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Abstract

Bounding the partition function is a key inference task in
many graphical models. In this paper, we develop an anytime
anyspace search algorithm taking advantage of AND/OR tree
structure and optimized variational heuristics to tighten deter-
ministic bounds on the partition function. We study how our
priority-driven best-first search scheme can improve on state-
of-the-art variational bounds in an anytime way within limited
memory resources, as well as the effect of the AND/OR frame-
work to exploit conditional independence structure within the
search process within the context of summation. We compare
our resulting bounds to a number of existing methods, and
show that our approach offers a number of advantages on real-
world problem instances taken from recent UAI competitions.

Introduction

Probabilistic graphical models, including Bayesian networks
and Markov random fields, provide a framework for rep-
resenting and reasoning with probabilistic and determin-
istic information (Dechter, Geffner, and Halpern 2010;
Darwiche 2009; Dechter 2013). Reasoning in a probabilis-
tic graphical model often requires computing the partition
function, i.e., the normalizing constant of the underlying
distribution. In general, exact computation of the partition
function is known to be #P-hard (Valiant 1979), leading to
the development of a broad array of approximate schemes.
Particularly useful are schemes that provide guarantees, such
as a confidence interval (upper and lower bounds), that can
also improve them in an anytime and anyspace manner.

Approximate elimination methods (Dechter and Rish
2003; Liu and Ihler 2011) and closely related variational
bounds (Wainwright and Jordan 2008) provide deterministic
guarantees on the partition function. However, these bounds
are not anytime; their quality often depends on the amount
of memory available, and do not improve without additional
memory. On the other hand, Monte Carlo methods, such as
those based on importance sampling (Liu, Fisher, and Ih-
ler 2015), or approximate hash-based counting for weighted
SAT (e.g., Chakraborty, Meel, and Vardi, 2016) can smoothly
trade time for quality, but provide only probabilistic bounds
(e.g., they hold with probability 1− δ for some confidence
parameter δ), and can be slow to provide tight intervals.
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In this work, we explore AND/OR search algorithms for
providing anytime, deterministic bounds on the partition
function. Historically, search techniques are well studied in
graphical models for optimization (e.g., MAP, or maximum
a posteriori and weighted CSP tasks), (Shimony and Char-
niak 1991; Santos 1991; Kask and Dechter 2001; F. Bacchus
and Piassi 2003b) and exact summation (Darwiche 2001;
Chavira and Darwiche 2008; F. Bacchus and Piassi 2003a;
Sang, Beame, and Kautz 2005; Darwiche 2009). However,
there have been relatively little recent study for approximate
summation problems such as the partition function via search.
One exception is Viricel et al. (2016), which adapts a depth-
first branch-and-bound search scheme to provide determinis-
tic upper and lower bounds on the partition function.

AND/OR search spaces (Dechter and Mateescu 2007) pro-
vide an elegant framework that exploits conditional, possi-
bly context-specific independence structure during search.
In contrast to methods such as recursive conditioning
or “clamping” (Darwiche 2001; Weller and Domke 2015;
Dechter and Mateescu 2007) and recent work on knowl-
edge compilation (Kisa et al. 2014), that can also explore
the AND/OR search space, most explicit AND/OR search
algorithms were used for optimization, employing a fixed
search order that restricts the search but enables the use of
strong, pre-compiled heuristic functions and can lead to faster
exploration and better early pruning (Marinescu and Dechter
2009a; 2009b; Otten et al. 2011; Otten and Dechter 2012;
Marinescu, Dechter, and Ihler 2014; 2015).

Other, related approaches for summation queries include
cutset-conditioning for exact solutions (Pearl 1988; Dechter
2013) or approximation with sampling (Bidyuk and Dechter
2007). Bidyuk, Dechter, and Rollon (2010) used conditioning
to combine bound intervals on marginal probabilities.

Our contributions In this paper, we develop an anytime
anyspace AND/OR best-first search algorithm to improve
deterministic bounds for the partition function. Our priority-
driven best-first search scheme takes advantage of both
AND/OR tree search and optimized variational heuristics,
to efficiently reduce the bound gap on the partition func-
tion. Empirical results demonstrate that our approach with
heuristics extracted from weighted mini-bucket (Liu and Ihler
2011) is almost always superior to the baselines on various
benchmark-memory settings.
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Background

Let X = (X1, . . . , XN ) be a vector of random variables,
where each Xi takes values in a discrete domain Xi; we
use lower case letters, e.g. xi ∈ Xi, to indicate a value of
Xi. A graphical model over X consists of a set of factors
F = {fα(Xα) | α ∈ I}, where each factor fα is defined on
a subset Xα = {Xi | i ∈ α} of X, called its scope.

