(a, b), (b, b), (c, b), (b, c)}, L = {+,-}, all
edges being labelled with + except (b, b) with -, and the ac-
ceptance condition #t(+) − #(+) = 0 ∧ #(-) = 0 (i.e.
all +-links must be active and no --link is active) for each
statement. The following interpretations are admissible w.r.t.
G: v1 = {a→u, b→u, c→u}, v2 = {a→u, b→0, c→0},
v3 = {a→1, b→u, c→u}, v4 = {a→1, b→0, c→0}. More-
over, com(G) = {v3, v4} and prf(G) = {v4}.

ASP. In Answer-Set Programming (Leone et al. 2006;
Brewka, Eiter, and Truszczyński 2011) problems are de-
scribed as logic programs, which are sets of rules of the form

a1 ∨ . . . ∨ an:-b1, . . . , bk, not bk+1, . . . , not bm

where each ai is a ground atom and not stands for default
negation. We call a rule a fact if n = 0. An (input) database
is a set of facts. A rule r is normal if n ≤ 1 and a constraint
if n = 0. A program is a finite set of disjunctive rules. If each
rule in a program is normal we call the program normal, oth-
erwise disjunctive. Each logic program π induces a collec-
tion of so-called answer sets, denoted as AS(π), which are
distinguished models of the program determined by answer
sets semantics; see (Gelfond and Lifschitz 1991) for details.

For non-ground programs, which we use here, rules with
variables are viewed as shorthand for the set of their ground
instances. Modern ASP solvers offer further additional lan-
guage features such as built-in arithmetics and aggregates
which we make use of in our encodings (we refer to (Gebser
et al. 2015) for an explanation).

Complexity. The complexity results which are central for
our work are given in Table 1. Here credulous reasoning
means deciding whether a statement (resp. atom) is true in
at least one interpretation (resp. answer set) of the respec-
tive type, skeptical reasoning whether it is true in all such
interpretations (resp. answer sets).

The results for ADFs (Strass and Wallner 2015) carry
over to GRAPPA, as argued in (Brewka and Woltran 2014).
The results for normal and disjunctive ASP-programs we
use here refer to the combined complexity for non-ground
programs of bounded predicate arity (i.e. there exists a con-
stant n ∈ N such that the arity of every predicate occurring
in the program is smaller than n) and are due to (Eiter et
al. 2007). We recall that the combined complexity of arbi-
trary programs is much higher (NEXP-hard, see e.g. (Eiter,
Gottlob, and Mannila 1997)) while data complexity (i.e. the
ASP-program is assumed to be static and only the database

of the program is changing) is one level lower in the poly-
nomial hierarchy (follows from (Eiter and Gottlob 1995)).

These results indicate that there exist efficient transla-
tions for credulous reasoning in ADFs and GRAPPA to non-
ground normal programs of bounded arity, while skeptical
preferred reasoning needs to be treated with disjunctive pro-
grams. We provide such reductions in what follows.

ADF Encodings

We assume an ADF D = (S, {ϕs}s∈S) with S =
{s1, . . ., sk} for some k > 0. We construct ASP encodings
πσ for σ ∈ {adm, com, prf} such that there is a certain one to
one correspondence between the σ interpretations of D and
the answer sets of πσ(D). More precisely, we will use atoms
ass(s, x) with s ∈ S, x ∈ {1, 0, u} to represent ADF inter-
pretations in our encodings. An interpretation v of D and a
set of ground atoms (interpretation of an ASP program) I
correspond to each other, v ∼= I , whenever for every s ∈ S,

v(s) = x ⇔ ass(s, x) ∈ I.

We overload ∼= to get the correspondence between sets of
interpretations and sets of answer sets we aim for.
Definition 1. Given a set of interpretations V and a collec-
tion of sets of ground atoms I, we say that V and I corre-
spond, V ∼= I, if (1) for every v ∈ V there is an I ∈ I s.t.
v ∼= I; (2) for every I ∈ I there is a v ∈ V s.t. v ∼= I .

