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Abstract

We study description logics (DLs) supporting number restric-
tions on transitive roles. We first take a look at SOQ and
SON with binary and unary coding of numbers, and provide
algorithms for the satisfiability problem and tight complex-
ity bounds ranging from EXPTIME to NEXPTIME. We then
show that by allowing for counting only up to one (function-
ality), inverse roles and role inclusions can be added without
losing decidability. We finally investigate DLs of the DL-
Lite-family, and show that, in the presence of role inclusions,
the core fragment becomes undecidable.

1 Introduction
Description Logics (DLs) are a successful family of logic-
based knowledge representation formalisms. The relevance
of DLs comes from the fact that they are arguably the most
popular language for the formulation of ontologies. For in-
stance, they provide the logical basis of the web ontology
language OWL 2, the medical ontology SNOMED CT, and
the NCI thesaurus. One of the main reasons for the take-
up of DLs is that, in general, they provide a good trade-off
between expressivity and computational complexity. Unfor-
tunately, in some cases this is not easy to ensure, e.g., the un-
restricted interaction of (qualified) number restrictions and
transitive roles tends to destroy this good balance; in many
cases, leading to undecidability. On the other hand, sup-
port of these features is required, e.g., for ontological mod-
eling in the biomedical domain (Rector and Rogers 2006;
Kazakov, Sattler, and Zolin 2007; Stevens et al. 2007). For
instance, in the classification of proteins (Wolstencroft et
al. 2005), certain classes of proteins are defined in terms
of their composition: If a protein contains at least n1 X1-
components . . . and at least nk Xk components, then it be-
longs to class B. Moreover, these definitions require mod-
eling of parthood, which is intended to be a transitive re-
lation. Hence there is need of a clear understanding of the
decidability frontier for DLs supporting these features.

With this in mind, in the last 15 years, the DL community
has developed a vast amount of research on the complexity
of reasoning in the presence of transitive roles and number
restrictions, see, (Horrocks, Sattler, and Tobies 2000; Kaza-
kov, Sattler, and Zolin 2007; Schröder and Pattinson 2008;
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Kaminski and Smolka 2010) and references therein. In par-
ticular, it has been shown that the extensions of SN (ALC
enriched with transitive roles and unqualified counting) with
role inclusions (SHN ) or inverse roles (SIN ) are undecid-
able (Horrocks, Sattler, and Tobies 2000; Kazakov, Sattler,
and Zolin 2007). These negative results are, intuitively, ex-
plained by the interaction of these two constructors, i.e., by
the possibility of counting over transitive roles. In order to
regain decidability, different restrictions on their interaction
have been proposed, e.g., to completely disallow number re-
strictions on transitive roles, or impose certain restrictions
on the transitive roles occurring in role inclusions (Horrocks,
Sattler, and Tobies 2000; Kazakov, Sattler, and Zolin 2007).
On the positive side, it was shown that if role inclusions and
inverse roles are not present, as in SN , SQ, SOQ, decid-
ability is then regained (Kazakov, Sattler, and Zolin 2007;
Kaminski and Smolka 2010). However, no (elementary)
complexity bounds are obtained from these results. Inter-
estingly, if we have inverse roles or role inclusions, but only
functionality (counting up to one) is allowed the panorama is
less clear. The only known result is that satisfiability relative
to SIF-TBoxes is decidable in 2EXPTIME (Tendera 2005),
but decidability of, e.g., SHIF ,SHOIF remains an open
problem.

The main contribution of this paper is to establish a com-
plete picture of the complexity of the problem of concept
satisfiability relative to TBoxes in DLs supporting counting
over transitive roles, by resolving the aforementioned open
problems. Moreover, for all considered DLs including nom-
inals, our upper bound results transfer to knowledge base
satisfiability.

Our investigation starts (Section 3) with the DL SOQ,
allowing for qualified counting and nominals. As men-
tioned above, decidability was shown by Kaminski and
Smolka [2010], and NEXPTIME-hardness is inherited from
graded modal logic (Kazakov and Pratt-Hartmann 2009).1
However, the exact computational complexity of SOQ was
unknown. We close here this gap, by providing a NEXP-
TIME upper bound. To this aim, we use a two-step approach.
First, we provide a decomposition of SOQ models, permit-
ting us to ‘independently reason’ about the different (tran-
sitive) roles. In a second step, carefully adapting a tech-

1Graded modalities correspond to qualified number restrictions.
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nique developed by Kazakov and Pratt-Hartmann [2009] in
the context of graded modal logic, we show a small (that is,
exponential) model property of each member of the decom-
position, which lifts to SOQ and thus leads to the desired
NEXPTIME upper bound.

