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Abstract

We consider the problem of identifying the causal direction be-
tween two discrete random variables using observational data.
Unlike previous work, we keep the most general functional
model but make an assumption on the unobserved exogenous
variable: Inspired by Occam’s razor, we assume that the ex-
ogenous variable is simple in the true causal direction. We
quantify simplicity using Rényi entropy. Our main result is
that, under natural assumptions, if the exogenous variable has
lowH0 entropy (cardinality) in the true direction, it must have
high H0 entropy in the wrong direction. We establish several
algorithmic hardness results about estimating the minimum en-
tropy exogenous variable. We show that the problem of finding
the exogenous variable with minimum H1 entropy (Shannon
Entropy) is equivalent to the problem of finding minimum
joint entropy given n marginal distributions, also known as
minimum entropy coupling problem. We propose an efficient
greedy algorithm for the minimum entropy coupling problem,
that for n = 2 provably finds a local optimum. This gives
a greedy algorithm for finding the exogenous variable with
minimum Shannon entropy. Our greedy entropy-based causal
inference algorithm has similar performance to the state of
the art additive noise models in real datasets. One advantage
of our approach is that we make no use of the values of ran-
dom variables but only their distributions. Our method can
therefore be used for causal inference for both ordinal and also
categorical data, unlike additive noise models.

1 Introduction

Causality has been studied under several frameworks includ-
ing potential outcomes (Rubin 1974) and structural equation
modeling (Pearl 2009). Under the Pearlian framework (Pearl
2009) it is possible to discover some causal directions be-
tween variables using only observational data with condi-
tional independence tests. The PC algorithm (Spirtes, Gly-
mour, and Scheines 2001) and its variants fully characterize
which causal directions can be learned in the general case.
For large graphs, GES algorithm (Chickering 2002) provides
a score-based test to greedily identify the highest scoring
causal graph given the data. Unfortunately, these approaches
do not guarantee the recovery of true causal direction be-
tween every pair of variables, since typically data could be
generated by several statistically equivalent causal graphs.
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A general solution to the causal inference problem is to
conduct experiments, also called interventions. An interven-
tion forces the value of a variable without affecting the other
system variables. This removes the effect of its causes, ef-
fectively creating a new causal graph. These changes in the
causal graph create a post-interventional distribution among
variables, which can be used to identify some additional
causal relations in the original graph. The procedure can be
applied repeatedly to fully identify any causal graph (Hauser
and Bühlmann 2012a), (Hauser and Bühlmann 2012b), (Hyt-
tinen, Eberhardt, and Hoyer 2013), (Shanmugam et al. 2015).

For many problems, it can be very difficult to create in-
terventions since they require additional experiments after
the original data collection. Researchers would still like to
discover causal relations between variables using only obser-
vational data, using so-called data-driven causality. Several
recent works (Chen et al. 2014; Shajarisales et al. 2015) have
developed such methods. To be able to make any conclusions
on causal directions in this case, additional assumptions must
be made about the mechanisms that generate the data.

In this paper we focus on the simplest causal discovery
problem that involves only two variables. The two causal
graphs X → Y and X ← Y are statistically indistinguish-
able so conditional independence tests cannot make any
causal inference from observational data without interven-
tions. Statistical indistinguishability easily follows from the
fact that any joint distribution on two variables p(x, y) can
be factorized both as p(x)p(y/x) and p(y)p(x/y).

The most popular assumption for two-variable data-driven
causality is the additive noise model (ANM) (Shimizu et
al. 2006). In ANM, any outside factor is assumed to affect
the effect variable additively, which leads to the equation
Y = f(X) + E,E ⊥⊥ X . Although restrictive, this assump-
tion leads to strong theoretical guarantees in terms of iden-
tifiability, and provides the state of the art accuracy in real
datasets. (Shimizu et al. 2006) showed that if f is linear and
the noise is non-Gaussian the causal direction is identifiable.
(Hoyer et al. 2008) showed that when f is non-linear, irre-
spective of the noise, identifiability holds in a non-adverserial
setting of system parameters. (Peters, Janzing, and Schölkopf
2011) extended ANM to discrete variables.

