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Abstract

With the large volume of new information created every day,
determining the validity of information in a knowledge graph
and filling in its missing parts are crucial tasks for many re-
searchers and practitioners. To address this challenge, a num-
ber of knowledge graph completion methods have been de-
veloped using low-dimensional graph embeddings. Although
researchers continue to improve these models using an increas-
ingly complex feature space, we show that simple changes
in the architecture of the underlying model can outperform
state-of-the-art models without the need for complex feature
engineering. In this work, we present a shared variable neural
network model called ProjE that fills-in missing information
in a knowledge graph by learning joint embeddings of the
knowledge graph’s entities and edges, and through subtle, but
important, changes to the standard loss function. In doing
so, ProjE has a parameter size that is smaller than 11 out of
15 existing methods while performing 37% better than the
current-best method on standard datasets. We also show, via
a new fact checking task, that ProjE is capable of accurately
determining the veracity of many declarative statements.

Introduction

Knowledge Graphs (KGs) have become a crucial resource
for many tasks in machine learning, data mining, and ar-
tificial intelligence applications including question answer-
ing (Unger et al. 2012), entity disambiguation (Cucerzan
2007), named entity linking (Hachey et al. 2013), fact check-
ing (Shi and Weninger 2016), and link prediction (Nickel et
al. 2015) to name a few. In our view, KGs are an example
of a heterogeneous information network containing entity-
nodes and relationship-edges corresponding to RDF-style
triples 〈h, r, t〉 where h represents a head entity, and r is a
relationship that connects h to a tail entity t.

KGs are widely used for many practical tasks, however,
their correctness and completeness are not guaranteed. There-
fore, it is necessary to develop knowledge graph completion
(KGC) methods to find missing or errant relationships with
the goal of improving the general quality of KGs, which, in
turn, can be used to improve or create interesting downstream
applications.
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The KGC task can be divided into two non-mutually ex-
clusive sub-tasks: (i) entity prediction and (ii) relationship
prediction. The entity prediction task takes a partial triple
〈h, r, ?〉 as input and produces a ranked list of candidate
entities as output:
Definition 1. (Entity Ranking Problem) Given a Knowledge
Graph G = {E,R} and an input triple 〈h, r, ?〉, the entity
ranking problem attempts to find the optimal ordered list
such that ∀ej∀ei ((ej ∈ E− ∧ ei ∈ E+) → ei ≺ ej), where
E+ = {e ∈ {e1, e2, . . . , el}|〈h, r, e〉 ∈ G} and E− = {e ∈
{el+1, el+2, . . . , e|E|}|〈h, r, e〉 /∈ G}.

Distinguishing between head and tail-entities is usually
arbitrary, so we can easily substitute 〈h, r, ?〉 for 〈?, r, t〉.

The relationship prediction task aims to find a ranked list of
relationships that connect a head-entity with a tail-entity, i.e.,
〈h, ?, t〉. When discussing the details of the present work, we
focus specifically on the entity prediction task; however, it is
straightforward to adapt the methodology to the relationship
prediction task by changing the input.

A number of KGC algorithms have been developed in re-
cent years, and the most successful models all have one thing
in common: they use low-dimensional embedding vectors to
represent entities and relationships. Many embedding mod-
els, e.g., Unstructured (Bordes et al. 2012), TransE (Bordes
et al. 2013), TransH (Wang et al. 2014), and TransR (Lin et
al. 2015), use a margin-based pairwise ranking loss function,
which measures the score of each possible result as the Ln-
distance between h+ r and t. In these models the loss func-
tions are all the same, so models differ in how they transform
the entity embeddings h and t with respect to the relation-
ship embeddings r. Instead of simply adding h + r, more
expressive combination operators are learned by Knowledge
Vault (Dong et al. 2014) and HolE (Nickel, Rosasco, and
Tomaso 2016) in order to predict the existence of 〈h, r, t〉 in
the KG.