We associate an undirected graph G = (V,E) with F,
where each node i ∈ V corresponds to a variable Xi and we
connect two nodes, (i, j) ∈ E, iff {i, j} ⊆ α for some α.
The set I then corresponds to cliques of G. We can interpret
F as an unnormalized probability measure, so that

f(x) =
∏

α∈I
fα(xα) Z =

∑

x

∏

α∈I
fα(xα)

Z is a normalizing constant called the partition function
which ensures that p(x) sums to one. Computing Z is often a
key task in evaluating the probability of observed data, model
selection, or computing predictive probabilities.

AND/OR Search

An AND/OR search space is a generalization of the standard
(“OR”) search space that is able to exploit conditional inde-
pendence structure during search (Dechter and Mateescu
2007). The AND/OR search space for a graphical model
is defined relative to a pseudo tree that captures problem
decomposition along a fixed search order.
Definition 1 (pseudo tree). A pseudo tree of an undirected
graph G = (V,E) is a directed tree T = (V,E′) sharing the
same set of nodes as G. The tree edges E′ form a subset of
E, and we require that each edge (i, j) ∈ E \E′ be a “back
edge”, i.e., the path from the root of T to j passes through i
(denoted i ≤ j). G is called the primal graph of T .
One simple way to build a pseudo tree for G is via depth-first
search along a reverse elimination order.
Example. Fig. 1(a) shows the primal graph of a pairwise
model. Fig. 1(b) shows one pseudo tree consistent with the
elimination order G,F,E,D,C,B,A.

Guided by a pseudo tree, we can construct an AND/OR
search tree consisting of alternating levels of OR and AND
nodes for a graphical model. Each OR node s is associated
with a variable, which we lightly abuse notation to denote
Xs; the children of s, ch(s), are AND nodes corresponding
to the possible values of Xs. The root ∅ of the AND/OR
search tree corresponds to the root of the pseudo tree. Let
pa(c) = s indicate the parent of c, and an(c) = {n | n ≤ c}
indicate the ancestors of c (including itself) in the tree.

In an AND/OR tree, any AND node c corresponds to a
partial configuration x≤c of X , defined by its assignment
and that of its ancestors: x≤c = x≤p ∪ {Xs = xc}, where
s = pa(c), p = pa(s). A complete configuration X = x of
the model corresponds to a subtree called a solution tree:
Definition 2 (solution tree). A solution tree T of an
AND/OR search tree T is a subtree satisfying three con-
ditions: (1) T contains the root of T ; (2) if an OR node is in
T , exactly one of its children is in T ; (3) if an AND node is
in T , all of its children are in T .
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Figure 1: (a) A primal graph of a graphical model over 7
variables with unary and pairwise potential functions. (b) A
pseudo tree for the primal graph. (c) AND/OR search tree
guided by the pseudo tree. One solution tree is marked red.

We also associate a weight wc with each AND node, de-
fined to be the product of all factors fα that are instantiated
at c but not before:
wc =

∏

α∈Ic

fα(xα), Ic = {α | Xpa(c) ∈ Xα ⊆ Xan(c)}

For completeness, we define ws = 1 for any OR node s. It
is then easy to see that the product of weights on a path to
the root, gc =

∏
a≤c wa (termed the cost of the path), equals

the value of the factors whose scope is fully instantiated at c.
The product of weights on any solution tree equals the value
of its complete configuration.
Example. A solution tree is marked red in the AND/OR
search tree shown in Fig. 1(c). According to the definition, a
solution tree corresponds to one full instantiation of all the
variables. Its cost is defined as product of weights of all its
AND nodes, and equals the value of this configuration in the
graphical model.