All encodings will make use of a simple set of facts for the
statements of the ADF and for encoding the possible truth
values that can be assigned to a statement s by a completion
of an interpretation mapping s to u, 1, and 0, respectively.

π0(D) := {arg(s). | s ∈ S} ∪ {lt(u, 0).lt(u, 1).lt(1, 1).lt(0, 0).}

Moreover, the actual guess for an assignment to the state-
ments is used in all encodings as well:

πguess := {ass(S, 0):-not ass(S, 1), not ass(S, u), arg(S).
ass(S, 1):-not ass(S, u), not ass(S, 0), arg(S).
ass(S, u):-not ass(S, 0), not ass(S, 1), arg(S).}

The structure of the ADF D will be reflected in the com-
plex bodies of rules that encode the acceptance conditions
(more precisely, these rules will be grounded with respect to
the completions [v]2 of the actual interpretation v) of the
statements of D. We first give a recursive definition that
yields a set of atoms that correspond to the subformulas of
the acceptance conditions and that we then use in the bod-
ies of the relevant rules. For the definition of the atoms in
question we rely on the ASP built-in arithmetic functions &
(bitwise AND), ? (bitwise OR), and - (subtraction).

Let φ be a propositional formula over S; then the relevant
set of atoms is defined as

B(φ) :=

⎧⎪⎨
⎪⎩
B(φ1) ∪B(φ2) ∪ {Vφ = Vφ1&Vφ2} if φ = φ1 ∧ φ2

B(φ1) ∪B(φ2) ∪ {Vφ = Vφ1?Vφ2} if φ = φ1 ∨ φ2

B(ψ) ∪ {Vφ = 1-Vψ} if φ = ¬ψ
∅ if φ = s ∈ S

1079

where Vφ, Vφ1 Vφ2 and Vψ are variables representing the
subformulas of φ. We now link variables Vs for s ∈ S to the
completion of the guessed assignment, defining the follow-
ing rule bodies for each s ∈ S.

Es := {ass(t, Yt), lt(Yt, Vt) | t ∈ par(s)} ∪B(ϕs)

Finally, we add for every s ∈ S rules with head sat(s)
and inv(s) that fire in case there is some completion of the
interpretation guessed in the fragment πguess such that the
acceptance condition ϕs evaluates to 1 and 0, respectively.

πsat(D) := {sat(s):-Es, Vϕs = 1.

inv(s):-Es, Vϕs = 0. | s ∈ S}

Admissible and Complete Semantics

The encoding πadm(D) is based on the following property:

Observation 1. An interpretation v for an ADF D is admis-
sible iff for every s ∈ S it is the case that

• if v(s) = 1 then there is no w ∈ [v]2 s.t. w(ϕs) = 0,
• if v(s) = 0 then there is no w ∈ [v]2 s.t. w(ϕs) = 1.

The encoding now results from compounding the pro-
gram fragments π0(D), πguess, and πsat(D) together with
ASP constraints which filter out assignments corresponding
to interpretations of D violating Observation 1.

πadm(D) := π0(D) ∪ πguess ∪ πsat(D)∪
{:-arg(S), ass(S, 1), inv(S). :-arg(S), ass(S, 0), sat(S).}

Theorem 1. For every ADF D it holds that adm(D) ∼=
AS(πadm(D)).

Example 3. Considering the ADF D from Example 1 (re-
call ϕa=a ∨ ¬b, ϕb=¬a), πadm(D) looks as follows:

arg(a). arg(b). lt(u,0). lt(u,1). lt(1,1). lt(0,0).

ass(S,0) :- not ass(S,1), not ass(S,u), arg(S).

ass(S,1) :- not ass(S,0), not ass(S,u), arg(S).

ass(S,u) :- not ass(S,0), not ass(S,1), arg(S).

sat(a) :- ass(a,Ya), lt(Ya,Va), ass(b,Yb), lt(Yb,Vb),

Vnb=1-Vb, Vab=Va?Vnb, Vab=1.

inv(a) :- ass(a,Ya), lt(Ya,Va), ass(b,Yb), lt(Yb,Vb),

Vnb=1-Vb, Vab=Va?Vnb, Vab=0.

sat(b) :- ass(a,Ya), lt(Ya,Va), Vna=1-Va, Vna=1.

inv(b) :- ass(a,Ya), lt(Ya,Va), Vna=1-Va, Vna=0.

