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Abstract

Taxonomy is indispensable in understanding natural lan-
guage. A variety of large scale, usage-based, data-driven
lexical taxonomies have been constructed in recent years.
Hypernym-hyponym relationship, which is considered as the
backbone of lexical taxonomies can not only be used to cat-
egorize the data but also enables generalization. In particu-
lar, we focus on one of the most prominent properties of the
hypernym-hyponym relationship, namely, transitivity, which
has a significant implication for many applications. We show
that, unlike human crafted ontologies and taxonomies, transi-
tivity does not always hold in data-driven lexical taxonomies.
We introduce a supervised approach to detect whether tran-
sitivity holds for any given pair of hypernym-hyponym rela-
tionships. Besides solving the inferencing problem, we also
use the transitivity to derive new hypernym-hyponym re-
lationships for data-driven lexical taxonomies. We conduct
extensive experiments to show the effectiveness of our ap-
proach.

Introduction

Knowledge bases are playing an increasingly important
role in many applications. Most knowledge bases, including
WordNet (Miller 1995), Cyc (Lenat and Guha 1989), and
Freebase (Bollacker et al. 2008), are manually crafted by
human experts or community efforts. The coverage of man-
ual knowledge bases, such as WordNet, is far from being
complete (Sang 2007). For example, the concepts and in-
stances below Animals and People in WordNet is quite lim-
ited (Pantel and Pennacchiotti 2006; Hovy, Kozareva, and
Riloff 2009).

Much attention thus has been paid on deriving knowledge
bases by automatic extraction from big corpora. The data-
driven approaches produce many knowledge bases such as
KnowItAll (Etzioni et al. 2004), NELL (Mitchell et al.
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2015), and Probase (Wu et al. 2012). Data-driven knowledge
bases in general are larger than manual knowledge bases,
covering more entities, concepts as well as their relation-
ships. For example, Freebase has thousands of types, while
Probase has millions of concepts. With a larger coverage,
data-driven knowledge bases are better at supporting large
scale text understanding and many other tasks.

Data-driven Lexical Taxonomy

In this paper, we concentrate on a particular knowledge
base: lexical taxonomy built by data-driven approaches. A
lexical taxonomy consists of the hypernym-hyponym rela-
tions between terms. One term A is a hypernym of another
term B if A’s meaning covers the meaning of B or much
broader (Sang 2007). For example, furniture is a hy-
pernym of chair. The opposite term for hypernym is hy-
ponym. So chair is a hyponym of furniture. We use
the expression hyponym(A, B) for a hypernym-hyponym re-
lationship, which means A is a hyponym of B.

Hypernym-hyponym relations are backbones of text un-
derstanding. The reason hypernym-hyponym relationships
hold such significance is that they enable generalization,
which lies at the core of human cognition as well as at the
core of machine inferencing for text understanding. To see
this, hyponym(iphone, smart phone) enables machine
to understand the search intent of iphone (i.e. smart
phone). hyponym(galaxy s4, smart phone) further
allows to recommend the related keyword galaxy s4.

Many automatically harvested lexical taxonomies such as
Probase, YAGO (Suchanek, Kasneci, and Weikum 2007),
WikiTaxonomy (Ponzetto and Strube 2008), are extracted
from web corpora or Wikipedia by certain syntactic pat-
terns (such as Hearst patterns (Hearst 1992)) or heuristic
rules. For example, a sentence “. . . famous basketball play-
ers such as Michael Jordan . . . ” is considered an evidence
for the claim that term Michael Jordan is a hyponym
of term famous basketball player, while this sen-
tence follows one Hearst pattern.

Problem Statement

In this paper, we focus on one of the most important proper-
ties of the hypernym-hyponym relationship: transitivity. For
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human-crafted taxonomies, transitivity in a lexical taxon-
omy is taken for granted, that is, given hyponym(A, B) and
hyponym(B, C), we know hyponym(A, C) (Sang 2007), as
shown in Example 1. Transitivity is thus one of the corner-
stones in knowledge-based inferencing, and many applica-
tions rely on transitivity (e.g., finding all the super concepts
of an instance).