As the next step (Section 4), we turn our attention to
SON , the restriction of SOQ to unqualified number re-
strictions. In particular, we are interested in understanding
the impact of the coding of numbers on the computational
complexity. We first show that with unary coding, satisfi-
ability in SON is EXPTIME-complete, and therefore eas-
ier than in SOQ. We devise a type-elimination procedure
that exploits the unary coding by the observation that cer-
tain witnesses are of only polynomial size, and can thus be
all enumerated. We then show that with binary coding, the
complexity of satisfiability jumps to NEXPTIME-complete.
In fact, the lower bound holds already for concept satisfiabil-
ity of SN concepts over a single transitive role (no TBox).
It is interesting to note that when only non-transitive roles
are allowed in number restrictions the coding has no impact
on the computational complexity, that is, regardless of the
coding of numbers, satisfiability in SON and SOQ is EX-
PTIME-complete (Calvanese, Eiter, and Ortiz 2009).

We then take a look (Section 5) at the case when only
functionality is allowed. We show that in this case inverse
roles, role inclusions and nominals can be added without
losing decidability. In particular, we show that satisfiabil-
ity in SHIF and SHOIF is EXPTIME- and NEXPTIME-
complete, respectively, and hence not harder than when one
cannot impose number restrictions on transitive roles.

Lightweight DLs of the DL-Lite family allowing for num-
ber restrictions on transitive roles have not been considered
yet; indeed, only counting over non-transitive roles has been
studied in DL-Lite (Artale et al. 2009). In the last part of
the paper (Section 6), we initiate this study. In particular,
we complement known undecidability results by consider-
ing a light sub-Boolean DL with unqualified existential re-
strictions and show that the core fragment of DL-Lite, with
role inclusions, allowing for number restrictions on transi-
tive roles is undecidable.

Missing proofs are available at www.informatik.uni-
bremen.de/tdki/research/papers/GIJ17.pdf .

2 Preliminaries

Syntax. We introduce the DL SHOIQ (Hollunder and
Baader 1991), which extends the classical DL ALC with
transitivity declarations on roles (S), role inclusion ax-
ioms (H), nominals (O), inverses (I), and qualified num-
ber restrictions (Q). We consider a vocabulary consisting
of countably infinite disjoint sets of concept names NC,
role names NR and individual names NI. The syntax of
SHOIQ-concepts C,D is given by the following grammar:

C,D ::= A | ¬C | C �D | {o} | ∃r.C | (∼ n r C)

where A ∈ NC, o ∈ NI, r ∈ {s, s− | s ∈ NR} is a
role, ∼ is a comparison operator ≤ or ≥, and n is a num-
ber (given in binary, unless stated otherwise). Roles of
the form r− are called inverse roles, concepts of the form

{o}, ∃r.C, (≤ n r C), (≥ n r C) are called, respectively,
nominals, existential restrictions, at most-restrictions and at
least-restrictions. We identify r− with s ∈ NR if r = s−,
and use standard abbreviations �, ⊥, C 
 D, ∀r.C, and
C → D.

A SHOIQ-TBox (ontology) T is a finite set of con-
cept inclusions (CIs) C 
 D, transitivity declarations
Tra(r) and role inclusions (RIs) r 
 s, where C,D are
SHOIQ-concepts and r, s roles. We use CN(T ), Rol(T )
and Nom(T ) to denote, respectively, the set of all concept
names, roles and nominals occurring in T . Wlog. we as-
sume that if Tra(r) ∈ T then Tra(r−) ∈ T . Indeed, by the
semantics, if a role is transitive, so is its inverse.
Semantics. As usual, the semantics is defined in terms of
interpretations. An interpretation I = (ΔI , ·I) consists of
a non-empty domain ΔI and an interpretation function ·I
mapping concept names to subsets of the domain and role
names to binary relations over the domain. We define, mu-
tually recursive, the set rI(d, C) = {e ∈ CI | (d, e) ∈ rI}
of r-successors of d satisfying C, and the interpretation of
complex concepts CI by taking

(r−)
I
= {(e, d) | (d, e) ∈ rI};

(¬C)I = ΔI \ CI ;
(C �D)I = CI ∩DI ;

{o}I = {oI};
(∃r.C)I = {d ∈ ΔI | ∃e ∈ CI with (d, e) ∈ rI};