:- arg(S), ass(S,1), inv(S).

:- arg(S), ass(S,0), sat(S).

A possible output of an ASP solver given this instance looks
as follows (not showing arg and lt predicates):

ass(a,0) ass(b,1) inv(a) sat(b)

ass(a,1) ass(b,0) sat(a) inv(b)

ass(a,1) ass(b,u) sat(a) inv(b)

ass(a,u) ass(b,u) sat(a) inv(a) sat(b) inv(b)

For the encoding of the complete semantics we only need
to add two constraints to the encoding of the admissible se-
mantics. These express that, in addition to satisfying Obser-
vation 1, in order to be complete, an interpretation v of D
also needs to fulfill the following condition for every s ∈ S:
• if v(s) = u then there are w1, w2 ∈ [v]2 s.t. w1(ϕs) = 0

and w2(ϕs) = 1

Hence, the encoding for the complete semantics just requires
two additional constraints.
Theorem 2. Let πcom(D) = {:-arg(S), ass(S, u), not inv(S).
:-arg(S), ass(S, u), not sat(S).} ∪πadm(D). For every ADF
D it holds that com(D) ∼= AS(πcom(D)).

Saturation Encodings for Preferred Semantics

For the encoding of the preferred semantics we make use
of the saturation technique (Eiter and Gottlob 1995), see
(Charwat et al. 2015) for its use in computing the preferred
extensions of Dung AFs. The saturation technique allows
checking that a property holds for a set of guesses within
a disjunctive ASP program, by generating a unique “satu-
rated” guess that “verifies” the property for any such guess.
In the encoding of the preferred semantics for an ADF D
we extend πadm(D) by making use of this technique to ver-
ify that all interpretations of D that are greater w.r.t. ≤i than
the interpretation determined by the assignments guessed in
the program fragment πguess are either identical to the inter-
pretation in question or not admissible. Hence, the relevant
interpretation must be preferred according to the definition.

The module πguess2 amounts to “making a second guess”
(ass2(·)) extending the “first guess” (ass(·)) from πguess.

πguess2 := {ass2(S, 0):-ass(S, 0). ass2(S, 1):-ass(S, 1).
ass2(S, 1)|ass2(S, 0)|ass2(S, u):-ass(S, u).}

The fragment πsat2(D) will allow us to check whether the
second guess obtained from πguess2 is admissible:

πsat2(D) := {sat2(s):-E2s, Vϕs = 1.

inv2(s):-E2s, Vϕs = 0. | s ∈ S} with
E2s := {ass2(t, Yt), lt(Yt, Vt) | t ∈ par(s)} ∪B(ϕs)

The only difference between the fragment πsat2(D) and
πsat(D) is that we now evaluate acceptance conditions w.r.t.
the second guess given via ass2(·).

The following program fragment guarantees that the atom
saturate is derived whenever the second guess (computed
via πguess2) is either identical (first rule of πcheck(D)) to the
first guess (computed via the predicate πguess(D)) or is not
admissible (last two rules of πcheck(D)). We will say that in
this case the second guess is not a counter-example to the
first guess corresponding to a preferred interpretation of D.

πcheck(D) := {saturate:-ass(s1, X1), ass2(s1, X1), . . .

ass(sk, Xk), ass2(sk, Xk).
saturate:-arg(S), ass2(S, 1), inv2(S).
saturate:-arg(S), ass2(S, 0), sat2(S).}

1080

The module πsaturate now assures that whenever the atom
saturate is derived, also ass2(S, 0), ass2(S, 1), ass2(S, u),
sat2(S), and inv2(S) are derived for every s ∈ S.