Other models, such as the Neural Tensor Network
(NTN) (Socher et al. 2013) and the Compositional Vector
Space Model (CVSM) (Neelakantan, Roth, and McCallum
2015), incorporate a multilayer neural network solution into
the existing models. Unfortunately, due to their extremely
large parameter size, these models either (i) do not scale well
or (2) consider only a single relationship at a time (García-
Durán, Bordes, and Usunier 2015) thereby limiting their
usefulness on large, real-world KGs.
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Despite their large model size, the aforementioned meth-
ods only use singleton triples, i.e., length-1 paths in the KG.
PTransE (Lin, Liu, and Sun 2015) and RTransE (García-
Durán, Bordes, and Usunier 2015) employ extended path in-
formation from 2 and 3-hop trails over the knowledge graph.
These extended models achieve excellent performance due
to the richness of the input data; unfortunately, their model-
size grows exponentially as the path-length increases, which
further exacerbates the scalability issues associated with the
already high number of parameters of the underlying-models.

Another curious finding is that some of the existing mod-
els are not self-contained models, i.e., they require pre-
trained KG embeddings (RTransE, CVSM), pre-selected
paths (PTransE, RTransE), or pre-computed content embed-
dings of each node (DKRL (Xie et al. 2016)) before their
model training can even begin. TransR and TransH are self-
contained models, but their experiments only report results
using pre-trained TransE embeddings as input.

With these considerations in mind, in the present work we
rethink some of the basic decisions made by previous models
to create a projection embedding model (ProjE) for KGC.
ProjE has four parts that distinguish it from the related work:

1. Instead of measuring the distance between input triple
〈h, r, ?〉 and entity candidates on a unified or a relationship-
specific plane, we choose to project the entity candidates
onto a target vector representing the input data.

2. Unlike existing models that use transformation matrices,
we combine the embedding vectors representing the input
data into a target vector using a learnable combination
operator. This avoids the addition of a large number of
transformation matrices by reusing the entity-embeddings.

3. Rather than optimizing the margin-based pairwise ranking
loss, we optimize a ranking loss of the list of candidate-
entities (or relationships) collectively. We further use can-
didate sampling to handle very large data sets.

4. Unlike many of the related models that require pre-trained
data from prerequisite models or explore expensive multi-
hop paths through the knowledge graph, ProjE is a self-
contained model over length-1 edges.

Related Work

A variety of low-dimensional representation-based methods
have been developed to work on the KGC task. These meth-
ods usually learn continuous, low-dimensional vector repre-
sentations (i.e., embeddings) for entities WE and relation-
ships WR by minimizing a margin-based pairwise ranking
loss (Lin, Liu, and Sun 2015).

The most widely used embedding model in this category
is TransE (Bordes et al. 2013), which views relationships as
translations from a head entity to a tail entity on the same
low-dimensional plane. The energy function of TransE is
defined as

E(h, r, t) =‖ h+ r − t ‖Ln , (1)

which measures the Ln-distance between a translated head en-
tity h+r and some tail entity t. The Unstructured model (Bor-
des et al. 2012) is a special case of TransE where r = 0 for
all relationships.

Based on the initial idea of treating two entities as a transla-
tion of one another (via their relationship) in the same embed-
ding plane, several models have been introduced to improve
the initial TransE model. The newest contributions in this line
of work focus primarily on the changes in how the embedding
planes are computed and/or how the embeddings are com-
bined. For example, the entity translations in TransH (Wang
et al. 2014) are computed on a hyperplane that is perpen-
dicular to the relationship embedding. In TransR (Lin et al.
2015) the entities and relationships are embedded on separate
planes and then the entity-vectors are translated to the rela-
tionship’s plane. Structured Embedding (SE) (Bordes et al.
2011) creates two translation matrices for each relationship
and applies them to head and tail entities separately. Knowl-
edge Vault (Dong et al. 2014) and HolE (Nickel, Rosasco,
and Tomaso 2016), on the other hand, focus on learning a
new combination operator instead of simply adding two entity
embeddings element-wise.

The aforementioned models are all geared toward link
prediction in KGs, and they all minimize a margin-based
pairwise ranking loss function L over the training data S:

L(S) = Σ(h,r,t)∈S[γ + E(h, r, t) − E(h′, r′, t′)]+, (2)

where E(h, r, t) is the energy function of each model, γ is
the margin, and (h′, r′, t′) denotes some “corrupted” triple
which does not exist in S. Unlike aforementioned models
that focus on different E(h, r, t), TransA (Jia et al. 2016)
introduces an adaptive local margin approach that determines
γ by a closed set of entity candidates. Other similar models
include RESCAL (Nickel, Tresp, and Kriegel 2011), Seman-
tic Matching Energy (SME) (Bordes et al. 2012), and the
Latent Factor Model (LFM) (Jenatton et al. 2012).