(∼ n r C)I = {d ∈ ΔI | |rI(d, C)| ∼ n}.
The satisfaction relation |= is defined standardly:

I |= C 
 D iff CI ⊆ DI ;

I |= r 
 s iff rI ⊆ sI ;

I |= Tra(r) iff rI is transitive.
An interpretation I is a model of a TBox T , denoted I |= T ,
if I |= α for all α ∈ T . A concept C is satisfiable relative
to a TBox T if there is a model I of T such that CI �= ∅.
Reasoning Problem. We are interested in the problem of
concept satisfiability, that is, given a TBox T and a concept
C, we want to determine whether C is satisfiable relative to
T . We restrict our attention to the case when C = A ∈ NC

because C is satisfiable relative to T iff AC is satisfiable
relative to T ∪ {AC 
 C} for any fresh concept name AC .

Please note that in the presence of nominals our upper
bounds transfer to the problem of knowledge base satisfia-
bility; indeed, so-called ABox assertions can be internalized
in the TBox using nominals (Baader et al. 2003).
Fragments. We consider the following fragments:
• SOQ is obtained from SHOIQ by disallowing role in-

clusions and inverse roles.
• SON is obtained from SOQ by supporting only unqual-

ified number restrictions (indicated by letter N ) of the
form (∼ n r �), which we usually abbreviate as (∼ n r).

• SHOIF is obtained from SHOIQ by supporting only
local functionality constraints (indicated by letter F) of
the form (≤ 1 r).
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3 SOQ
We start by devising an algorithm for concept satisfiability
relative to SOQ-TBoxes, yielding a tight NEXPTIME upper
bound. The matching lower bound follows from the fact
that satisfiability in the graded modal logic over transitive
frames, GrK4, is NEXPTIME-complete (Kazakov and Pratt-
Hartmann 2009).

We assume that the input TBox is in the following normal
form. Let CBool be the set of SOQ-concept descriptions that
are obtained without using the constructors (∼ n r C) and
∃r.C (we treat ∃r.C as (≥ 1 r C)). We say that a TBox is
in normal form if all concept inclusions are of the shape

C 
 D or C 
 (∼ n r D),

for C,D ∈ CBool. We show that, by introducing fresh con-
cept names, every TBox can be transformed in polynomial
time into a satisfiability-equivalent TBox in normal form.

In order to obtain the desired NEXPTIME upper bound
it clearly suffices to show a small model property, that is,
whenever A is satisfiable relative to T , then there is a model
of exponential size, since we can then simply “guess” the
model. To this end, we will first characterize concept satis-
fiability in terms of the existence of a quasimodel, which is
a decomposition of a model of SOQ-TBoxes into compo-
nents that interpret only a single role name. This is in line
with viewing SOQ as a fusion logic. Note that decomposi-
tions of fusion logics have been studied (Baader et al. 2002),
but so far nominals were not considered. Nominals impose
the additional difficulty that the models of a SOQ-TBox are
not closed under union.

Let T be the input TBox. For r ∈ NR, we define Tr :=
T \ {C 
 (∼ n r′ D) | r′ �= r}. Intuitively, Tr reflects
T on the single role r. Given two interpretations I,J , we
say that d ∈ ΔI , d′ ∈ ΔJ are Boolean equivalent iff for all
C ∈ CBool we have d ∈ CI iff d′ ∈ CJ .

We are now in a position to define the intended decompo-
sition. A quasimodel for T is a finite collection of interpre-
tations Q = {Ir | r ∈ Rol(T )} such that the following two
conditions are satisfied:

(qm1) Ir |= Tr for each role name r ∈ Rol(T );

(qm2) for all role names r, s and d ∈ ΔIr there exists a
d′ ∈ ΔIs such that d and d′ are Boolean equivalent.

Intuitively, (qm1) captures the TBox relative to a single role
name r, and (qm2) ensures that the components Ir can be
combined into one model. A quasimodel for A and T is a
quasimodel Q for T such that AIr �= ∅ for some (equiva-
lently: every) interpretation Ir ∈ Q. Note that, by (qm1),
we can assume that each Ir interprets only role r as (pos-
sibly) non-empty. Thus, quasimodels provide a suitable de-
composition of models. The size of a quasimodel is the sum
of the domain sizes of all interpretations in the quasimodel.

The following lemma provides the characterization of sat-
isfiability and additionally relates the size of the quasimodel
to the size of a model.

Lemma 1. A is satisfiable relative to T iff there is a quasi-
model for A and T . Moreover, if there is a quasimodel of
size κ for A and T , there is a model of size ≤κ for A and T .