Finally, the purpose of the search tree is to compute some
inference quantity for the model, such as the optimum f∗ =
maxx f(x) or the partition function Z =

∑
x f(x). To this

end, we associate an exact “value” vn with each node n in
the AND/OR search graph, which represents the inference
task’s value on the unexpanded portion of the search space
below node n. The value vn can be defined recursively in
terms of its children and grandchildren as follows. We first
define vn = 1 for any leaf (since no part of the model remains
uninstantiated). Let p be an AND node; for maximization
tasks, we have

Max: vp =
∏

s∈ch(p)

vs, vs = max
c∈ch(s)

wcvc (1)
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while in the case of summation, the recursion defining vp for
an AND node p is

Sum: vp =
∏

s∈ch(p)

vs, vs =
∑

c∈ch(s)

wcvc (2)

Any search algorithm for reasoning about the model can be
thought of as maintaining upper and lower bounds on these
quantities at each node. In particular, for heuristic search,
we assume that we have a heuristic function hc that gives
upper (or upper and lower) bounds on vc. These heuristics
typically are more accurate deeper in the search tree, and
therefore their updates can be propagated upwards to the root
to yield tighter bounds to the overall inference value. Any
search algorithm is then defined by the order of expansion of
the search tree.

Proposition 1. Any algorithm exploring the full AND/OR
tree has complexity O(bhdh), where h is the pseudo tree
height, b is the max branching factor of the pseudo tree,
and d is the max variable domain size. See Dechter and
Mateescu (2007).

Best-first Search

We explore the power of AND/OR search with precompiled
heuristics for bounding sum inference tasks. In this section,
we introduce our main algorithm; we first present a simplified
version that is A*-like, and then generalize to an SMA*-like
version (Russell 1992) to operate with limited memory.

Beginning with only the root ∅, we expand the search
tree according to the pseudo tree structure and some control
strategy (depth-first, breadth-first, etc.) With best-first search,
we assign a priority to each frontier node on the search tree,
then expand the top priority frontier node in each iteration.

More precisely, we maintain an explicit AND/OR search
tree of visited nodes, denoted S, whose frontier nodes are
denoted OPEN. The remaining nodes of S are called internal
nodes. For an internal node n, we denote OPEN(n) as the set
of descendants of n that are in OPEN. A frontier AND node
of S is called solved if it corresponds to a leaf node in the
pseudo tree. An internal node of S is solved only if all its
children are solved.

For each node n in the AND/OR search tree, we denote
un and ln to be upper and lower bounds of vn, initialized via
pre-compiled heuristics h−

n ≤ vn ≤ h+
n , and subsequently

updated during search.
Given the currently expanded tree S , we update the bounds

un and ln using information propagated from the frontier:

AND node p: up =
∏

s∈ch(p)

us, lp =
∏

s∈ch(p)

ls

OR node s: us =
∑

c∈ch(s)

wc uc, ls =
∑

c∈ch(s)

wc lc
(3)

Note that these values depend implicitly on the search tree S .
It will also be useful to define two node-specific quantities

that combine the path costs and heuristics. Let branch(p, q)
be all OR nodes that are siblings of some node s on the path
p < s ≤ q; these are “other” children of AND-node ancestors

of q. For shorthand we use branch(q) = branch(∅, q) for
paths from the root.

Un = gn un

∏

s∈branch(n)

us, Ln = gn ln
∏

s∈branch(n)

ls (4)

These quantities combine the path cost and heuristic in the
usual way, e.g., the path cost gn times the current heuristic
bound, un; the branch terms correspond to incorporating
the bounds for conditionally independent subproblems for
sibling subtrees at AND nodes. At the root, the dynamically
updated bounds U = U∅ = u∅, L = L∅ = l∅ serve as
anytime bounds on Z. Un and Ln can also be understood in
terms of the exact quantity

Vn = gn vn
∏

s∈branch(n)

vs, (5)

and we show in Appendix,
Proposition 2. The quantity Vn represents the total weighted
sum over all solution trees that include node n. Given a
current search tree S, for all n, we have Un ≥ Vn ≥ Ln.
Thus, we can interpret Un and Ln as the contributions of n
to the global bounds U and L.

Priority Types

A critical element of best-first search is the priority value
for each frontier node, which determines which node will
be expanded next. However, some complications arise for
AND/OR search, and particularly for summation queries,
which we discuss here.