πsaturate := {ass2(S, 0):-arg(S), ass(S, u), saturate.
ass2(S, 1):-arg(S), ass(S, u), saturate.
ass2(S, u):-arg(S), ass(S, u), saturate.
sat2(S):-arg(S), saturate. inv2(S):-arg(S), saturate.}

The effect of this fragment is that whenever all the
“second guesses” (computed via πguess2) are not counter-
examples to the first guess (computed via πguess) correspond-
ing to a preferred interpretation of D, then all the answer
sets will be saturated on the predicates ass2, sat2, and inv2,
i.e. all ground instances of these predicates will be included
in any answer set. Finally, all that needs to be added to the
program fragments π0(D), πguess(D), πsat(D), πguess2(D),
πcheck(D), πsat2(D) for the encoding of the preferred seman-
tics, πprf(D), is a constraint disallowing those assignments
which have a counter-example to them corresponding to a
preferred interpretation of D, i.e. those for which the atom
saturate is not derived. We obtain the following result.

Theorem 3. For every ADF D it holds that prf(D) ∼=
AS(πprf(D)), where πprf(D) = πadm(D) ∪ πguess2 ∪
πsat2(D) ∪ πcheck(D) ∪ πsaturate ∪ {:-not saturate.}.

Observe that the encodings are adequate from a complex-
ity viewpoint (cf. Table 1), since admissible and complete
semantics are encoded by normal programs, while the en-
codings of preferred semantics yield disjunctive programs.

Grappa Encodings

We turn to the encodings for GRAPPA instances. We again
make use of the correspondence ∼= between 3-valued inter-
pretations (now for GRAPPA instances) and sets of ground
atoms (interpretations of ASP programs) defined via ASP
atoms ass(s, x) for statements s and x ∈ {1, 0, u}. Hence,
we now strive for encodings πσ for σ ∈ {adm, com, prf} s.t.
for every GRAPPA instance G we get σ(G) ∼= AS(πσ(G))
(see Definition 1 for the formal meaning of the latter over-
loaded use of ∼=).

In the same manner as the semantics of GRAPPA mir-
ror the semantics of ADFs, the ASP encodings for GRAPPA
instances presented in this section closely resemble the en-
codings for ADF instances given in the previous section. In
fact, we will reuse most of the ASP fragments. Formally this
amounts to extending the corresponding encoding functions
to also admit GRAPPA instances as arguments. The main
difference is the way in which we encode the evaluation of
the acceptance patterns, this also clearly being the crucial
difference between GRAPPA and ADF instances.

Throughout this section, let G = (S,E, L, λ, π) be a
GRAPPA instance with S = {s1, . . . , sk}. We redefine the
set of atoms B(φ) corresponding to the subformulas of ac-
ceptance conditions of ADF statements to encode accep-
tance patterns of GRAPPA instances. The recursive function

representing these patterns needs statement s as additional
parameter for the encoding of the basic patterns and is de-
fined as Bs(φ) :=

Bs(φ1) ∪Bs(φ2) ∪ {Vφ = Vφ1&Vφ2} if φ = φ1 ∧ φ2

Bs(φ1) ∪Bs(φ2) ∪ {Vφ = Vφ1?Vφ2} if φ = φ1 ∨ φ2

Bs(ψ) ∪ {Vφ = 1− Vψ} if φ = ¬ψ
Ps(τ) ∪ {Vφ = #sum{1 : Vτ R̄a} } if φ = τRa

The difference between Bs and B (note the missing sub-
script s) as defined in the previous section is in the last line
where Ps(τ)∪{Vφ = #sum{1 : Vτ R̄a}} encodes the eval-
uation of a basic pattern φ = τRa. We make use of the ASP
aggregate #sum as well as the simple function R̄ := <=
(resp. >=, !=) if R = ≤ (resp. ≥, �=) and R̄ = R otherwise,
relating GRAPPA and ASP syntax for relational operators.