Example 1 Is Einstein a scientist?
hyponym(einstein, physicist)
hyponym(physicist, scientist)
⇒ hyponym(einstein, scientist)

Unfortunately, transitivity does not always hold in data-
driven lexical taxonomies. Let us consider the following two
examples:
Example 2 Is Einstein a profession?
hyponym(einstein, scientist)
hyponym(scientist, profession)
� hyponym(einstein, profession)

Example 3 Is a car seat a piece of furniture?
hyponym(car seat, chair)
hyponym(chair, furniture)
� hyponym(car seat, furniture)

It is obvious that Einstein is not a profession. However,
in a data-driven lexical taxonomy such as Probase, we have
strong evidence that hyponym(einstein, scientist)
and hyponym(scientist, profession). If transitivity
holds, we will draw a conclusion that conflicts with common
sense. As for car seat and furniture, we are trapped
in a similar situation. Thus, it is clear that transitivity does
not always hold in data-driven lexical taxonomies.

One way out of this dilemma is to enforce word sense
disambiguation, just as WordNet does. For example, we
may manually distinguish the two senses of scientist
in in Example 2. One of them is a person, which we de-
note as scientistperson, and the other is a profession,
which we denote as scientistprofession. The evidence
provided by the taxonomy is that scientistperson is a hy-
pernym of einstein, and profession is a hypernym
of scientistprofession, which does not lead to the wrong
conclusion hyponym(einstein, profession).

We argue that the above solution is flawed both in prac-
tice and in theory. In practice, it is too difficult to perform
word sense disambiguation in a lexical taxonomy containing
millions of concepts and millions of hypernym-hyponym re-
lationships. In theory, it is not always possible to divide the
meaning of a word into finite and discrete senses. Take the
word chair as an example. There are many different types
of chairs, including office chair, bench, stool,
car seat, etc. We may have to decide whether chair
in each of these senses is considered as furniture or not.
To make it worse, manufacturers may make new types of
chairs such as those can be used both in the car and in the
room. Thus, we may end up having a concept for every sin-
gle object, and such a conceptual system is useless because
it does not have any generalization ability.

In summary, given hyponym(A, B) and hyponym(B, C),
it is not a trivial task to tell whether transitivity holds, that
is, whether we may draw the conclusion hyponym(A, C) or

not. The goal of this paper is to devise a mechanism in this
situation, to infer whether hyponym(A, C) holds or not for
any given pair hyponym(A, B) and hyponym(B, C).

Naive Inference Mechanisms

Our goal is to decide if transitivity holds for a pair of
hypernym-hyponym relation in the data-driven lexical tax-
onomy. That is, for any hyponym(a, b) and hyponym(b,
c), we need to determine whether hyponym(a, c) holds or
not. The direct inference mechanism is that if hyponym(a,
c) can be observed frequently in corpora, it is quite likely
that hyponym(a, c) holds. Since some taxonomies such as
Probase contain weights or probabilities for each hypernym-
hyponym relation, we wonder whether we can infer transi-
tivity directly from such weights and probabilities.

Next, we show that this naive inference mechanism does
not always work. The problem is, for any 〈a, b〉 and 〈b, c〉,
where hyponym(a, b) and hyponym(b, c) hold, it is very
likely that hyponym(a, c) has a zero or extremely small
frequency to be observed. We cannot conclude whether
hyponym(a, c) holds in this case, because the low frequency
could be the result of either data sparsity or noise. In Fig-
ure 1, we give the distribution of freqac (the frequency of
c being a hypernym of a in Probase) over 〈a, c〉 pairs for
which there exist a term b such that hyponym(a, b) and
hyponym(b, c) hold. It shows that over 4.5 × 109 pairs of
hyponym(a, c) have a zero frequency and the majority of
the rest has a small frequency in Probase. This is the reason
we need to infer transitivity from other evidence.