It remains to restrict the sizes of quasimodels.
Lemma 2. If there is a quasimodel for A and T , there is a
quasimodel for A and T of exponential size.

We give some intuitions on the proof here. Let Q be
a quasimodel for A and T and Ir ∈ Q. If r is a non-
transitive role, it has been already shown that Ir can be re-
placed by an exponentially sized interpretation I ′r, preserv-
ing (qm2) (Lutz et al. 2005, Corollary 4.3). Therefore, we
concentrate on the case when r is a transitive role, that is,
Tra(r) ∈ T .

First observe that we can assume that Ir has at most ex-
ponentially many connected components, more precisely,
2|X|, where X = CN(T ) ∪ Nom(T ). To see this, fix
for every subset Y ⊆ X a domain element dY such that
Y = {C ∈ X | dY ∈ CIr}, if such an element exists. It
should be clear that the restriction I ′ of Ir to domain

ΔI
′
= {d ∈ ΔI | ∃dY : (dY , d) ∈ (rI)∗}

still satisfies (qm1) and (qm2), and additionally has at most
2|X| connected components (each rooted at some dY ).

Finally, to show Lemma 2, we carefully adapt a tech-
nique by Kazakov and Pratt-Hartmann [2009] showing the
finite model property of GrK4, to prove that every con-
nected component of Ir can be assumed to be of exponen-
tial size. Crucially, we have to take care that, when domain
elements are removed, we keep the witnesses dY for Condi-
tion (qm2). See the appendix for a full proof.

Lemma 1 and 2 yield the small (that is, exponential)
model property for SOQ which, as argued above implies:
Theorem 1. Concept satisfiability relative to SOQ-TBoxes
is NEXPTIME-complete.

4 SON
In this section, we study the complexity of concept satis-
fiability relative to SON -TBoxes, with both unary and bi-
nary coding of numbers. Note that for SOQ the coding of
numbers does not make any difference on the computational
complexity because the NEXPTIME-hardness proof for sat-
isfiability in GrK4 only uses numbers that are at most 1.

We first show that with unary coding, concept satisfia-
bility relative to SON -TBoxes is EXPTIME-complete, and
thus easier than in SOQ. We then show that with binary
coding, the complexity of concept satisfiability relative to
SON -TBoxes coincides with that relative to SOQ-TBoxes.
In particual, we show that the latter holds already for SN .

4.1 Unary Coding of Numbers

We focus on providing an EXPTIME algorithm for concept
satisfiability relative to SON -TBoxes with unary coding of
numbers. The lower bound is inherited from ALC.

We proceed in two steps. First, we give a characteriza-
tion of concept satisfiability, independent of the coding of
numbers. This characterization is then the basis for a type
elimination procedure which runs in exponential time, given
the unary coding. The main challenge lies in the interplay
between nominals and transitive roles. In fact, the algorithm
is not purely type-based, but needs to make explicit what we
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call the nominal core of an interpretation, which is the part
of the model ‘close’ to the nominals.

Denote with cl(T ) the set of all sub-concepts appearing
in T , closed under single negations. A type for T is a set
t ⊆ cl(T ) satisfying

– D ∈ t iff ¬D /∈ t for all ¬D ∈ cl(T );

– D � E ∈ t iff {D,E} ⊆ t, for all D � E ∈ cl(T );

– C ∈ t implies D ∈ t, for all C 
 D ∈ T .

Let tp(T ) be the set of all types for T . Two types t, t′ ∈
tp(T ) are called r-compatible, written t�r t′, if

– {¬D | ¬∃r.D ∈ t} ⊆ t′, in case r is non-transitive, and

– {¬D,¬∃r.D | ¬∃r.D ∈ t} ⊆ t′, in case r is transitive.

Fix a role r and a type t, and let � be maximal with (≥ � r) ∈
t, and u be minimal with (≤ u r) ∈ t.2 Then, t is called r-
realizable in T ⊆ tp(T ) if � ≤ u and there are k ≤ u types
t1, . . . , tk ∈ T with t�r ti, for all i, such that:

1. for each ∃r.C ∈ t, there is some i with C ∈ ti;

2. if k < �, there is an i with {o} /∈ ti for all {o} ∈ cl(T ).

Item 1 states the known realizability condition for ALC.
Item 2 captures the interplay of nominals and at-least re-
strictions; in particular, if k < �, we need one type that can
be repeated as a successor, which cannot be a nominal type.