The Neural Tensor Network (NTN) model (Socher et al.
2013) is an exception to the basic energy function in Eq. 1.
Instead, NTN uses an energy function

E(h, r, t) = uT
r f(h

TWrt+Wrhh+Wrtt+ br), (3)

where ur, Wr, Wrh, and Wrt are all relationship-specific
variables. As a result, the number of parameters in NTN is
significantly larger than other methods. This makes NTN
unsuitable for networks with even a moderate number of
relationships.

So far, the related models have only considered triples that
contain a single relationship. More complex models have
been introduced to leverage path and content information in
KGs. For instance, the Compositional Vector Space Model
(CVSM) (Neelakantan, Roth, and McCallum 2015) com-
poses a sequence of relationship embeddings into a single
path embedding using a Recurrent Neural Network (RNN).
However, this has two disadvantages: (i) CVSM needs pre-
trained relationship embeddings as input, and (ii) each CVSM
is specifically trained for only a single relationship type.
This makes CVSM perform well in specific tasks, but un-
suitable for generalized entity and relationship prediction
tasks. RTransE (García-Durán, Bordes, and Usunier 2015)
solves the relationship-specific problem in CVSM by us-
ing entity and relationship embeddings learned from TransE.
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Table 1: Parameter size and prerequisites of KGC models
in increasing order. ProjE, ranked 5th, is highlighted. ne,
nr, nw, k are the number of entities, relationships, words,
and embedding size in the KG respectively. z is the hidden
layer size. q† represents the number of RNN parameters in
RTransE; this value is not specified, but should be 8k2 if a
normal LSTM is used.

Model Parameters Prerequisites

in
cr

ea
si

ng
m

od
el

si
ze

←−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−

Unstructured nek -
TransE nek + nrk -
HolE nek + nrk -

PTransE nek + nrk PCRA
ProjE nek + nrk + 5k -
CVSM nek + nrk + 2k2 Word2vec

SME (linear) nek + nrk + 4k2 -
RTransE nek + nrk + q† TransE, PCRW

LFM nek + nrk + 10k2 -
SME (bilinear) nek + nrk + 2k3 -

TransH nek + 2nrk -
RESCAL nek + nrk

2 -
SE nek + 2nrk

2 -
TransR nek + nr(k + k2) -
DKRL nek + nrk + nwk + 2zk TransE, Word2vec
NTN nek + nr(zk

2 + 2zk + 2z) -

However, it is hard to compare RTransE with existing meth-
ods because it requires unambiguous, pre-selected paths as
inputs called quadruples 〈h, r1, r2, t〉 further complicating
the model. DKRL, like NTN, uses word embeddings of entity-
content in addition to multi-hop paths, but relies on the ma-
chinery of a Convolution Neural Network (CNN) to learn
entity and relationship embeddings.

PTransE (Lin, Liu, and Sun 2015) is another path-based
method that uses path information in its energy function. Sim-
ply put, PTransE doubles the number of edges in the KG by
creating reverse relationships for every existing relationship
in the KG. Then PTransE uses PCRA (Zhou et al. 2007) to
select input paths within a given length constraint.

Table 1 shows a breakdown of the parameter complexity of
each model. As is typical, we find that more complex models
achieve better prediction accuracy, but are also more diffi-
cult to train and have trouble scaling. The proposed method,
ProjE, has a number of parameters that is smaller than 11 out
of 15 methods and does not require any prerequisite training.

Methodology

The present work views the KGC problem as a ranking task
and optimizes the collective scores of the list of candidate
entities. Because we want to optimize the ordering of can-
didate entities collectively, we need to project the candidate
entities onto the same embedding vector. For this task we
learn a combination operator that creates a target vector from
the input data. Then, the candidate entities are each projected
onto the same target vector thereby revealing the candidate’s
similarity score as a scalar.

In this section we describe the ProjE architecture, followed
by two proposed variants, their loss functions, and our choice
of candidate sampling method. In the experiments section
we demonstrate that ProjE outperforms all existing methods
despite having a relatively small parameter space. A detailed

algorithm description can be found in the Supplementary
Material.

Model Architecture

The main insight in the development of ProjE is as follows:
given two input embeddings, we view the prediction task
as ranking problem where the top-ranked candidates are the
correct entities. To generate this ordered list, we project each
of the candidates onto a target vector defined by two input
embeddings through a combination operator.