0 200 400 600 800 1000
freqac

100

102

104

106

108

1010

N
u
m
b
e
r

Figure 1: The frequency of hyponym(a, c). For most
hyponym(a, b) and hyponym(b, c), hyponym(a, c) has a zero or
extremely small frequency.

Inferring Transitivity

In this section, we present our method of checking whether
transitivity holds for a given pair. We present our solutions
mostly with respect to Probase, but the problem and the so-
lution presented here apply to other large-scale data-driven
lexical taxonomies as well.

A Simple Classifier

Before we dive into the details of inferring transitivity, we
introduce a classifier, which uses several simple features,
and discuss how the classifier can be improved for our pur-
pose. It is clear that the problem of detecting transitivity can
be modeled as a classification problem. The classifier ac-
cepts hyponym(a, b) and hyponym(b, c) as inputs, and pro-
duces TRUE or FALSE which indicates whether hyponym(a,
c) holds or not.
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Let n(〈a, c〉) be the frequency of hyponym(a, c) in
Probase. We use it as the first feature in the classifier. Be-
cause when n(〈a, c〉) is high, transitivity mostly holds,
since we have strong evidence of hyponym(a, c) in the data.
However, when n(〈a, c〉) is low, we are not sure. As dis-
cussed, the low frequency could be a result of incorrect ex-
traction (noise) or because either a or c is a rare term (data
sparsity).

Hence, the classifier might need to use more features, in-
cluding n(〈a, c〉), n(〈a, b〉),n(〈b, c〉), n(a), n(b), n(c),
where the last three denote the popularity of the three terms.
This simple classifier, however, is not very powerful. In the
rest of the section, we introduce more advanced signals,
which can be used by the classifier for transitivity detection.

Siblings

Assume that we know hyponym(newton, physicist)
and hyponym(physicist, scientist), and we need
to determine whether hyponym(newton, scientist)
holds or not. As shown in Figure 2(a), almost all instances
of physicist (einstein, hawking, faraday,
etc.) are scientist. This is a strong evidence that
hyponym(newton, scientist).

scientist

newton

?

existing relation
missing relation

einstein hawking faraday...

physicist

(a)

c

a

?

a1 a2 a3 ...

b

existing relation
missing relation

(b)

Figure 2: Using siblings to infer transitivity

We denote einstein, newton, hawking, ... as sib-
lings (with regard to their shared hypernym physicist).
Generally, as shown in Figure 2(b), if most of a’s siblings
are hyponyms of c, then it is reasonable to believe that a
should be as well, and vice versa.

To simplify the notation, we also use a triple t = 〈a,b,c〉
(we refer to the triple as a hyponym triple) to rep-
resent hypernym-hyponym relations hyponym(a, b) and
hyponym(b, c). Thus, we introduce a new feature sibr(t)
for our classifier:

sibr(t) =
|hypo(b) ∩ hypo(c)|

|hypo(b)| , t = 〈a,b,c〉 (1)

where hypo(b) denotes the set of hyponyms of b. Intu-
itively, sibr(t) is the percentage of a’s siblings that have
c as their hypernym. We also use the number of common
hyponyms of b and c (denoted as sib) as a feature.

We conduct a simple test to show the effectiveness of the
above feature. We randomly sample 5k triples 〈a,b,c〉 from
our negative and positive labeled dataset (more details are
in Section “Construction of the Labeled Dataset”), respec-
tively. The average sibr of negative samples is 0.015, and
the average sibr of positive samples is 0.132. The Wilcoxon
rank-sum test shows that the difference between positive
and negative samples is significant with p-value smaller than
2.2× 10−16.

Concept Similarity

Assume that we are to determine whether hyponym(ak-47,
military weapon) holds given hyponym(ak-47, gun)
and hyponym(gun, military weapon). From Fig-
ure 3(a), we observe that transitivity holds in many
triples 〈ak-47, gun, ci〉 where ci is weapon, modern
weapon, etc., and these cis have a high semantic similar-
ity to military weapon. Hence, it is reasonable to infer
that military weapon is also a hypernym of ak-47.