In typical A* search, we select the frontier node with the
lowest cost incurred so far, plus an optimistic heuristic esti-
mate of the cost to go. In our notation and for maximization,
this corresponds to selecting s ∈ OPEN to maximize Us; this
choice will tighten the current global upper bound U , and we
refer to it as the “upper” priority. However, for summation
problems it is more natural to tighten the current gap, U − L,
which suggests selecting s to maximize Us − Ls (the “gap”
priority); more precisely, in Appendix we show:
Proposition 3. Given a current search tree S, fully solving
the summation problem below a frontier node s will tighten
the bound difference U − L by

gs (us − vs)
∏

t∈branch(s)

ut + gs (vs − ls)
∏

t∈branch(s)

lt (6)

which is upper bounded by gap(s) = Us − Ls.
Thus, gap(s) serves as an optimistic estimate of the effect
of expanding s on the global bound difference. For OR
search, this essentially reduces to the priority proposed in
Henrion (1991).

However, in AND/OR search, tracking the highest priority
node can be difficult. In particular, both the upper and gap
priorities are non-static: after expanding a node in OPEN, the
priority of other nodes may change their values and relative
orders. Consider two nodes which share an AND ancestor;
this means that the nodes correspond to conditionally inde-
pendent subproblems, and their contributions are multiplied
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Algorithm 1 Best-first search for anytime sum bounds.
1: Initialize S ← {∅} with the root ∅.
2: while termination conditions not met
3: EXPANDBEST(∅, 1, 1) // find best frontier, from root
4: end while

5: function EXPANDBEST(n, Un, Ln)
6: if n 	∈ OPEN // not frontier; recurse down:
7: Find c+ via (7) or (8)
8: EXPANDBEST(c+, Uc+ , Lc+ )
9: else // expand frontier node:

10: Generate children of n; uc = h+
c , lc = h−

c .
11: Mark any leaves (or uc = lc) as SOLVED.
12: end if
13: Update un, ln via (3)
14: if all children c ∈ ch(n) are SOLVED
15: Remove ch(n) from S; add n to SOLVED.
16: end if
17: Find c+ and update U+

n , L+
n by (7) or (8)-(9).

18: end function

in (1)–(2). Since both branches must be solved, proving that
one branch is no good tells us not to explore the other branch,
and reduces its priority.

For the upper bound heuristic at a node n, it is easy to show
that, if no descendant of n is updated, the relative order of n’s
children does not change. To see this, write Us = Un(Us/Un)
for any frontier node s descended from n, s ≥ n. The second
term, Us/Un, involves only descendants of n; thus, changes
to ancestors of n can only affect Un and hence cannot change
the relative order of the descendants. Then, by maintaining
at each node n,

U+
n = max

s≥n,s∈OPEN
Us/Un

we can always identify the highest-priority child of n, and
propagate U+

c upward, by computing

c+ = argmax
c∈ch(n)

UcU
+
c and U+

n = Uc+U
+
c+/Un (7)

Unfortunately, the gap heuristic is less well-behaved. At a
node n, the descendant gap Un(Us/Un)− Ln(Ls/Ln) can
change the relative order if n’s ancestors are updated and
Un and Ln change values. We elect to track the gap priority
approximately, by computing

c+ = argmax
c∈ch(n)

UcU
+
c − LcL

+
c (8)

U+
n = Uc+U

+
c+/Un, L+

n = Lc+L
+
c+/Ln (9)

This is not guaranteed to find the current highest gap priority
node, but will become more accurate as the search tree grows
and the Un, Ln become more accurate (and thus stable).

The overall algorithm is given in Alg.1. Each iteration
recurses from the root to the best frontier node, scoring n’s
children and computing Un, Ln. At the frontier, we expand
a node, and recurse back up the tree, updating the bounds
un, ln and descendant priority quantities U+

n , L+
n . We can

show:

Algorithm 2 Memory-limited BFS for anytime sum bounds.
1: Initialize S ← {∅} with the root ∅.
2: while termination conditions not met
3: if memory OK: n ←EXPANDBEST(∅, 1, 1)
4: else n ←REMOVEWORST(∅, 1, 1)
5: end if
6: end while

7: function REMOVEWORST(n, Un, Ln)
8: if n’s children all in OPEN // worst removable node
9: Remove ch(n) from S; mark n in OPEN

10: else // or recurse toward worst
11: Find worst non-OPEN child c− via (10) or (11)
12: REMOVEWORST(c−, Uc− , Lc− )
13: end if
14: Update c− and U−

n , L−
n via (10) or (11)–(12)

15: end function

16: function EXPANDBEST(n, Un, Ln)
17: // As in Alg. 1, except:
18: Ensure un, ln, U+

n , L+
n updated monotonically

19: Update c− and U−
n , L−

n via (10) or (11)–(12)
20: end function

Proposition 4. The time complexity of each node expansion
and update in Alg. 1 is bounded by O(h(b+ d)) where h is
the pseudo tree height, b is the max branching factor of the
pseudo tree, and d is the max variable domain size.