Existing models, such as Knowledge Vault, HolE, and
NTN, define specific matrix combination operators that com-
bine entities and/or relationships. In common practice, these
matrices are expected to be sparse. Because we believe it
is unnecessary to have interactions among different feature
dimensions at this early stage, we constraint our matrices to
be diagonal, which are inherently sparse. The combination
operator is therefore defined as

e⊕ r = Dee+Drr+ bc, (4)

where De and Dr are k × k diagonal matrices which serve
as global entity and relationship weights respectively, and
bc ∈ Rk is the combination bias.

Using this combination operator, we can define the embed-
ding projection function as

h(e, r) = g(Wcf(e⊕ r) + bp), (5)

where f and g are activation functions that we define later,
Wc ∈ Rs×k is the candidate-entity matrix, bp is the projec-
tion bias, and s is the number of candidate-entities. h(e, r)
represents the ranking score vector, where each element rep-
resents the similarity between some candidate entity in Wc

and the combined input embedding e⊕ r.
Although s is relatively large, due to the use of shared

variables, Wc is the candidate-entity matrix that contains s
rows that exist in the entity embedding matrix WE . Simply
put, Wc does not introduce any new variables into the model.
Therefore, compared to simple models like TransE, ProjE
only increases the number of parameters by 5k + 1, where 1,
4k, and k are introduced as the projection bias, combination
weights, and combination bias respectively. Later we show
that by changing different activation functions, ProjE can be
either a pointwise ranking model or a listwise ranking model.

ProjE can be viewed as a neural network with a combi-
nation layer and a projection (i.e., output) layer. Figure 1
illustrates this architecture by way of an example. Given a
tail entity Illinois and a relationship CityOf, our task is to
calculate the scores of each head entity. The blue nodes are
row vectors from the entity embedding matrix WE , and the
green nodes are row vectors from the relationship embedding
matrix WR; the orange nodes are the combination opera-
tors as diagonal matrices. For clarity we only illustrate two
candidates in Fig. 1, however Wc may contain an arbitrary
number of candidate-entities.

The next step is to define the loss functions used in ProjE.
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Figure 1: ProjE architecture for entity prediction with ex-
ample input 〈?,CityOf, Illinois〉 and two candidates. ProjE
represents a two-layer neural network with a combination
layer, and a projection (i.e., output) layer. This figure is best
viewed in color.

Ranking Method and Loss Function

As defined in Defn. 1, we view the KGC problem as a rank-
ing task where all positive candidates precede all negative
candidates and train our model accordingly. Typically there
are two ways to obtain such an ordering: with either 1) the
pointwise method, or 2) the listwise method (Pareek and
Ravikumar 2014). Although most existing KGC models, in-
cluding TransE, TransR, TransH, and HolE use a pairwise
ranking loss function during training, their ranking score
is calculated independently in what is essentially a point-
wise method when deployed. Based on the architecture we
described in previous section, we propose two methods: 1)
ProjE_pointwise, and 2) ProjE_listwise through the use of
different activation functions for g(·) and f(·) in Eq. 5.

First we describe the ProjE_pointwise ranking method.
Because the relative order inside each entity set does not
affect the prediction power, we can create a binary label
vector in which all entities in E− have a score of 0, and all
entities in E+ have a score of 1. Because we maximize the
likelihood between the ranking score vector h(e, r) and the
binary label vector, it is intuitive to view this task as a multi-
class classification problem. Therefore, the loss function of
ProjE_pointwise can be defined in a familiar way:

L(e, r,y) = −
∑

i∈{i|yi=1}
log(h(e, r)i)

−
∑
m

Ej∼Py
log(1 − h(e, r)j),

(6)

where e and r are the input embedding vectors of a training
instance in S, y ∈ Rs is a binary label vector where yi =
1 means candidate i represents a positive label, m is the
number of negative samples drawn from a negative candidate
distribution Ej∼Py

(described in next section). Because we

view ProjE_pointwise as a multiclass classification problem,
we use the sigmoid and tanh activation functions as our choice
for g(·) and f(·) respectively. When deployed, the ranking
score of the ith candidate-entity is:

h(e, r)i = sigmoid
(
Wc

[i,:]tanh (e ⊕ r) + bp

)
, (7)

where Wc
[i,:] represents ith candidate in the candidate-entity

matrix.
Recently, softmax regression loss has achieved good re-

sults in multi-label image annotation tasks (Guillaumin et al.
2009; Gong et al. 2013). This is because multi-label image
annotation, as well as many other classification tasks, should
consider their predicted scores collectively. Inspired by this
way of thinking, we employ the softmax activation function
in order to classify candidate-entities collectively, i.e., using
a listwise method. In this case we define the loss function of
ProjE_listwise as:

L(e, r,y) = −
|y|∑
i

(yi = 1)

Σi (yi = 1)
log (h(e, r)i) , (8)

where the target probability (i.e., the target score) of a pos-
itive candidate is 1 / (total number of positive candidates
of the input instance). Similar to Eq. 7, we replace g(·) and
f(·) as softmax and tanh respectively, which can be written
equivalently as:

h(e, r)i =
exp(Wc

[i,:]tanh(e ⊕ r) + bp)∑
j exp(W

c
[j,:]tanh(e ⊕ r) + bp)

. (9)

Later, we perform a comprehensive set of experiments that
compare ProjE with more than a dozen related models and
discuss the proposed ProjE_pointwise and ProjE_listwise
variants in depth.

Candidate Sampling

Although ProjE limits the number of additional parameters,
the projection operation may be costly due to the large num-
ber of candidate-entities (i.e., the number of rows in Wc).
If we reduce the number of candidate-entities in the train-
ing phrase, we could create a smaller working set that only
contains a subset of the embedding matrix WE . With this
in mind, we use candidate sampling to reduce the number of
candidate-entities. Candidate sampling is not a new prob-
lem; many recent works have addressed this problem in
interesting ways (Jean et al. 2015; Mikolov et al. 2013;
Gutmann and Hyvärinen 2010). We experimented with
many choices, and found that the negative sampling used
in Word2Vec (Mikolov et al. 2013) resulted the best perfor-
mance.

For a given entity e, relationship r, and a binary label
vector y, we compute the projection with all of the positive
candidates and only a sampled subset of negative candidates
from Py following the convention of Word2Vec. For sim-
plicity, Py can be replaced by a (0, 1) binomial distribution
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Table 2: Entity prediction on FB15K dataset. Missing values
indicate scores not reported in the original work.

Mean Rank HITS@10 (%)
Algorithm Raw Filtered Raw Filtered
Unstructured 1074 979 4.5 6.3
RESCAL 828 683 28.4 44.1
SE 273 162 28.8 39.8
SME (linear) 274 154 30.7 40.8
SME (bilinear) 284 158 31.3 41.3
LFM 283 164 26.0 33.1
TransE 243 125 34.9 47.1
DKRL (CNN) 200 113 44.3 57.6
TransH 212 87 45.7 64.4
TransR 198 77 48.2 68.7
TransE + Rev 205 63 47.9 70.2
HolE - - - 73.9
PTransE (ADD, len-2 path) 200 54 51.8 83.4
PTransE (RNN, len-2 path) 242 92 50.6 82.2
PTransE (ADD, len-3 path) 207 58 51.4 84.6
TransA 164 58 - -
ProjE_pointwise 174 104 56.5 86.6
ProjE_listwise 146 76 54.6 71.2
ProjE_wlistwise 124 34 54.7 88.4

B(1, py) shared by all training instances, where py is the
probability that a negative candidate is sampled and 1− py
is the probability that a negative candidate is not sampled.
For every negative candidate in y we sample a value from
B(1, py) to determine whether we include this candidate in
the candidate-entity matrix Wc or not.

In the Supplementary Material we evaluate the perfor-
mance of ProjE with different candidate sampling rates
py ∈ {5%, 25%, 50%, 75%, 95%}. Our experiments show
relatively consistent performance using negative sampling
rates as low as 25%.

Experiments

We evaluate the ProjE model with entity prediction and re-
lationship prediction tasks, and compare the performance
against several existing methods using experimental proce-
dures, datasets, and metrics established in the related work.
The FB15K dataset is a 15,000-entity subset of Freebase;
the Semantic MEDLINE Database (SemMedDB) is a KG
extracted from all of PubMed (Kilicoglu et al. 2012); and DB-
pedia is KG extracted from Wikipedia infoboxes (Lehmann,
Isele, and Jakob 2014). Using DBpedia and SemMedDB,
we also introduce a new fact checking task for a practical
case study on the usefulness of these models. ProjE is imple-
mented in Python using TensorFlow (Abadi et al. 2016); the
code and data are available at https://github.com/nddsg/ProjE.