For transitive roles in combination with at-most restric-
tions (≤ n r) and nominals, we need to make explicit how
the at-most restrictions in a type are realized. In order to
formalize this, denote with tpI(d) the type {C ∈ cl(T ) |
d ∈ CI} of d in an interpretation I, and say that t =r t′ if
C ∈ t iff C ∈ t′ for all concepts C ∈ cl(T ) not of the form
(∼ n s), ¬(∼ n s), ∃s.A, ¬∃s.A, for s �= r. Moreover,
given a role name r and sets T ′ ⊆ T ⊆ tp(T ), we say that
an interpretation I is a ≤-witness for (r, T, T ′) if

(i) for each d ∈ ΔI , there is t ∈ T with tpI(d) =r t, and

(ii) for every t ∈ T ′ such that (≤ n r) ∈ t, there is some d
with tpI(d) =r t.

Intuitively, I realizes (relative to r) only types from T , but at
least those in T ′. Using the notion of ≤-witness we give the
following characterization of concept satisfiability, which
also provides the starting point of our decision procedure.

Lemma 3. A is satisfiable relative to T iff there is a set
T ⊆ tp(T ) with A ∈ t for some t ∈ T such that:

(E1) for any {o} in T there is exactly one t∈T with {o}∈ t;
(E2) every t ∈ T is r-realizable in T , for each role r;
(E3) there is a ≤-witness for (r, T, T ), for any transitive r.

Conditions (E1) and (E2) are straightforward; Condi-
tion (E3) requires, for each transitive role r, an interpreta-
tion realizing all types with an at-most restriction. Though
condition (E3) is intuitive, it does not lend itself for imple-
mentation yet because ≤-witnesses are exponentially big in
general.

2By convention, � = 0 and u = ∞, respectively, if no such
concepts are in t.

As the next step, we analyze the ≤-witnesses and give an
equivalent condition (E3’). Fix a role name r. The nomi-
nal core of an interpretation I wrt. r, written corer(I), is
obtained from I by restricting the domain to

{oI | {o} ∈ cl(T )} ∪
{d | (oI , d) ∈ rI , oI ∈ (≤ m r)I , (≤ m r) ∈ cl(T )}

We prove that Lemma 3 remains correct if we use the fol-
lowing instead of (E3):

(E3’) for each transitive r, there is an interpretation Ir such that,
for each t ∈ T with (≤ n r) ∈ t, there is a ≤-witness Irt
for (r, T, {t}) with corer(Irt) = Ir.

Before we give the algorithm, observe that there are only ex-
ponentially many maximal sets T ⊆ tp(T ) satisfying (E1),
that is, there is no set T ′ satisfying (E1) and T � T ′ ⊆
cl(T ). Moreover, it is crucial to observe that the (domain)
size of the nominal core of a ≤-witness (and in fact of any
interpretation) is polynomial in the size of T ; more precisely,
its size is bounded by �1�2, where �1 is the number of nom-
inals in T , and �2 is the largest number in T ; so the Ir in
(E3’) has only polynomial size. Finally, given such a (poly-
nomial) Ir and some t with (≤ n r) ∈ t, we can check in
exponential time the existence of Irt, because we can just
try all possible extensions of Ir with n elements.

These arguments show that the following procedure runs
in exponential time. For each maximal set T ⊆ cl(T ) satis-
fying (E1) and each possible combination of nominal cores
(one for each role name), exhaustively remove types from T
if they do not satisfy (E2) or (E3’). Accept if, in this way,
a set T̂ is found which satisfies all conditions and there is
t ∈ T̂ with A ∈ t. Overall, this shows:

Theorem 2. Concept satisfiability relative to SON -TBoxes
with unary coding of numbers is EXPTIME-complete.

4.2 Binary Coding of Numbers

Now, we show that with binary coding, concept satisfiability
relative to SON -TBoxes becomes NEXPTIME-hard. The
matching upper bound follows from Theorem 1 above. Note
that the lower bound does not follow from (the proof of)
NEXPTIME-hardness of satisfiability in GrK4 because that
relies on qualified number restrictions.

The NEXPTIME-hardness proof is by reduction of the
problem of tiling a torus of exponential size (van Emde Boas
1997). For the reduction to work nominals are not required,
that is, the lower bound already holds for SN . Intuitively,
in the reduction, we cope with the lack of qualified number
restrictions by exploiting the fact that ‘big numbers’ can be
used due to the binary coding.
We concentrate here on the most interesting part, the con-
struction of an SN -TBox Ttor and a concept L0 whose sat-
isfiability characterize the 2n×2n-torus. To this aim, we use
the following signature:

• concept names X0, . . . Xn−1, Y0, . . . , Yn−1 that serve to
encode the (x, y) coordinates in the torus

• concept names L0, . . . , L2n that mark the levels of a bi-
nary tree,
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• a transitive role r.