Another approach is to exploit the postulate that the cause
and mechanism are in general independently assigned by na-
ture. The notion of independence here is vague and one needs
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to assign maps, or conditional distributions to random vari-
ables to argue about independence of cause and mechanism.
In this direction an information-geometry based approach
is suggested (Janzing et al. 2012). Independence of cause
and mechanism is captured by treating the log-slope of the
function as a random variable, and assuming that it is inde-
pendent from the cause. In the case of a deterministic relation
Y = f(X), there are theoretical guarantees on identifiability.
However, this assumption is restrictive for real data.

Previous work exploited these two ideas, additive noise,
and independence of cause and mechanism, to draw data-
driven causal conclusions about problems in a diverse range
of areas from astronomy to neuroscience (Shajarisales et
al. 2015), (Schölkopf et al. 2015). (Shajarisales et al. 2015)
uses the same idea that the cause and effect are indepen-
dent in the time series of a linear filter. They suggest the
spectral independence criterion, which is robust to time
shifts. (Chen et al. 2014) uses kernel space embeddings
with the assumption that the cause distribution p(x) and
mechanism p(y|x) are selected independently to distinguish
cause from effect. An exception to these frameworks is to
use a binary classifier on the joint distribution on (X,Y ) to
classify distributions into those that come from the causal
model X → Y and Y → X (Lopez-Paz et al. 2015;
Lopez-Paz, Muandet, and Recht Dec 2015; Lopez-Paz and
Oquab 2016). However, it is not clear what are the correct
set of assumptions to show an identifiability result with this
approach.

As noted by (Chen et al. 2014), although conceptually
proposed before, using Kolmogorov complexity of the fac-
torization of the joint distribution p(y|x)p(x) and p(x|y)p(y)
as a criterion for deciding causal direction has not been used
successfully until now.

The use of information theory as a tool for causal discov-
ery is currently gaining increasing attention. This is through
different appoaches, e.g., for time-series data, Granger causal-
ity and Directed Information can be used (Granger 1969;
Etesami and Kiyavash 2016; Quinn, Kiyavash, and Coleman
Dec 2015; Kontoyiannis and Skoularidou Aug 2016), see also
(MCI 2016). However, researchers have not used entropy as
a measure of simplicity in the causal discovery literature,
probably because the entropies H(Y |X) and H(X|Y ) do
not give us any more information thanH(X) andH(Y ), due
to the symmetry H(Y ) + H(X|Y ) = H(X) + H(Y |X).
In our work, as we will explain, we minimize H(E) which
initially sounds similar, but is fundamentally different from
H(Y |X). Entropy has found some additional uses in the
causality literature recently: In (Gao et al. 2016), authors
use maximum mutual information between X,Y in order to
quantify the causal strength of a known causal graph.

The work that is most similar to ours in spirit is (Mooij
et al. 2010), which also drops the additive noise assumption.
Their approach and setup are different in many ways: Authors
work with continuous data. To be able to handle this generic
form, they have to make strong assumptions on the exogenous
variable, function, and distribution of the cause: Mooij et al.
assume that the exogenous variable is a standard Gaussian, a
Gaussian mixture prior for the cause, and a Gaussian process
as the prior of the function.

1.1 Our Contributions

In this paper, we propose a novel approach to the causal identi-
fiability problem for discrete variables. Similar to (Mooij et al.
2010), we keep the most general functional model, but only
put an assumption on the exogenous (background) variable.
Based on Occam’s razor, we employ a simplicity assumption
on the unobserved exogenous variable. We use Rényi entropy,
which is defined asHa(X) = 1

1−a log (
∑

i p
a
i ), for a random

variable X with state probabilities pi. We focus on two spe-
cial cases of Rényi entropy: H0, which corresponds to the
logarithm of the number of states, andH1 which corresponds
to Shannon entropy, but our framework can be extended.

Specifically, if the true causal direction isX → Y , then the
random variable Y is an arbitrary function ofX and an exoge-
nous variableE: Y = f(X,E) whereE is independent from
the cause X . Our key assumption is that the exogenous vari-
able E is simple, i.e., has low Rényi entropy. The postulate is
that for any model in the wrong direction X = f ′(Y, Ẽ), the
exogenous variable Ẽ has high Rényi entropy. We are able
to prove this result for the H0 special case of Rényi entropy,
assuming generic distributions for X,Y . Furthermore, we
empirically show that using H1 Shannon entropy we obtain
practical causality tests that work with high probability in
synthetic datasets and that slightly outperforms the previous
state of the art in real datasets.