Settings

For both entity and relationship prediction tasks, we use
Adam (Kingma and Ba 2014) as the stochastic optimizer
with default hyper-parameter settings: β1 = 0.9, β2 = 0.999,
and ε = 1e−8. During the training phrase, we apply an L1

regularizer to all parameters in ProjE and a dropout layer on
top of the combination operator to prevent over-fitting.

The hyper-parameters in ProjE are the learning rate lr,

Table 3: Relationship prediction on FB15K dataset.
Mean Rank HITS@1 (%)

Algorithm Raw Filtered Raw Filtered
TransE 2.8 2.5 65.1 84.3
TransE + Rev 2.6 2.3 67.1 86.7
DKRL (CNN) 2.9 2.5 69.8 89.0
PTransE (ADD, len-2 path) 1.7 1.2 69.5 93.6
PTransE (RNN, len-2 path) 1.9 1.4 68.3 93.2
PTransE (ADD, len-3 path) 1.8 1.4 68.5 94.0
ProjE_pointwise 1.6 1.3 75.6 95.6
ProjE_listwise 1.5 1.2 75.8 95.7
ProjE_wlistwise 1.5 1.2 75.5 95.6

embedding size k, mini-batch size b, regularizer weight α,
dropout probability pd, and success probability for negative
candidate sampling py. We set lr = 0.01, b = 200, α =
1e−5, and pd = 0.5 for both tasks, k = 200, py = 0.5 for
the entity prediction task and k = 100, py = 0.75 for the
relationship prediction task.

For all tasks, ProjE was trained for at most 100 iterations,
and all parameters were initialized from a uniform distri-
bution U [− 6√

k
, 6√

k
] as suggested by TransE (Bordes et al.

2013). ProjE can also be initialized with pre-trained embed-
dings.

Entity and Relationship Prediction

We evaluated ProjE’s performance on entity and relation-
ship prediction tasks using the FB15K dataset following
the experiment settings in TransE (Bordes et al. 2013) and
PTransE (Lin, Liu, and Sun 2015). For entity prediction, we
aim to predict a missing h (or t) for a given triple 〈h, r, t〉
by ranking all of the entities in the KG. To create a test set
we replaced the head or tail-entity with all entities in the KG,
and rank these replacement entities in descending order. For
relationship prediction, we replaced the relationship of each
test triple with all relationships in the KG, and rank these
replacement relationships in descending order.

Following convention, we use mean rank and HITS@k as
evaluation metrics. Mean rank measures the average rank of
correct entities/relationships. HITS@k measures if correct
entities/relationships appear within the top-k elements. The
filtered mean rank and filtered HITS@k ignore all other true
entities/relationships in the result and only look at the target
entity/relationship. For example, if the target relationship
between 〈Springfield, ?, Illinois〉 is locatedIn, and the top-2
ranked relationships are capitalOf and locatedIn, then the
raw mean rank and HITS@1 of this example would be 2 and
0 respectively, but the filtered mean rank and HITS@1 would
both be 1 because the filtered mean rank and filtered HITS@k
ignore the correct capitalOf relationship in the results set.

In addition to ProjE_pointwise and ProjE_listwise, we
also evaluate ProjE_wlistwise, which is a slight variation
of ProjE_listwise that incorporates instance-level weights
(Σi (yi = 1)) to increase the importance of N-to-N and N-
to-1 (1-to-N) relationships.

Table 2 and Tab. 3 show that the three ProjE variants out-
perform existing methods in most cases. Table 3 contains
fewer models than Tab. 2 because many models do not per-
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Table 4: AUC scores of fact checking test cases on DBpedia and SemMedDB.
DBPedia SemMedDB

Algorithm CapitalOf Company CEO NYT Bestseller US Civil War US Vice-President Disease Cell
Adamic/Adar 0.387 0.665 0.650 0.642 0.795 0.671 0.755
Semantic Proximity 0.706 0.614 0.641 0.582 0.805 0.871 0.840
SimRank 0.553 0.824 0.695 0.685 0.912 0.809 0.749
AMIE 0.550 0.669 0.520 0.659 0.987 0.889 0.898
PPR 0.535 0.579 0.529 0.488 0.683 0.827 0.885
PCRW 0.550 0.542 0.486 0.488 0.672 0.911 0.765
TransE 0.655 0.728 0.601 0.612 0.520 0.532 0.620
PredPath 0.920 0.747 0.664 0.749 0.993 0.941 0.928
ProjE 0.979 0.845 0.852 0.824 1.000 0.926 0.971

form the relationship prediction task. We also adapt the point-
wise and listwise ranking methods to TransE using the same
hyperparameter settings, but the performance does not im-
prove significantly and is not shown here. This indicates that
the pointwise and listwise ranking methods are not merely
simple tricks that can be added to any model to improve
performance.