Similar Concepts

military
weapon

ak-47

? gun

modern 
weapon...weapon firearm

existing relation
missing relation

(a)

Similar Concepts

a

b

...c1 c2 c3c

?
existing relation
missing relation

(b)

Figure 3: Using concept similarity to infer transitivity

Based on the above observation, we introduce a new fea-
ture for our classifier:

sim(t) =

∑
ci∈hype(a,b) simc(c, ci)

|hype(a,b)| , t = 〈a,b,c〉 (2)

where hype(a,b) is the set of common hypernyms of a and
b, and simc(c1, c2) measures similarity between two con-
cepts c1 and c2. Intuitively, the feature measures how similar
c is to other concepts which are hypernyms of both a and b.
Specifically, the similarity function is defined as:

simc(c1, c2) = 1− (1− se(c1, c2))× (1− so(c1, c2)) (3)

where se(c1, c2) is the cosine similarity between c1 and c2’s
hypernym vectors, and so(c1, c2) is the cosine similarity be-
tween c1 and c2’s hyponym vectors. Intuitively, this is a
noisy-or model that considers both hypernym and hyponym
similarity. The rationale of using the noisy-or model is to
amplify the similarity signal suppressed by the data sparsity
problem in a data-driven knowledge base.

From Table 1, we can see that positive examples in gen-
eral have a significantly larger sim than negative examples.
Again, we use the 5k positive examples and 5k negative ex-
amples for some statistics tests. For the negative samples,
the average value is 0.204, which is smaller than the average
value 0.307 in positive samples. The Wilcoxon rank-sum test
supports this conclusion strongly with p-value smaller than
2.2× 10−16.

Pos/Neg Triple sim

Positive 〈 physicist, scientist, profession 〉 0.545
Positive 〈 ak-47, gun, dangerous weapon 〉 0.406
Negative 〈 newton, scientist, profession 〉 0.140
Negative 〈 ak-47, gun, combat skill 〉 0.035

Table 1: Examples of similarity feature
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Senses

For a triple t = 〈a, b, c〉, we consider the number of
different senses b has. In other words, we want to know
to what degree b is ambiguous. For example, the term
search engine is not ambiguous. For any a that satis-
fies hyponym(a, search engine), e.g. a = bing, and
for any c that satisfies hyponym(search engine, c), e.g.
c = service, we probably have hyponym(a, c), because
no semantic drift is possible when we follow the link from
a through b to c. On the other hand, the term dish has
many senses. For example, in hyponym(pasta, dish) and
hyponym(dish, utensil), the term dish has two dif-
ferent meanings. Thus, it is very likely hyponym(pasta,
utensil) does not hold.

In summary, for a triple 〈a, b, c〉, the more senses b has,
the less likely the transitivity holds. To find out how many
senses b has, we consult WordNet for the number of synsets
of b. There are two cases we need to address: b exists or not
in WordNet. In the first case, we use the number of synsets
of b as the count of b’s senses, denoted by synsets(b). In
the second case, b is a rare word that is less likely to be
ambiguous and has a unique sense. Thus, we define a new
feature as follows:

sb(t) =

{
synsets(b) b ∈ WordNet;
1 otherwise. , t = 〈a,b,c〉 (4)

Furthermore, some of b’s senses correspond to entities,
and entities cannot be someone’s hypernyms. For example,
one of the senses of china is People’s Republic of
China, which is a specific entity and cannot be a concept.
We don’t count these synsets as b’s senses number. A sense
is an entity in WordNet if it has no hyponyms. Therefore, we
revise Eq 4 accordingly:

scb(t) =

{
synsets(b)− θ(b) b∈ WordNet;
1 otherwise. , t = 〈a,b,c〉

(5)
where θ(b) denotes number of senses of b that correspond
to entities.