Our assumption is an entropic interpretation of Occam’s
razor, motivated by what E represents in the causal model.
The exogenous variable captures the combined effect of all
the variables not included in the system model, which affect
the distribution of Y . Our causal assumption can be stated as

“there should not be too much complexity not included in the
causal model". For a → 1, i.e., Shannon entropy, H(X) +

H(E),H(Y )+H(Ẽ) are the number of random bits required
to generate an input for the causal system X → Y and X ←
Y , respectively. The simplest explanation of an observed
joint distribution, i.e., the direction which requires nature to
generate smaller number of random bits is selected as the
true causal model. More precisely we have the following:

Assumption 1. Entropy of the exogenous variable E is small
in the true causal direction.

The notions of simplicity that we consider are H0, which
is log-cardinality, and H1, which is Shannon entropy. One
significant advantage of using Shannon entropy as a simplic-
ity metric is that it can be estimated more robustly in the
presence of measurement errors, unlike cardinality H0.

We prove an identifiability result for H0 entropy, i.e., car-
dinality of E: If the probability values are not adversarially
chosen, for most functions, the true causal direction is identi-
fiable under Assumption 1. Based on experimental evidence,
we conjecture that a similar identifiability result must hold
for Shannon entropy H1.

To use our framework we need algorithms that explain a
dataset by finding an exogenous variable E with minimum
cardinality H0 and minimum Shannon entropy H1. Since
the entropies of X and Y can be very different, any metric
to determine the true causal direction cannot only consider
the entropy of the exogenous variable without incorporating
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the entropy of the cause. We explain the exogenous variable
in both directions and declare the causal direction to be the
one with the smallest joint entropy Ha(X) +Ha(E) versus
Ha(Y ) +Ha(Ẽ). Our method can be applied for any Rényi
entropy Ha but in this paper we only use a = 0 and a = 1.

Unfortunately, minimizing H0(E) seems very hard for
real datasets since it offers no noise robustness. For Shannon
entropy we can do much better for real data. The first step in
obtaining a practical algorithm is showing that the minimum
H1 explanation is equivalent to the following problem: For
n random variables with given marginal distributions, find a
joint distribution with the minimum Shannon entropy that is
consistent with the given marginals. This problem is called
the minimum Shannon entropy coupling and is known to
be NP hard (Kovacevic, Stanojevic, and Senk 2012). We
propose a greedy approximation algorithm for this problem
that empirically performs very well. We also prove that, for
n = 2, our algorithm always produces a local minimum.

In summary our contributions in this paper include1:
• We show identifiability for generic low-entropy causal

models under Assumption 1 with H0.
• We show that the problems of identifying the minimum

cardinality (H0) exogenous variable, and identifying the
minimum Shannon entropy (H1) exogenous variable given
a joint distribution are both NP hard.

• We design a novel greedy algorithm for the minimum en-
tropy coupling problem, which turns out to be equivalent to
the problem of finding exogenous variable with minimum
H1 entropy.

• We empirically validate the conjecture that the causal di-
rection is identifiable under Assumption 1 with H1, using
experiments on synthetic datasets.

• We empirically show that our causal inference algorithm
based on Shannon entropy minimization has slightly better
performance than the existing best algorithms on a real
causal dataset. Interestingly, our algorithm uses only the
probability distributions rather than the actual values of the
random variables, and hence is applicable to categorical
variables.

1.2 Background and Notation

A tupleM = (X,U,F , D, p) is a causal model when, 1)
F = {fi} are deterministic functions, 2)X = {Xi} are a set
of endogenous (observed) variables U = {Ui} are a set of ex-
ogenous (latent) variables with Xi = fi(Pai, Ui), ∀i where
Pai are the endogenous parents and Ui is the exogenous
parent of Xi in directed acyclic graph D, 3) U are mutually
independent with respect to p. The observable variable set
X has a joint distribution implied by the distributions of U ,
and the functional relations fi. D is then a Bayesian network
for the induced joint distribution of endogenous variables.
A standard assumption employed in Pearl’s model causal
sufficiency is also used here: Every exogenous variable is a
direct parent of at most one endogenous variable.