We start by enforcing that certain models of Ttor contain a
complete binary tree, called torus-tree, with 2n levels, where
the 22n leaves of the torus-tree will represent the 2n×2n

points in the torus. To this end, we include the transitiv-
ity statement Tra(r) and the following CIs, for 0 ≤ i < n in
Ttor:

Li 
 ∃r.(Xi � Li+1) � ∃r.(¬Xi � Li+1)

Ln+i 
 ∃r.(Yi � Ln+i+1) � ∃r.(¬Yi � Ln+i+1).

Moreover, we force the levels to be disjoint by adding the CI

Li 
 ¬Lj , for 0 ≤ i < j ≤ 2n.

We now propagate the concepts Xi and Yi down to level L2n

to encode numbers between 0 and 2n−1 at the leaves of the
torus-tree. Since r is a transitive role, the following concept
inclusions, for all i with 0 ≤ i < n suffice:

Li+1 �Xi 
 ∀r.(Lj → Xi) for i < j ≤ 2n,

Li+1 � ¬Xi 
 ∀r.(Lj → ¬Xi) for i < j ≤ 2n,

Ln+i+1 � Yi 
 ∀r.(Lj → Yi) for n+ i < j ≤ 2n,

Ln+i+1 � ¬Yi 
 ∀r.(Lj → ¬Yi) for n+ i < j ≤ 2n.

Next, we introduce some required notation. Fix an interpre-
tation I. For each element d ∈ ΔI , we define pos(d) as the
pair of integers

(xpos(d), ypos(d)) = (Σn−1
0 xi · 2i,Σn−1

0 yi · 2i),

where

xi =

{
0 if d �∈ XI

i ,

1 otherwise;
yi =

{
0 if d �∈ Y Ii ,

1 otherwise.

It should be clear that in any model I of L0 and the CIs
defined so far, there are 22n elements which satisfy L2n;
even more, for each pair of values 0 ≤ i, j < 2n, there is an
element dij ∈ LI2n such that pos(dij) = (i, j). However, the
elements dij are not necessarily connected in a particularly
useful way; thus, we now relate elements at level 2n to their
horizontal and vertical neighbors.

To this aim, we will use glueing points. More precisely,
for every d, d′ ∈ LI2n with pos(d) = (x, y) and pos(d′) =
(x ⊕2n 1, y),3 we enforce an element g ∈ HI such that
(d, g) ∈ rI and (d′, g) ∈ rI and pos(g) = (x⊕2n 1, y), and
similar for the y-coordinate. This is illustrated in Figure 1,
where glueing points are depicted as ◦ and labelled with H
and V for horizontal and vertical, respectively.

To facilitate this task, we define the following concepts,
for 0 ≤ i ≤ n− 1 and i < j ≤ n− 1:

X∗i ≡ ¬Xi �
�

0≤k≤i−1

Xk; X+
i ≡ Xi �

�

0≤k≤i−1

¬Xk;

X∗
n ≡

�

0≤k≤n−1

Xk; X+
n ≡

�

0≤k≤n−1

¬Xk;

X→
i 
 (Xj → ∀r.Xj) � (¬Xj → ∀r.¬Xj));

3⊕k denotes the addition modulo k.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

V

H

V

H

(i, j)

(i, j ⊕2n 1)
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Figure 1: Glueing the points in the torus

and analogous concepts Y ∗i , Y +
i , and Y→i . Observe that for

every interpretation I and d ∈ ΔI , there is a single i such
that d ∈ (X+

i )I , and similarly for X∗
i . Moreover, for every

d, e ∈ ΔI with xpos(e) = xpos(d) ⊕2n 1, we have that, if
d ∈ (X∗

i )
I , then e ∈ (X+

i )I and d ∈ XI
j iff e ∈ XI

j , for
all i < j ≤ n; and similarly for ypos. With this in mind, we
enforce for every element d in level 2n with pos(d) = (x, y)
four r-successors d+h , d