Other Inference Mechanisms

Besides the above features, we also consider another two
categories of features, which can be derived from Probase.
The first category includes all features, which can be com-
puted based on the structure of Probase. For a relation
hyponym(a, b) in Probase, we can regard it as a directed
edge from a to b. Thus, Probase can be considered as a di-
rected graph. Two basic measures in a directed graph are
in-degree (number of hyponyms) and out-degree (number of
hypernyms) of each node. Specifically, for a hyponym triple
t = 〈a,b,c〉, we consider all the following measures:
1. ux(t): the number of hypernyms of x, where x ∈ {a,b,c}.

2. vx(t): the number of hyponyms of x, where x ∈ {a,b,c}.

The second category of features is based on the fre-
quency information of Probase. For a relation hyponym(a,
b), Probase contains the frequency that the relation is ob-
served from corpus. Based on the frequency, we define the
following features:

1. freqx(t): n(x), where x ∈ {a,b,c}.

2. freqy(t): n(y), where y ∈ {〈a, b〉, 〈b, c〉}.

3. PMIy(t): the PMI of y, where y ∈ {〈a, b〉, 〈b, c〉}.

where PMI is point-wise mutual information. It is a mea-
sure of association in information theory and statistics. For
a relation hyponym(a, b), PMIab(t) is defined as:

PMIab(t) = log
Pr(X = a, Y = b)

Pr(X = a)Pr(Y = b)
, t = 〈a,b,c〉 (6)

where X and Y are two random variables representing the
two ends of a hypernym-hyponym relation.

For all the above measures except PMI, we feed them into
the classifier with the logarithm of them. Specifically, we use
ln(1+x) to compute the logarithm of these features to avoid
overflow caused by zero value of x.

Generate Missing Relations

One direct application of transitivity inference is the comple-
tion of lexical taxonomies. Next, we elaborate how to gen-
erate new hypernym-hyponym relations for Probase. For a
given term pair, say 〈a,c〉, we need to determine whether
hyponym(a, c) holds or not.

A direct idea is training a binary classifier with the
features for a triple t = 〈a,b,c〉, and deriving a clas-
sifier of term pairs from the classifier of triples. How-
ever, such derivation is not trivial. For two different triples
t1 = 〈a, b1,c〉 and t2 = 〈a, b2,c〉, it is often the case that
the classifier defined on triples produces conflicting results
for hyponym(a, c).

In general, we need an appropriate aggregation strategy
to predict the relation of a given term pair. We propose three
strategies. In the first strategy, we build a classifier of term
pairs and aggregate the information of different triples as
features of the term pair. In the second and third strategies,
we directly aggregate the results produced by the triple clas-
sifier.

• Strategy 1: Classifier of term pairs. Given a pair of
terms 〈a,c〉, we compute all the metrics defined in the
previous texts for each ti = 〈a, bi,c〉. Then we use mean
pooling to aggregate the feature vectors from different
triples. These features allow us to build a classifier of term
pairs.

• Strategy 2: Majority voting. For all triples ti =
〈a, bi,c〉, hyponym(a, c) holds if and only if most tis are
predicted to be positive by the classifier of triples.

• Strategy 3: Weighted voting. From the labeled dataset,
we can build a regressor instead of a classifier, e.g. a ran-
dom forest regressor. The regressor allows us to predict a
triple ti with a value θi between +1 and −1 so that a posi-
tive/negative θi indicates a positive/negative label. |θi| ex-
presses the confidence of the prediction. We thus use |θi|
as the weight to implement a weighted voting strategy.
Specifically, hyponym(a, c) holds if and only if

∑
i θi is

positive.
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Construction of the Labeled Dataset

We need a labeled dataset to develop an effective classifier.
The task of labeling is to label whether hyponym(a, c) holds
or not for the given hyponym triple t = 〈a,b,c〉. We may
resort to human labeling. However, human labeling is costly
and can only produce a limited number of labeled samples.
Hence, an automatic method for labeling data is necessary.
We use WordNet to construct more labeled samples.