In this paper, we consider a simple two variable causal
system which contains only two endogenous variables X,Y .

1For a version with proofs, see https://arxiv.org/abs/1611.04035

Assume X causes Y , which is represented as X → Y . The
model is determined only by one exogenous variableE, and a
function f , where Y = f(X,E). The probability distribution
of X and E, and f determines the distribution of Y . This
model is shown by the tuple M = ({X,Y }, E, f,X →
Y, pX,E). Notice that we do not assign an exogenous variable
to X , since it is the source node in the graph.

We denote the set {1, 2, · · · , n} by [n].
∑

i xi is meant
to run through every possible index. log refers to the log-
arithm base 2. For two variables X,Y , Y|X and X|Y de-
note the conditional probability distribution matrices, i.e.,
Y|X(i, j) = p(y = i|x = j) and X|Y(i, j) = p(x = i|y =
j). The statistical independence of two random variables X
and E are shown by X ⊥⊥ E. For notational convenience,
probability distribution of random variable X is shown by
p(x) as well as pX(x). x shows the distribution of X in vec-
tor form , i.e., xi = x(i) = P(X = i). n− 1 simplex is the
set of points x in n dimensional Euclidean space that satisfy∑

i x(i) = 1. card is the cardinality of a set.

2 Causal Model with Minimum Cardinality

Exogenous Variable

Consider the causal model M = ({X,Y }, E0, f0, X →
Y, pX,E). The task is to identify the underlying causal graph
X → Y using independent identically distributed samples
{(xi, yi)}i. Assuming causal sufficiency, this task reduces to
deciding whether X causes Y or Y causes X . To isolate the
identifiability problem from estimation errors due to finite
samples, we assume that the joint distribution of (X,Y ) is
available. Most proofs are deferred to the Appendix.

One way to identify that X causes Y is by showing that
although there exists a function f and random variable E
with Y = f(X,E), X ⊥⊥ E, there is no function, random
variable pair (g, Ẽ) such that X = g(Y, Ẽ), Y ⊥⊥ Ẽ. How-
ever, without more assumptions, this is not possible: For any
joint distribution one can find valid causal models for both
X → Y,X ← Y . This is widely known, although for com-
pleteness, we provide a proof (Lemma 4 in the Appendix).

Even when the true causal graph is known, one can create
different constructions of f,E with Y = f(X,E), X ⊥
⊥ E. There is no way to distinguish the true causal model.
However, even though we cannot recover the actual function
and the exogenous variable, we can still show identifiability.

First, we give an equivalent characterization of a causal
model on two variables.
Definition 1 (Block Partition Matrices). Consider a matrix
M ∈ {0, 1}n2×m. Let mi,j represent the i+(j−1)n th row
of M. Let Si,j = {k ∈ [m] : mi,j(k) �= 0}. M is called
a block partition matrix if it belongs to C := {M : M ∈
{0, 1}n2×m,

⋃
i∈[n] Si,j = [m], Si,j ∩ Sl,j = ∅, ∀i �= l}.

C thus stands for 0, 1 matrices with n2 rows and m
columns where each block of n rows correspond to a partition-
ing of the set [m]. We make the following key observation:
Lemma 1. Given discrete random variables X,Y with distri-
bution p(x, y), ∃ a causal modelM = ({X,Y }, E, f,X →
Y, pX,E), E ∈ E with card(E) = m if and only if ∃M ∈
C, e ∈ R

m
+ with

∑
i e(i) = 1 that satisfy vec(Y|X) = Me.
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In other words, the existence of a causal pair X → Y is
equivalent to the existence of a block partition matrix M and
a vector e of proper dimensions with vec(Y|X) = Me.

For simplicity, assume |X | = |Y| = n. We later remove
this constraint. We first show that any joint distribution can
be explained using a variable E with n(n− 1) + 1 states.