Memory-limited BFS

As is typical for best-first search, memory usage can quickly
become a major bottleneck. To continue improving in
memory-limited settings, we could switch to some low-
memory strategy such as depth-first search (DFS). However,
this is often slow to tighten the bounds.

Instead, we apply a variant of SMA* (Russell 1992), so
that near the memory limit, we continue expanding nodes
in a best-first way, but remove low-priority nodes from S,
in such a way that they will be re-generated once the high-
priority subtrees are tightened or solved. We simply modify
our updates in two ways: (1) at each node n, we also track
the lowest-priority removable descendant of n; and (2) we
force un, ln, and the node priority quantities U+

n , L+
n to

be updated monotonically, to avoid worsening the bounds
or overestimating priority when subtrees are removed and
later re-generated. The resulting memory-limited best-first
algorithm is shown in Alg. 2.

For convenience, we define a node as removable if its chil-
dren are all in OPEN, and “remove” it by deleting its children
and re-adding it to OPEN; this simplifies tracking and re-
expanding removed nodes. We keep track of the smallest
priority value of any removable node below n; for the upper
heuristic,

c− = argmin
c∈rm(n)

UcU
−
c and U−

n = Uc−U
−
c−/Un (10)

with rm(n) = ch(n) \OPEN, i.e., the children of n not
in OPEN, and U−

n = U+
n at removable nodes. For the gap
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priority, we again track only approximately, using

c− = argmin
c∈rm(n)

UcU
−
c − LcL

−
c (11)

U−
n = Uc−U

−
c−/Un, L−

n = Lc−L
−
c−/Ln (12)

Then, to remove a node, we search downward along the worst
children c−, and remove n when its children are all in OPEN.

Empirical Evaluation

To evaluate the effectiveness of our algorithm in Alg. 2, we
compare it to a number of existing methods on four bench-
marks and three different memory budgets.

Experimental Settings

Benchmarks We evaluated performance on several bench-
mark instance sets: CPD, a set of computational protein de-
sign problems from Viricel et al. (2016); PIC’11, a bench-
mark subset of 23 instances selected by Viricel et al. (2016)
from the 2012 UAI competition; BN, a set of Bayesian net-
works from the 2006 competition1; and Protein, made from
the “small” protein side-chains of Yanover and Weiss (2002).
For CPD, BN, and Protein, we evaluated on randomly se-
lected subsets of size 100, 50, and 50, respectively. Table 1
gives statistics on the composition of these benchmarks.

Methods Our proposed algorithm (Alg. 2), which we call
AOBFS, is tested in two variants: using the “gap” priority
(denoted A-G), and using the “upper” priority (A-U). We also
compare an OR search variant, O-G, by selecting a chain-
structured pseudo tree. For our experiments, we use weighted
mini-bucket (Liu and Ihler 2011) heuristics, whose memory
use is roughly controlled by a parameter called the ibound.
For a given memory budget, we first compute the largest
ibound that fits the memory budget, and then use the re-
maining memory for search. (While a more carefully chosen
allocation strategy might be able to yield better performance,
we leave this for future work.)

Z∗
ε (Viricel et al. 2016) is a recent algorithm that provides

lower and upper bounds on the partition function. For a given
ε, it returns bounds on lnZ whose gap is at most ln(1 + ε).
We adopted the parameter setup suggested by the authors:
upper bound set to Ub1, enforcing VAC at the root, and using
EDAC during the rest of the search.

VEC (Dechter 1999; 2013) (Variable Elimination with
Conditioning, also known as custet-conditioning) is a clas-
sical method for trading off memory with time when the
induced-width of the problem is too high. The algorithm de-
termines the highest induced-width for which it can run the
variable elimination algorithm, denoted w, and then searches
over a w-cutset set of nodes, applying variable elimination
to each assignment of the cutset. For implementation details,
see http://graphmod.ics.uci.edu/group/VEC.