Surprisingly, although softmax is usually used in mutually
exclusive multi-class classification problems and sigmoid
is a more natural choice for non-exclusive cases like the
KGC task, we find that ProjE_listwise and ProjE_wlistwise
perform better than ProjE_pointwise in most cases.

This is because KGC is a special ranking task, where a
good model ought to have the following properties: 1) the
score of all positive candidates should be maximized and the
score of all negative candidates should be minimized, and
2) the number of positive candidates that are ranked above
negative candidates should be maximized. By maximizing
the similarity between the ranking score vector and the binary
label vector, ProjE_pointwise meets the first property but fails
to meet the second, i.e., ProjE_pointwise does not addresses
the ranking order of all candidates collectively, because sig-
moid is applied to each candidate individually. On the other
hand, ProjE_listwise and ProjE_wlistwise successfully ad-
dresses both properties by maximizing the similarity between
the binary label vector and the ranking score vector, which is
an exponential-normalized ranking score vector that imposes
an explicit ordering to the candidate-entities collectively.

In the Supplementary Material we also examine the sta-
bility of the proposed ProjE model and demonstrate that the
performance of ProjE increases steadily and smoothly during
training.

Fact Checking

Unlike the entity prediction and relationship prediction tasks
that predict randomly sampled triples, we employ a new fact
checking task that tests the predictive power of various mod-
els on real world questions. We view the fact checking task
as a type of link prediction problem because a fact statement
〈h, r, t〉 can be naturally considered as an edge in a KG.

We use ProjE_wlistwise with a small change: rather than
using entity embeddings directly, the input vector of ProjE
consists of the predicate paths between the two entities (Shi
and Weninger 2016). We learn the entity-embeddings by
adding an input layer that converts input predicate paths into

the entity-embedding.
We employ the experimental setup and question set from

Shi and Weninger (2016) on the DBPedia and SemMedDB
data sets. Specifically, we remove all edges having the same
label as the input relationship r and perform fact checking
on the modified KG by predicting the existence of r on hun-
dreds of variations of 7 types of questions. For example,
the CapitalOf question checks various claims of the cap-
itals of US states. In this case, we check if each of the 5
most populous cities within each state is its capital. This re-
sults in about 5 × 5 = 250 checked facts with an 20/80
positive to negative label ratio. The odds that some fact
statement is true is equivalent to the odds that the fact’s
triple is missing from the KG (rather than purposefully
omitted, i.e., a true negative). Results in Tab. 4 show that
ProjE outperforms existing fact checking and link predic-
tion models (Adamic and Adar 2003; Ciampaglia et al. 2015;
Jeh and Widom 2002; Galárraga et al. 2013; Haveliwala 2002;
Lao and Cohen 2010) in all but one question type.

Conclusions and Future Work

To recap, the contributions of the present work are as follows:
1) we view the KGC task as a ranking problem and project
candidate-entities onto a vector representing a combined em-
bedding of the known parts of an input triple and order the
ranking score vector in descending order; 2) we show that
by optimizing the ranking score vector collectively using the
listwise ProjE variation, we can significantly improve pre-
diction performance; 3) ProjE uses only directly connected,
length-1 paths during training, and has a relatively simple
2-layer structure, yet outperforms complex models that have
a richer parameter or feature set; and 4) unlike other models
(e.g., CVSM, RTransE, DKRL), the present work does not
require any pre-trained embeddings and has many fewer pa-
rameters than related models. We finally show that ProjE can
outperform existing methods on fact checking tasks.

For future work, we will adapt more complicated neural
network models such RNN and CNN with the embedding
projection model presented here. It is also possible to incor-
porate rich feature sets from length-2 and length-3 paths, but
these would necessarily add additional complexity. Instead,
we plan to use information from complex paths in the KG
to clearly summarize the many complicated ways in which
entities are connected.
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