Lemma 2 (Upper Bound on Minimum Cardinality of E).
Let X ∈ X , Y ∈ Y be two random variables with joint
probability distribution pX,Y (x, y), where |X | = |Y| = n.
Then ∃ a causal model Y = f(X,E), X ⊥⊥ E that induces
pX,Y , where E has support size n(n− 1) + 1.

We can show that, if the columns of Y|X are uniformly
sampled points in the n−1 dimensional simplex, then n(n−
1) states are also necessary for E (see Proposition 3in the
Appendix). This shows, unless designed by nature through
the causal mechanism, exogenous variable cannot have small
cardinality. Based on this observation, the hope is to prove
that in the wrong causal direction, sayX → Y and we find an
Ẽ ⊥⊥ Y such that X = g(Y, Ẽ) for some g, the exogenous
variable Ẽ has to have large cardinality. In the next section,
we show this is actually through, under mild conditions on f .

2.1 Identifiability for H0 Entropy

In a causal system Y = f(X,E), nature chooses the ran-
dom variables X,E, and function f , and the conditional
probability distributions are then determined by these. We
are interested in the cardinality of variables Ẽ ⊥⊥ X in the
wrong causal direction X = g(Y, Ẽ). Considering X|Y, we
can show that the same lower bound of n(n− 1) still holds
despite nature now chooses E and X randomly, rather than
choosing the columns ofX|Y directly. A mild assumption on
f is needed to avoid degenerate cases (For counterexamples
see the appendix).

Definition 2 (Generic Function). Let Y = f(X,E) where
variables X,Y,E have supports X ,Y, E , respectively. Let
Sy,x = f−1

x (y) ⊂ E be the inverse map for x, e, i.e., Sy,x =
{e ∈ E : y = f(x, e)}. A function f is called “generic", if
for each (x1, x2, y) triple f−1

x1
(y) �= f−1

x2
(y) and for every

(x, y) pair f−1
x (y) �= ∅.

In other words f is called generic if yth row in the xth
1

block of matrixM in the decomposition vec(Y|X) = Me is
different from yth row in the xth

2 block, and both are nonzero.
This is not a restrictive condition, for example if p(y|x) are all
different, no two rows of M can be the same. For any given
conditional distribution, if the probabilities are perturbed
by arbitrarily small continuous noise, the corresponding f
will be generic almost surely. We have the following main
identifiability result:

Theorem 1 (Identifiability). Consider the causal model
M = ({X,Y }, E0, f0, X → Y, pX,E0) where the random
variables X,Y have n states, E0 ⊥⊥ X has θ states and f is
a generic function .

If the distributions of X and E are uniformly randomly
selected from the n− 1 and θ − 1 simplices, then with prob-
ability 1, any Ẽ ⊥⊥ Y that satisfies X = g(Y, Ẽ) for some
deterministic function g has cardinality at least n(n− 1).

Theorem 1 implies that the causal direction is identifiable,
when the exogenous variable has cardinality < n(n− 1):

Corollary 1. Assume that there exists an algorithm A that
given n random variables {Zi}, i ∈ [n] with distributions
{pi}, i ∈ [n] each with n states, outputs the distribution of the
random variable E with minimum cardinality and functions
{fi, i ∈ [n]} where Zi = fi(E).

Consider the causal pair X → Y where Y = f(X,E0).
Assume that the cardinality of E0 is less than n(n− 1), and
f is generic. Then, A can be used to identify the true causal
direction with probability 1, if X,E0 are selected uniformly
randomly from the proper dimensional simplices.

Proof. Feed the set of conditional distributions {P(Y |X =
i) : i ∈ [n]} and {P(X|Y = i) : i ∈ [n]} to A to obtain E,
Ẽ. From Theorem 1, with probability 1, A identifies Ẽ with
card(Ẽ) ≥ n(n − 1). Then since card(E) ≤ card(E0) <

card(Ẽ), comparing cardinalities give the true direction.

Corollary 1 gives an algorithm for finding the true causal
direction: Estimate E, Ẽ with minimum H0 entropy and
declare X → Y if |Ẽ| > |E| and declare X ← Y if |Ẽ| <
|E|. The result easily extends to the case where X and Y are
allowed to have different number of states:

Proposition 1 (Inference algorithm). Suppose X → Y .
Let X ∈ X , Y ∈ Y , |X | = n, |Y| = m. Assume that A
is the algorithm that finds the exogenous variables E, Ẽ
with minimum cardinality. Then, if the underlying exogenous
variable E0 satisfies |E0| < n(m − 1), with probability 1,
we have |X|+ |E| < |Y |+ |Ẽ|.