The function Ps(τ) on the other hand gives us a set of
atoms corresponding to the evaluation of a sum τ of terms.

Ps(τ) :=

{
Ps(χ) ∪ Ts(t) ∪ {Vτ = a ∗ Vt + Vχ} if τ = at+ χ
Ts(t) ∪ {Vτ = a ∗ Vt} if τ = at

The definition of Ps in turn makes use of the function
Ts(t) that returns an atom representing a term t. Here let
s ∈ S be fixed and par(s) = {r1, . . . , rq}, lr = λ(r, s) for
r ∈ par(s), and par(s, l) = {r ∈ par(s) | lr = l}. In order
to define atoms corresponding to the evaluation of terms de-
pending on the active labels (those without subscript t) we
use the ASP aggregates #sum, #min, #max, and #count,
as well as variables Zr corresponding to completions of the
guessed assignment of statements r ∈ S. Atoms correspond-
ing to terms whose evaluation is independent on the active
labels, on the other hand, can be constructed based on the
instance G only. We define Ts(t) as

{ Vt = #sum{Zri1 , ri1; . . .;Zriw , riw} }
with {ri1 , . . . , riw} = par(s, l) if t = #l and par(s, l) 	= ∅
{ Vt = N } with N = |par(s, l)| if t = #tl

{ Vt = #min{lr1 : Zr1 = 1; . . .;lrq : Zrq = 1} }
if t = min

{ Vt = N } with N = min{lr1 , . . . , lrq} if t = mint

{ Vt = #max{lr1 : Zr1 = 1; . . .;lrq : Zrq = 1} } if t = max

{ Vt = N } with N = max{lr1 , . . . , lrq} if t = maxt

{ Vt = #sum{lr1 , r1 : Zr1 = 1; . . .;lrq , rq : Zrq = 1} }
if t = sum and par(s) 	= ∅

{ Vt = N } with N = lr1 + . . .+ lrq if t = sumt

{ Vt = #count{lr1 : Zr1 = 1; . . .;lrq : Zrq = 1} }
if t = count and par(s) 	= ∅

{ Vt = N } with N = |{lr | r ∈ par(s)}| if t = countt

{ Vt = 0} if t = #l and par(s, l) = ∅
or t = sum, t = count and par(s) = ∅

As pointed out earlier, the encodings for GRAPPA in-
stances for σ ∈ {adm, com, prf} differ from the corre-
sponding ADF encodings only in the fragments handling

1081

the evaluation of acceptance patterns (under the completions
of an interpretation). Hence, the encodings πσ(G) for the
GRAPPA instance G boil down to the programs

πadm(G) :=π0(G) ∪ πguess ∪ π′
sat(G)∪

{:-arg(S), ass(S, 1), inv(S).:-arg(S), ass(S, 0), sat(S).}
πcom(G) :=πadm(G) ∪ {:-arg(S), ass(S, u), not inv(S).

:-arg(S), ass(S, u), not sat(S).}
πprf(G) :=πadm(G) ∪ πguess2 ∪ π′

sat2(G) ∪ πcheck(G) ∪ πsaturate∪
{:-not saturate.}

Here, the difference to the encoding for ADF semantics is
the use of the program fragments

π′
sat(G) := {sat(s):-Es, Vπ(s) = 1.

inv(s):-Es, Vπ(s) = 0. | s ∈ S}
π′

sat2(G) := {sat2(s):-E2s, Vπ(s) = 1.

inv2(s):-E2s, Vπ(s) = 0. | s ∈ S}

where we make use of the shortcuts Es and E2s. In their
definitions we in turn use the function Bs(φ) returning the
atoms corresponding to a GRAPPA acceptance function:

Es :={ass(r, Yr), lt(Yr, Zr) | r ∈ par(s)} ∪Bs(π(s))
E2s :={ass2(r, Yr), lt(Yr, Zr) | r ∈ par(s)} ∪Bs(π(s))

Theorem 4. For σ ∈ {adm, com, prf} it holds for every
GRAPPA instance G that σ(G) ∼= AS(πσ(G)).