Labeling by WordNet We use the hypernym-hyponym
relationships among nouns in WordNet to construct a la-
beled dataset. As for our study, we used WordNet 3.0, which
contains 82,115 synsets and 84,428 hypernym-hyponym re-
lations among synsets. Each synset represents a sense of a
word in WordNet. The hypernyms and hyponyms are as-
signed to each sense and they are certain senses of corre-
sponding words.

To generate the labeled data, we first select a word b in
WordNet that has multiple senses. Let bi and bj be two dif-
ferent senses of b. Let a be the hyponym of bi and c be the
hypernym of bj . We use any t = 〈ā, b̄i, c̄〉 as a candidate
negative triple, where ā is the word of sense a. We use any
triple t = 〈x̄, b̄i, ȳ〉 such that x and y are the hyponym and
hypernym of bi, respectively, as candidate positive triple.
In addition, we only use the triples whose words exist in
Probase and WordNet simultaneously. Finally, we generate
9.9k positive triples and 9.4k negative triples. We find no
conflicts in the labeled data set (i.e. no triples will be marked
with both positive and negative labels). We illustrate the con-
struction procedure in Example 4.

Example 4 The word tank has two synsets in WordNet. The
first is tank1=storage tank, and the second tank2=army tank.
In WordNet, we find the following relations:
hyponym(water tank, tank1), hyponym(tank1, vessel),
hyponym(tank2, military vehicle)

Then we construct two samples:
〈water tank, tank, vessel〉: positive,
〈water tank, tank, military vehicle〉: negative.

That is, hyponym(water tank, vessel) holds because the
two relations use the same sense of tank. And hyponym(water
tank, military vehicle) is wrong, because the two rela-
tions use different senses of tank.

Evaluation

In this section, we evaluate the effectiveness of our ap-
proach. First, we evaluate the effectiveness of the features.
Then we evaluate the quality of the hypernym-hyponym
pairs predicted by our transitivity inference mechanisms.

Effectiveness of Features We use χ2 and IG (information
gain) to evaluate the effectiveness of the features used in the
classifier. The features ranked by χ2 are shown in Table 2.
The results show that sibr(t) and scb(t) are the top two
features ranked by both two measures. We also give CDF
(cumulative distribution function) for the top three features
ranked by χ2 in Figure 4. The results show that each fea-
ture can clearly separate the positive samples from negative
samples. Similar CDF plots are observed for other features.

# Feature χ2 IG% # Feature χ2 IG%

1 sibr 844.50 20.44 11 PMIab 39.09 4.64
2 scb 461.64 23.39 12 va 37.07 0.62
3 sim 235.99 4.90 13 freqab 25.61 0.53
4 vb 158.78 9.40 14 sa 16.94 0.38
5 freqb 82.09 6.73 15 vc 4.90 1.32
6 sib 72.02 1.43 16 ua 0.74 0.07
7 PMIbc 70.20 5.12 17 freqc 0.44 0.48
8 ub 58.41 8.70 18 freqa 0.08 0.05
9 freqbc 53.74 1.32 19 uc 0.08 1.42
10 scc 45.34 1.78

Table 2: Effectiveness of features (sorted by χ2)

Next, we evaluate the classification performance when top
K features (sorted by χ2) are used. We report accuracy, pre-
cision, recall as well as F1-score of the classier against K
(the number of top features used in the model). All perfor-
mance results (including those in the following experiments)
are derived using 10-fold cross validation. We only report
the result for the random forest model. Similar results are
obtained for other models. The result is shown in Figure 5.
We can see that in general the top 11 features dominate the
performance. All the measures converge to an upper limit af-
ter the top 11 features are used. The results suggest that the
top few features are effective enough for the classification.
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Figure 4: CDF of features
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Figure 5: Performance of top-K features