Proof follows from Corollary 1, and by extending the proof
of Theorem 1 to different cardinalities for X , Y .

Unfortunately, it turns out there does not exist an efficient
algorithm A, unless P=NP:

Theorem 2. Given a conditional distribution matrix Y|X,
identifying E ⊥⊥ X with minimum support size such that
there exist a function f with Y = f(X,E) is NP hard.

The hardness of this problem sets us to search for alterna-
tive approaches.

3 Causal Model with Minimum H1 Entropy

In this section, we propose a way to identify the causal model
that explains the observational data with minimum Shannon
entropy ( entropy in short ). Entropy of a causal model is
measured by the number of random bits required to generate
its input. In the causal graph X → Y , where Y = f(X,E),
we identify the exogenous variable E ⊥⊥ X with minimum
entropy. We show that this corresponds to a known problem
which has been shown to be NP hard. Later we propose a
greedy algorithm.

Notice that H(E) is different from the conditional en-
tropy H(Y |X). Certainly, since Y = f(X,E), H(Y |X) ≤
H(E). The key is that since E is forced to be independent
from X , H(E) cannot be lowered to H(Y |X). To see this,
we can write H(Y |X) =

∑
i pX(i)H(Y |X = i), whereas

since conditional probability distribution of Y |X = i is the
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same as the distribution of fi(E) for some function fi, we
have H(E) ≥ maxi H(Y |X = i).

3.1 Finding E with Minimum Entropy

Consider the equation Y = f(X,E), X ⊥⊥ E. Let fx :
E → Y be the function mapping E to Y when X = x, i.e.,
fx(E) := f(x,E). Then P(Y = y|X = x) = P(fx(E) =
y|X = x) = P(fx(E) = y). The last equality follows from
the fact that X ⊥⊥ E. Thus, we can treat the conditional
distributions P(Y |X = x) as distributions that emerge by
applying some function fx to some unobserved variable E.
Then the problem of identifying E with minimum entropy
given the joint distribution p(x, y) becomes equivalent to,
given distributions of the variables fi(E), finding the dis-
tribution with minimum entropy (distribution of E), such
that there exists functions fi which map this distribution to
the observed distributions of Y |X = i. It can be shown that
H(E) ≥ H(f1(E), f2(E), . . . , fn(E)). Regarding fi(E) as
a random variable Ui, the best lower bound on H(E) can be
obtained by minimizing H(U1, U2, . . . , Un). We can show
that we can always construct an E that acheives this mini-
mum. Thus the problem of finding the exogenous variable E
with minimum entropy given the joint distribution p(x, y) is
equivalent to the problem of finding the minimum entropy
joint distribution of the random variables Ui = (Y |X = i),
given the marginal distributions p(Y |X = i):
Theorem 3 (Minimum Entropy Causal Model). Assume
that there exists an algorithm A that given n random vari-
ables {Zi}, i ∈ [n] with distributions {pi}, i ∈ [n] each with
n states, outputs the joint distribution over Zi consistent with
the given marginals, with minimum entropy.

Then, A can be used to find the causal model M =
({X,Y }, E,X → Y, pX,E) with minimum input entropy,
given any joint distribution pX,Y .

The problem of minimizing entropy subject to marginal
constraints is non-convex. In fact, it is shown in (Kovacevic,
Stanojevic, and Senk 2012) that minimizing the joint entropy
of a set of variables given their marginals is NP hard. Thus
we have the following corollary:
Corollary 2. Finding the causal model M =
({X,Y }, E, f,X → Y, pE,X) with minimum H(E)
that induce a given distribution p(x, y) is NP hard.

For this, we propose a greedy algorithm. Using entropy to
identify E instead of cardinality, despite both turning out to
be NP hard, is useful since entropy is more robust to noise
in data. In real data, we estimate the probability values from
samples, and noise is unavoidable.