=
h , d

+
v , d

=
v such that

• d+h ∈ HI , xpos(d+h ) = x⊕2n 1, ypos(d+h ) = y,

• d=h ∈ HI , xpos(d=h ) = x, ypos(d=h ) = y,

• d+v ∈ V I , xpos(d+v ) = x, ypos(d+v ) = y ⊕2n 1, and
• d=v ∈ V I , xpos(d=v ) = x, ypos(d=v ) = y,
using the following concept inclusions, for 0 ≤ i ≤ n and
0 ≤ j ≤ n− 1:

L2n �X∗
i 
 X→

i � ∃r.(H �X+
i ) � ∃r.(H �X∗

i )

L2n � Y ∗i 
 Y→i � ∃r.(V � Y +
i ) � ∃r.(V � Y ∗i )

L2n �Xj 
 ∀r.(V → Xj)

L2n � ¬Xj 
 ∀r.(V → ¬Xj)

L2n � Yj 
 ∀r.(H → Yj)

L2n � ¬Yj 
 ∀r.(H → ¬Yj)

Moreover, we make sure that the glueing points are fresh,
and that horizontal and vertical are disjoint by adding:

H 
 ¬V and H 
 V 
 ¬Li, for 0 ≤ i ≤ 2n.

It remains to identify the introduced glueing points as indi-
cated in Figure 1. For this, we use the (unqualified) number
restrictions. In particular, we add the concept inclusion

L0 
 (≤ k r),

with k = (22n+1−2)+22n. To justify the choice of k, note
that, without the glueing points, the intended model of L0

has 2i elements in every level i, that is, 22n+1 − 1 elements
overall, and hence L0 has 22n+1−2 successors. As we want
to have a single glueing point for every (i, j) with 0 ≤ i, j <
n, we need to restrict the number of glueing points to 22n.

This finishes the definition of Ttor. It is formally shown
in the appendix that Ttor properly defines the 2n×2n-torus.
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Having this, it is standard to reduce the tiling problem on the
torus, by using the elements in level 2n as the tiles and the
glueing points to communicate between neighboring tiles.
Theorem 3. Concept satisfiability relative to SON -TBoxes
with binary coding of numbers is NEXPTIME-complete.

Note that, in presence of a single transitive role r, we can
always rewrite the TBox T as a concept CT : add a conjunct
(C → D) � ∀r.(C → D) for each C 
 D ∈ T ; hence:
Corollary 1. Given a transitive r, satisfiability of SON -
concepts with binary coding is NEXPTIME-complete.

5 The Case of Functionality

We next study SHOIF which allows for both inverse roles
and role inclusions. Recall that these features lead to un-
decidability already with unqualified counting with num-
bers greater than 1 (Horrocks, Sattler, and Tobies 2000;
Kazakov, Sattler, and Zolin 2007). However, it was open
whether decidability could be attained by sticking to func-
tionality. We answer positively this question, by reducing
satisfiability in SHOIF to satisfiability in ALCHOIFsf ,
the extension of ALCHOIF with local reflexivity concepts
∃r.self, whose semantics is given by

(∃r.self)I = {d ∈ ΔI | (d, d) ∈ rI}.
Let T be a SHOIF-TBox and recall the notation cl(T )
from Section 4.1. We obtain the TBox T ′ from T by taking
T ′ = (T \ {Tra(r) ∈ T }) ∪ T ′′, where T ′′ is the set of the
following CIs, for every Tra(r) ∈ T and C ∈ cl(T ):

∀r.C 
 ∀r.(∀r.C),

(≤ 1 r) 
 ∀r.(∀r.⊥ 
 ∃r.self).
Concept inclusions of the first type have been used to mimic
the behavior of transitive roles for example in (Tobies 2001);
note also the similarity to the axiom �p → ��p charac-
terizing transitive frames in modal logic (Chagrov and Za-
kharyaschev 1997). Concept inclusions of the second type
capture the interplay of transitivity and (local) functionality:
if two elements d and e are r-connected, for some functional
transitive r, e cannot have an r-successor other than itself.

The correctness of this reduction is established in the ap-
pendix. It is easy to see that T ′ is an ALCHOIFsf TBox
and that it can computed in polynomial time. Moreover, the
reduction also works for SHIF yielding an ALCHIQsf -
TBox. It is known that concept satisfiability in ALCHIQsf

and ALCHOIQsf can be checked in EXPTIME (Calvanese,
Eiter, and Ortiz 2009) and NEXPTIME (Motik, Shearer, and
Horrocks 2009), respectively. Matching lower bounds are
inherited from ALC and ALCFIO, respectively (Baader et
al. 2003; Lutz 2004).
Theorem 4. Concept satisfiability is NEXPTIME-complete
for SHOIF-TBoxes and EXPTIME-complete for SHIF .