Experiments

We implemented all encodings for ADFs and GRAPPA pre-
sented in this work. To make use of the encodings for reason-
ing, these need to be fed to an ASP solver such as clingo
(Gebser et al. 2011). We carried out experiments to com-
pare the performance of our approach with existing systems
for ADFs. Specifically, we compared the performance of our
prototype system, YADF (“Y” stands for “dynamic”), with
that of DIAMOND and the QBF based system QADF. We fo-
cused on credulous and skeptical reasoning for admissible
and preferred semantics, respectively.

To generate ADFs, we first used a “grid-based” ADF
generator which has been employed in previous evaluations
(Diller, Wallner, and Woltran 2014). Here statements have as
parents a subset of 8 possible neighbors of a randomly gen-
erated grid of width 7. Acceptance conditions are generated
by connecting parents via ∧ or ∨. Probabilities determine
the choice of these connectives and whether parents appear
negated or are replaced by truth constants.

We also wrote our own graph-based generator which takes
a directed graph as input and generates an ADF inheriting
the structure of the graph. Each parent of a statement is as-
signed to one of 5 different groups (with equal probability

Cred-adm Skept-prf
DIAMOND QADF YADF DIAMOND QADF YADF

Gri-10 0.11 (0) 0.62 (0) 0.66 (0) 0.31 (0) 0.9 (0) 0.75 (0)
Gri-20 0.35 (0) 0.8 (0) 0.96 (0) 51.17 (20) 41.53 (0) 1.26 (0)
Gri-30 0.9 (0) 1.01 (0) 1.13 (0) 51.48 (38) 497.4 (39) 1.76 (0)
Gri-40 1.64 (0) 1.21 (0) 1.34 (0) - (40) - (40) 2.68 (0)
Gri-50 2.8 (0) 1.47 (0) 1.52 (0) - (40) - (40) 4.83 (0)
Gri-60 4.3 (0) 2.08 (0) 1.86 (0) - (40) - (40) 9.6 (0)
Gri-70 6.52 (0) 3.52 (0) 2.08 (0) - (40) - (40) 68.48 (1)
Gri-80 8.83 (0) 3.08 (1) 2.37 (0) - (40) - (40) 84.37 (6)
Metro 5.7 (0) 5.86 (7) 1.6 (0) - (40) - (40) 43.01 (11)

Table 2: Mean running times in seconds for credulous rea-
soning under adm and skeptical reasoning under prf on ADF
instances generated by the grid-based (Gri-X = ADFs with
X statements) and graph-based generator (5 ADFs per city).
Number of time-outs (out of 40 instances; with time-out of
600 seconds) in parentheses. Mean running times are com-
puted disregarding time-outs.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 10 100

S
ol

ve
d

In
st

an
ce

s
log Runtime

yadf,adm
qadf,adm

diamond,adm
yadf,prf
qadf,prf

diamond,prf

Figure 1: Number of instances solved in running time less
than x seconds for credulous reasoning under admissible
and skeptical reasoning under preferred semantics. All grid-
based and graph-based instances were considered (360 to-
tal).

in our experiments), determining whether the parent partic-
ipates in a subformula of the statement’s acceptance con-
dition representing the notions of attack, group-attack, sup-
port, or group-support familiar from argumentation. Also,
the parents can appear as literals connected by XOR (in or-
der to capture the full complexity of ADFs). The subformu-
las are connected via ∧ or ∨ with equal probability. In our
experiments the input graphs represent public transport net-
works of 8 different cities.