3.2 A Conjecture on Identifiability with H1

Entropy

We have the following conjecture, supported by artificial and
real data experiments in Section 4.
Conjecture 1. Consider the causal model M =
({X,Y }, E, f,X → Y, pX,E) where discrete random vari-
ables X,Y have n states, E ⊥⊥ X has θ states. .

If the distribution of X is uniformly randomly selected
from the n − 1 dimensional simplex and distribution of E

is uniformly selected from the probability distributions that
satisfy H1(E) ≤ log n + O(1) and f is randomly selected
from all functions f : [n] × [θ] → [n], then with high prob-
ability, any Ẽ ⊥⊥ Y that satisfies X = g(Y, Ẽ) for some
deterministic g entails H(X) +H(E) < H(Y ) +H(Ẽ).

Proposition 2 (Assuming Conjecture 1). Assume there exists
an algorithm A that given n random variables {Zi}, i ∈ [n]
with distributions {pi}, i ∈ [n] each with n states, outputs the
distribution of the random variable E with minimum entropy
and functions {fi}, i ∈ [n] where Zi = fi(E).

Consider the causal pair X → Y where Y = f(X,E0),
and cardinality of E0 is cn for some constant c, and f is
selected randomly. Then, A can be used to identify the true
causal direction with high probability, if X,E0 are uniformly
random samples from the proper dimensional simplices.

3.3 Greedy Entropy Minimization Algorithm

Given m discrete random variables with n states, we provide
a heuristic algorithm to minimize their joint entropy given
their marginal distributions. The main idea is the following:
Each marginal probability constraint must be satisfied. For
example, for the case of two variables with distributions
p1, p2, ith row of joint distribution matrix should sum to
p1(i). The contribution of a probability mass to the joint
entropy only increases when probability mass is divided into
smaller chunks: −p1(i) log p1(i) ≤ −a log a− b log b, when
p1(i) = a + b, for a, b ≥ 0. Thus, we try to keep large
probability masses intact to assure that their contribution to
the joint distribution is minimized.

We propose Algorithm 1. The sorting step is only to sim-
plify the presentation. Hence, although the given algorithm
runs in time O(m2n2 log n), it can easily be reduced to
O(max(mn log n,m2n)) by dropping the sorting step. The
algorithm simply proceeds by removing the most probability
mass it can at each round. This makes sure the large proba-
bility masses remain intact.

Algorithm 1 Joint Entropy Minimization Algorithm
1: Input: Marginal distributions ofm variables each with n states,

in matrix form M = [pT1 ; p
T
2 ; ..., p

T
m].

2: e = [ ]
3: Sort each row of M in decreasing order.
4: Find minimum of maximum of each row: r ← mini(pi(1))
5: while r > 0 do
6: e ← [e, r]
7: Update maximum of each row: pi(1) ← pi(1)− r, ∀i
8: Sort each row of M in decreasing order.
9: r ← mini(pi(1))
10: end while
11: return e.

One can easily construct the joint distribution using
a variant: Instead of sorting, at each step, find r =
mini{maxj{pi(j)}} and assign r to the element with co-
ordinates (ai), where ai = argmaxj pi(j).

Lemma 3. Greedy entropy minimization outputs a point with
entropy at most logm+ log n.
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Figure 1: (a) Performance of greedy joint entropy minimization algorithm: n distributions each with n states are randomly
generated for each value of n. As can be seen, the minimum joint entropy obtained by the greedy algorithm is at most 1 bit away
from the largest marginalmaxi H(Xi). (b) Identifiability with Entropy: We generate distributions ofX,Y by randomly selecting
f,X,E. Probability of success is the fraction of points where H(X,E) < H(Y, Ẽ). As observed, larger n drives probability of
success to 1 when H(E) ≤ log n, supporting Conjecture 1. (c) Real Data Performance: Decision rate is the fraction of samples
for which algorithm makes a decision for a causal direction. A decision is made when |H(X,E)−H(Y, Ẽ)| > t log2 n, where
t determines the decision rate. Confidence intervals are also provided.

Lemma 3 follows from the fact that the algorithm returns
a support of size at most m(n− 1) + 1.

We also prove that, when there are two variables with n
dimensions, the algorithm returns a point that satisfies the
KKT conditions of the optimization problem, which implies
that it is a local optimum (see Proposition 4 in the Appendix).