6 A Look at DL-Lite
We next show that supporting number restrictions on tran-
sitive roles in DL-LiteHNcore (Artale et al. 2009) leads to un-
decidability. This result strengthens the known undecidabil-
ity result for SHIN in the sense that DL-LiteHNcore is a very

P(0,0) P(1,0)

P(0,1)

P(1,1)

P(1,1)

h

s1

v s1 vs1

h

s1

Figure 2: Grid Square

weak sub-Boolean logic without qualified existential restric-
tions. DL-LiteSHNcore -concepts C are defined as

C ::= ⊥ | A | (∼ n r),

where A ∈ NC, r is a role and ∼ is an arbitrary comparison.
DL-LiteSHNcore -TBoxes are defined as in Section 2, but CIs
can only take the form: C 
 D or C � D 
 ⊥ with C,D
DL-LiteSHNcore -concepts.

The undecidability proof (cf. appendix) is by reduction of
the halting problem of deterministic Turing machines. In
the proof, RIs and counting over transitive roles are key for
the construction of squares of a grid, and for ensuring that
such grid is infinite. For instance, in Figure 2, if we declare
(i) the transitive role s1 as super-role of h and v, and (ii)
that each element has at-most 3 s1-successors, then the two
elements in P(1,1) are forced to be the same. Roughly, we
then arrange a sequence of configurations (a computation)
as a ‘two-dimensional’ grid of domain elements.

Theorem 5. Concept satisfiability relative to DL-LiteSHNcore -
TBoxes is undecidable.

Decidability is regained again for functionality. In par-
ticular, Theorem 4 yields a (tight) EXPTIME upper bound
for DL-LiteSHFbool , which is the fragment of SHIF allowing
only for unqualified existential restrictions. Note that the
upper bound holds for local functionality; indeed, in DL-
Lite functionality is normally meant to be global, which is
weaker than the local one. The lower bound is inherited from
DL-LiteHFbool (Artale et al. 2009). We thus obtain:

Theorem 6. Concept satisfiability relative to DL-LiteSHFbool -
TBoxes is EXPTIME-complete.

Further, if we drop role inclusions and consider global
functionality, we show that, similar to Section 5, we
can reduce satisfiability in DL-LiteSFbool to satisfiability in
DL-LiteF,sf

bool , extending DL-LiteFbool with local reflexivity
concepts. To obtain the desired result, we first show:

Lemma 4. Concept satisfiability relative to DL-LiteF,sf
bool

TBoxes is NP-complete.

The lower bound is inherited from DL-LiteFbool. The
upper bound can be proved by extending the reduction
from DL-LiteFbool to the one-variable fragment of first-order
logic (Artale et al. 2009) so as to deal with local reflexivity.
With Lemma 4 at hand, we obtain the following (where the
lower bound is also inherited from DL-LiteFbool) :
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Theorem 7. Concept satisfiability relative to DL-LiteSFbool
TBoxes is NP-complete.

Note that the reduction from DL-LiteSFbool to DL-LiteF,sf
bool re-

lies on the availability of disjunction. Hence we cannot lift
the reduction to non-Boolean complete fragments.

7 Conclusions and Future Work
In this paper, we have made progress on the understanding
of the computational complexity of DLs allowing for num-
ber restrictions on transitive roles. In particular, we have es-
tablished a tight NEXPTIME upper bound for satisifiability
in SOQ, and showed that in SON the coding of numbers
plays a role on the computational complexity.

As the next step, we will look for ways to incorporate in-
verse roles and numbers greater than 1 without losing decid-
ability. In this direction, we will investigate languages based
on DL-Lite without RIs. In SOIQ, decidability might be
regained by admitting counting only over r or r−, but not
over both (Kazakov, Sattler, and Zolin 2007). We will also
investigate ways to include some other forms of complex
roles, such as role composition.

On the practical side, we are interested in developing a
consequence-based calculus for our logics – a promising
starting point is the recently proposed calculus for SRIQ,
supporting number restrictions on non-transitive roles (Bate
et al. 2016).

We will also study DLs supporting counting over tran-
sitive roles in the context of ontology-based data access.
We want to understand the impact of these features on the
problem of conjunctive query answering, in the case where
transitive roles occur in the query. Moreover, we will con-
sider conjunctive queries incorporating some type of count-
ing, e.g., restricted versions of inequalities, such as local in-
equalities (Gutiérrez-Basulto et al. 2015).
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