Experiments were carried out on a 48 GB Debian (8.5)
machine with 8 Intel Xeon processors (2.33 GHz). Due
to known problems with the latest available versions1 of
DIAMOND, 2.0.2 and 2.0.0, we report on our results with ver-
sion 0.9 (modified to support credulous and skeptical reason-
ing). For QADF we used version 0.3.2 with bloqqer 035
(Biere, Lonsing, and Seidl 2011) and DepQBF 4.0 (Lonsing
and Biere 2010). YADF is version 0.1.0 with the rule decom-
position tool lpopt (Bichler, Morak, and Woltran 2016)
and clingo 4.4.0.

As can be seen from Table 2 and Figure 1, our system per-
formed comparably to DIAMOND and QADF for credulous
reasoning under adm, somewhat better on the public trans-
port (or “metro”) based instances. There is a clear advantage

1The version of DIAMOND reported in (Ellmauthaler and Strass
2016) was not yet available at time of submission.

1082

in the use of our encodings over DIAMOND and QADF for
skeptical reasoning under prf, although there are 7 time-outs
on the grid based instances with 70 and 80 statements as well
as on 11 of the metro-based instances. Experiments on very
dense randomly generated graphs (not in the table) showed
slightly better performance of DIAMOND compared to YADF
for credulous reasoning.

Discussion

In this work, we have developed novel ASP encodings for
advanced reasoning problems in argumentation that reach up
to the third level of the polynomial hierarchy. Compared to
previous work, we rely on translations that make a single call
to an ASP-solver sufficient. The key idea is to reduce one
dimension of complexity to “long” rule bodies, exploiting
the fact that checking whether such a rule fires is already
NP-complete (as witnessed by the respective complexity of
conjunctive queries (Chandra and Merlin 1977)).

We implemented our approach for ADF and GRAPPA2.
Our experiments show the potential and improved perfor-
mance of our encodings. Still, the number of statements we
can handle is somewhat limited. Our encodings thus might
also be interesting benchmarks for ASP competitions.

Acknowledgments. This research has been supported by
DFG (project BR 1817/7-2) and FWF (projects I2854,
S11409-N23, and W1255-N23). The authors also thank Jörg
Pührer for his helpful observations regarding the encodings.

References
Al-Abdulkarim, L.; Atkinson, K.; and Bench-Capon, T. 2016. A
methodology for designing systems to reason with legal cases using
abstract dialectical frameworks. Artif. Intell. Law 24(1):1–49.
Amgoud, L., and Prade, H. 2009. Using Arguments for Making
and Explaining Decisions. Artif. Intell. 173(3-4):413–436.
Bench-Capon, T. J. M., and Dunne, P. E. 2005. Argumentation in
AI and Law: Editors’ Introduction. Artif. Intell. Law 13(1):1–8.
Berthold, M. 2016. Extending the DIAMOND system to work
with GRAPPA. In Proc. SAFA, 52–62.
Bichler, M.; Morak, M.; and Woltran, S. 2016. lpopt: A rule opti-
mization tool for answer set programming. CoRR abs/1608.05675.
Biere, A.; Lonsing, F.; and Seidl, M. 2011. Blocked Clause Elimi-
nation for QBF. In Proc. CADE, 101–115. Springer.
Booth, R. 2015. Judgment aggregation in abstract dialectical
frameworks. In Advances in KR, Logic Programming, and Abstract
Argumentation, 296–308. Springer.
Brewka, G., and Woltran, S. 2010. Abstract Dialectical Frame-
works. In Proc. KR, 102–111. AAAI Press.
Brewka, G., and Woltran, S. 2014. GRAPPA: A Semantical Frame-
work for Graph-Based Argument Processing. In Proc. ECAI, 153–
158. IOS Press.
Brewka, G.; Strass, H.; Ellmauthaler, S.; Wallner, J. P.; and
Woltran, S. 2013. Abstract Dialectical Frameworks Revisited. In
Proc. IJCAI, 803–809. IJCAI/AAAI.