4 Experiments

In this section, we test the performance of our algorithms
on real and artificial data. First, we test the greedy entropy
minimization algorithm and show that it performs close to the
trivial lower bound. Then, we test our conjecture of identifia-
bility using entropy. Lastly, we test our entropy-minimization
based causal identification technique on real data.

In order to test our algorithms, we sample points in proper
dimensional simplices, which correspond to distributions for
X and E. Distribution of points are uniform for selecting
the distribution of X . It is well-known that a vector [xi/Z]i
is uniformly randomly distributed over the simplex, if xi

are i.i.d. exponential random variables with parameter 1,
and Z =

∑
i xi (Onn and Weissman 2011). To sample low-

entropy distributions for E, instead of exponential, we use a
heavy tailed distribution for sampling each coordinate. Specif-
ically, we use [ei/Z]i, where ei are i.i.d. log-normal random
variables with parameter σ. We observe that this allows us to
sample a variety of distributions with small entropy.

Performance of Greedy Entropy Minimization: We
sample distributions for n random variables {Xi}, i ∈ [n]
each with n states and apply Algorithm 1 to minimize their
joint entropy. We compare our greedy joint entropy minimiza-
tion algorithm with the simple lower bound of maxi H(Xi).
Figure 1a shows average, maximum and minimum excess
bits relative to this lower bound. Contrary to the pessimistic
bound of log n bits, joint entropy is at most 1 bit away from
maxi H(Xi) for the given range of n.

Verifying Entropy-Based Identifiability Conjecture: In

this section, we empirically verify Conjecture 1. The distri-
butions for X are uniformly randomly sampled from the
simplex in n dimensions. We also select f randomly (see im-
plementation details). For the log-normal parameter σ used
for sampling the distribution of E from the n(n− 1) dimen-
sional simplex, we sweep the integer values from 2 to 8. This
allows us to get distribution samples from different regimes.
We only consider the samples which satisfy H(E) ≤ log n.

After sampling E,X, f , we identify the corresponding
Y|X and X|Y for Y = f(X,E). We apply greedy entropy
minimization on the columns of the induced distributions
Y|X,X|Y to get the estimates E, Ẽ for both causal models
Y = f(X,E) and X = g(Y, Ẽ), respectively. Figure 1b
shows the variation of success probability, i.e., the fraction of
samples which satisfyH(X)+H(E) < H(Y )+H(Ẽ). As
observed, as n is increased, probability of success converges
to 1, when H(E) ≤ log n, which supports the conjecture.

Experiments on Real Cause Effect Pairs: We test our
entropy-based causal inference algorithm on the CauseEf-
fectPairs repository (Mooij et al. 2016a). ANM have been
reported to achieve an accuracy of 63% with a confidence
interval of ±10% (Mooij et al. 2016b). We also use the bino-
mial confidence intervals as in (Clopper and Pearson 1934).

The cause effect pairs show very different characteristics.
From the scatter plots, one can observe that they can be a
mix of continuous and discrete variables. The challenge in
applying our framework on this dataset is choosing the correct
quantization. Small number of quantization levels may result
in loss of information regarding the joint distribution, and a
very large number of states might be computationally hard to
work with. We pick the same number of states for bothX and
Y , and use a uniform quantization that assures each state of
the variables has≥ 10 samples on average. From the samples,
we estimate the conditonal transition matricesY|X andX|Y
and feed the columns to the greedy entropy minimization
algorithm (Algorithm 1), which outputs an approximate of
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the smallest entropy exogenous variable. Later we compare
H(X,E) and H(Y, Ẽ) and declare the model with smallest
input entropy to be the true model, based on Conjecture 1.

For a causal pair, we invoke the algorithm if |H(X,E)−
H(Y, Ẽ)| ≥ t log(n) for threshold parameter t, which deter-
mines the decision rate. Accuracy becomes unstable for very
small decision rates, since the number of evaluated pairs be-
comes too small. At 100% decision rate, algorithm achieves
64.21% which is slightly better than the 63% performance
of ANM as reported in (Mooij et al. 2016b). In addition, our
algorithm only uses probability values, and is applicable to
categorical as well as ordinal variables.
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