Comparison of Classification Models We evaluate the
effectiveness of our transitivity inference mechanisms un-
der different classification models. We compare SVM (with
rbf kernel and linear kernel), k-NN (both weighted and un-
weighted versions) and random forest. The result is shown
in Table 3. We can see that the random forest model achieves
the best result. The largest F1-score is about 92.2%, which
suggests the practical usage of our approach.
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Model Accuracy Precision Recall F1

rbf SVM 0.8009 0.8101 0.8114 0.8107
linear SVM 0.8054 0.8125 0.8186 0.8155

5-NN 0.8634 0.8788 0.8584 0.8685
15-NN 0.8510 0.8748 0.8361 0.8550
50-NN 0.8335 0.8735 0.7990 0.8346

weighted 5-NN 0.8764 0.8926 0.8695 0.8809
weighted 15-NN 0.8683 0.8912 0.8537 0.8720
weighted 50-NN 0.8534 0.8879 0.8253 0.8554

random forest 0.9187 0.9276 0.9168 0.9221

Table 3: Comparison of different classifiers

Effectiveness of Missing Relations Generation We com-
pare the effectiveness of the three strategies to generate
missing relations. In majority voting and weighted voting,
we make decision for a term pair 〈a,c〉 by aggregating
the results of the classifier for each triple t = 〈a, bi,c〉.
We directly train the classifiers of triples using the la-
beled triples in the previous experiments. Each labeled triple
t = 〈a,b,c〉 implies a labeled term pair 〈a,c〉 that has the
same label. We use these labeled term pairs to train the bi-
nary classifier of term pairs. These labeled term pairs also
serve as the test data for all the three strategies. The results
are shown in Table 4, which shows that the weighted voting
method is the best. Its F1-score is 93%, which guarantees
the accuracy of the hyponym-hypernym relations found by
our approaches.

Method Accuracy Precision Recall F1

Binary classifier 88.7% 90.2% 88.2% 89.2%
Majority voting 91.2% 92.6% 90.4% 91.5%
Weighted voting 92.4% 90.1% 96.0% 93.0%

Table 4: Three strategies to generate missing relations

Adding Missing Relations into Probase Next, we use the
weighted voting to find missing relations for Probase. We
notice that there are overall O(N2) term pairs to test, which
is computationally prohibitive on Probase that contains tens
of millions of concepts and entities. Hence, we prune the
following 〈a,c〉 pairs:
• First, either a or c is a stop concept such as concept,
person, item. These concepts are too vague; finding
relations for them is not interesting.

• Second, there are only one or two intermediate concepts
b to construct triples with 〈a,c〉. Because the transitivity
inference is based on the hyponym triples. If we cannot
find enough triples, the inference is unreliable.

After the filtering, we only need to consider 12.30M pairs.
We finally find 3.86M true hyponym relations. We randomly
sample 200 newly generated relations and manually judge
their correctness. The precision is 92.5%, which is consis-
tent with the precision of the weighted voting approach. We
also give some samples of the new hyponym relations in Ta-
ble 5. These examples sufficiently show that our inference
approach can find many meaningful missing relations.

a b c

albertsons supermarket, ... large store

ipod touch mp3 player, ipods, ... consumer
electronics

television
monitor display device, ... device

shampoo cosmetic, cleaning agent ... daily good
linkedin social network, website, ... web service