2The system for ADF reasoning is available at https://www.
dbai.tuwien.ac.at/proj/adf/yadf/. The encodings for GRAPPA are
available as part of a larger system: https://www.dbai.tuwien.ac.at/
proj/adf/grappavis/.

Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer set
programming at a glance. Com. ACM 54(12):92–103.
Brewka, G.; Polberg, S.; and Woltran, S. 2014. Generalizations of
Dung Frameworks and Their Role in Formal Argumentation. IEEE
Intelligent Systems 29(1):30–38.
Cartwright, D., and Atkinson, K. 2009. Using Computational Ar-
gumentation to Support E-participation. IEEE Intelligent Systems
24(5):42–52.
Chandra, A. K., and Merlin, P. M. 1977. Optimal implementation
of conjunctive queries in relational data bases. In Proc. STOC, 77–
90. ACM.
Charwat, G.; Dvořák, W.; Gaggl, S. A.; Wallner, J. P.; and Woltran,
S. 2015. Methods for solving reasoning problems in abstract argu-
mentation - A survey. Artif. Intell. 220:28–63.
Diller, M.; Wallner, J. P.; and Woltran, S. 2014. Reasoning in Ab-
stract Dialectical Frameworks Using Quantified Boolean Formulas.
In Proc. COMMA, 241–252. IOS Press.
Diller, M.; Wallner, J. P.; and Woltran, S. 2015. Reasoning in Ab-
stract Dialectical Frameworks Using Quantified Boolean Formulas.
Argument & Computation 6(2):149–177.
Dung, P. M. 1995. On the Acceptability of Arguments and its Fun-
damental Role in Nonmonotonic Reasoning, Logic Programming
and n-Person Games. Artif. Intell. 77(2):321–358.
Eiter, T., and Gottlob, G. 1995. On the Computational Cost of
Disjunctive Logic Programming: Propositional Case. Ann. Math.
Artif. Intell. 15(3-4):289–323.
Eiter, T.; Faber, W.; Fink, M.; and Woltran, S. 2007. Complexity
results for answer set programming with bounded predicate arities
and implications. Ann. Math. Artif. Intell. 51(2-4):123–165.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunctive datalog.
ACM Trans. Database Syst. 22(3):364–418.
Ellmauthaler, S., and Strass, H. 2014. The DIAMOND System
for Computing with Abstract Dialectical Frameworks. In Proc.
COMMA, 233–240. IOS Press.
Ellmauthaler, S., and Strass, H. 2016. DIAMOND 3.0 – A native
C++ implementation of DIAMOND. In Proc. COMMA, 471–472.
IOS Press.
Gaggl, S. A., and Strass, H. 2014. Decomposing abstract dialectical
frameworks. In Proc. COMMA, 281–292. IOS Press.
Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.; Schaub,
T.; and Schneider, M. T. 2011. Potassco: The Potsdam Answer Set
Solving Collection. AI Commun. 24(2):107–124.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Lindauer, M.; Ostrowski,
M.; Romero, J.; Schaub, T.; and Thiele, S. 2015. Potassco User
Guide. https://sourceforge.net/projects/potassco/files/guide/, ac-
cessed: 2016-11-22.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in logic
programs and disjunctive databases. New Generation Comput.
9(3/4):365–386.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S.;
and Scarcello, F. 2006. The DLV system for knowledge represen-
tation and reasoning. ACM Trans. Comput. Log. 7(3):499–562.
Lonsing, F., and Biere, A. 2010. DepQBF: A Dependency-Aware
QBF Solver. JSAT 7(2-3):71–76.
McBurney, P.; Parsons, S.; and Rahwan, I., eds. 2012. Proc.
ArgMAS, volume 7543 of LNCS. Springer.
Strass, H., and Wallner, J. P. 2015. Analyzing the computational
complexity of abstract dialectical frameworks via approximation
fixpoint theory. Artif. Intell. 226:34–74.

1083