Table 5: Some new hypernym-hyponym relations

Related Work

Taxonomy Construction Recently, taxonomy construction
has attracted wide research interests. Hand-crafted tax-
onomies such as WordNet (Miller 1995) and Cyc (Lenat
and Guha 1989) usually have high quality but low cover-
age over instances and concepts. Manual construction also
suffers from high human cost, which motivates the research
about the automatic construction. The automatic approaches
can be classified into two categories according to the data
source. The first extracts taxonomy from free web text.
Hearst (Hearst 1992) patterns are widely used to extract
hypernym-hyponym lexical relations from the web text. The
extraction framework based on lexical patterns was further
improved from different aspects. Some (Pantel, Ravichan-
dran, and Hovy 2004) focus on finding more lexical pat-
terns from hypernym examples, while some others (Snow,
Jurafsky, and Ng 2004) exploit dependency patterns in-
stead of lexical patterns for the extraction. The extraction
models with Hearst patterns were also bootstrapped to im-
prove the performance (Kozareva, Riloff, and Hovy 2008;
Hovy, Kozareva, and Riloff 2009). To further improve the
coverage of instances and concepts, Probase (Wu et al.
2012) was built from billions of web pages. Probase has
frequency information and covers tens of millions of in-
stances. The second category extracts taxonomy from rel-
atively structured Wikipedia like web sites, such as Wiki-
Taxonomy (Ponzetto and Strube 2008) and Yago (Suchanek,
Kasneci, and Weikum 2007). Both of them are large-
scale knowledge resources generated from categories in
Wikipedia. In general, they have a better quality but a lower
coverage than the taxonomies constructed from web texts.
All the above literatures focused on building a taxonomy
from scratch. Instead, our work builds a more comprehen-
sive taxonomy through the inference on an existing taxon-
omy.

Taxonomy Induction Many induction approaches are
also proposed to complete a taxonomy or find more hy-
pernym relations. There are two lines of these work. The
first line focuses on the inference mechanisms. For exam-
ple, Snow et al. (Snow, Jurafsky, and Ng 2006) proposed a
probabilistic inference framework, which seeks for the tax-
onomy that maximizes the likelihood of the hypernym rela-
tions and coordinate relations observed from corpora. Yang
et al. (Yang and Callan 2009) proposed a series of informa-
tion based metrics and proposed a minimum evolution prin-
ciple for the taxonomy induction. The aim is to minimize
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the information change when the model tries a new taxon-
omy. Compared to these works, we focus on the inference
of new hypernyms in terms of the transitivity of hypernym
relations and most detailed signals are summarized from the
structures of a taxonomy. The second line focuses on the
induction from specific evidences. For example, Bansal et
al. (Bansal et al. 2014) used Web n-grams and Wikipedia ab-
stracts as data source for induction via a belief propagation
method. As a most recent attempt, Zhang et al. (Zhang et
al. 2016) jointly leveraged text and images to do taxonomy
induction via a probabilistic Bayesian model. Compared to
these work, the most remarkable difference of our work is
that we infer a new taxonomy just from the existing taxon-
omy without external data source.

Transitivity on Semantic Networks Transitivity plays an
important role in reasoning/induction/inference in semantic
networks (Winston, Chaffin, and Herrmann 1987). Snow et
al. (Snow, Jurafsky, and Ng 2006) used transitivity as one
of constrains and proposed a probabilistic framework for
taxonomy induction. The framework incorporates evidence
from multiple classifiers over heterogeneous relationships
to optimize the entire structure of the taxonomy. Cohen et
al. (Cohen and Loiselle 1988) presented a method to de-
rive plausible inference rules in knowledge bases; they use
transitivity in the semantic network to test the plausibility
of the derived rules. Fu et al. (Fu et al. 2014) proposed to
use word embedding to construct a hierarchal taxonomy. In
their method, they also used transitivity of “is-a” relations
to identify potential “is-a” relations. Fallucchi et al. (Falluc-
chi and Zanzotto 2010) exploited transitivity to reinforce the
confidence value of an “is-a” relation. They proposed two
probabilistic models to exploit transitivity. Although transi-
tivity is investigated in these related works, they in general
did not consider the transitivity of hypernym-hyponym rela-
tionships in a data-driven taxonomy.

Conclusions

In this paper, we investigate the transitivity of hyponym
relations in a data-driven knowledge base. We reveal that
transitivity does not always hold in data-driven lexical tax-
onomies. We introduce a supervised approach to detect if
transitivity holds for any given pair of hyponym relations.
We propose a set of effective features for the transitivity in-
ference, achieving 93% F1-score. Based on the transitivity
inference, we find millions of new hyponym relations with
92.5% precision for a data-driven lexical taxonomy. These
results justify the effectiveness of our approach.
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