MMAP-DFS (Marinescu, Dechter, and Ihler 2014) (abbre-
viated M-D) is a state-of-the-art method for marginal MAP
using AND/OR search, which solves the internal summation
problem exactly using depth-first search aided by weighted

1http://melodi.ee.washington.edu/∼bilmes/
uai06InferenceEvaluation/

PIC’11 Protein BN CPD
# instances 23 50 50 100

avg. # variable 104.04 99.96 838.60 15.68
avg. # factor 409.09 355.84 838.60 135.32

avg. max domain size 2.91 77.94 12.44 32.54
avg. # evidence 0 0 96.04 0

avg. induced width 16.35 11.24 32.78 14.68
avg. pseudotree depth 26.09 27.66 112.46 12.27

Table 1: Statistics of the four evaluated benchmark sets.

mini-bucket heuristics. We use it to compute the partition
function by treating all variables as summation variables.
Since it also uses weighted mini-bucket, we use the same
ibound selected for the heuristics in our algorithm.

Viricel et al. (2016) also compared several solvers,
minic2d (Oztok and Darwiche 2015), ace (Chavira and Dar-
wiche 2008), and cachet (Sang, Beame, and Kautz 2005), but
found that even with significant memory (60GB), minic2d
solved about 13%, ace solved about 5%, and cachet solved
7% of the CPD instances, hence we did not include them in
our evaluation.

Implementations of all methods are in C/C++ by the origi-
nal authors. We used maximum time 1 hour, and tested three
memory budgets: 1GB, 4GB and 16GB.

Empirical Results

The main goal of our algorithm is to provide improving,
anytime bounds. While Z∗

ε is able to reduce its quality re-
quirement (by increasing ε), it is not anytime in this sense. To
simulate anytime-like behavior, we vary ε across the range
ln(ε+1) ∈ [10−3, 102] to provide a sequence of quality/time
pairs. Fig. 2 shows the anytime behavior of our algorithm
along with these Z∗

ε runs on one instance per benchmark.
Generally speaking, our search process tightens the bound
much more quickly and smoothly than Z∗

ε . For example, in
Fig. 2(a), only very coarse bounds are produced within the
time limit; in (b), the Z∗

ε bounds are loose until our proposed
algorithm has essentially solved the problem (with heuristic
construction comprising most of the total time); in (c) Z∗

ε did
not produce any useful bound within the time limit.

Within our algorithm’s variants, we see that both AND/OR
variants perform similarly, with the OR variant similar or
slower (e.g., Fig. 2(b)). We find that our gap-based priority
can be slower initially, but usually improves to do better than
upper priority after enough time; for example, in Fig. 2(c).

Solving to fixed tolerance We evaluate the number of in-
stances in each benchmark that can be solved to tolerance (so
that the gap between the upper and lower bound is less than
ε) within the memory and time constraints. Table 2 shows
the performance of each algorithm at two thresholds, “loose”
(ε = 1.0) and “tight” (ε = 10−3). Exact methods (VEC,
M-D) are included with the tight tolerance interval.

From Table 2, we can see that A-G solves the most in-
stances to tight tolerance in 9 of 12 settings; A-U is only
slightly worse, and also improves over the previous ap-
proaches. (Again, we see that O-G solves fewer instances,
emphasizing the usefulness of exploiting conditional inde-
pendence in the AND/OR space.) An exception is on CPD,
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truncated at lnU − lnL = 10−3. Curves for Z∗

ε may be missing since it may not be able to produce bounds or bounds are not in
a reasonable scope for ln(ε+ 1) ∈ [10−3, 102].
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Figure 3: Number of solved (to tolerance 10−3) instances with memory 1GB. The time budget is 1 hour. Sizes of four benchmarks
(from left to right) are 23, 50, 50 and 100 respectively. Lower is better.
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Figure 4: Number of solved (to tolerance 10−3) instances with memory 16GB. The time budget is 1 hour. Sizes of four
benchmarks (from left to right) are 23, 50, 50 and 100 respectively. Lower is better.

which Z∗
ε performs slightly better at lower memory bounds.

When looser bounds are acceptable, Z∗
ε solves only one ad-

ditional problem at 16GB, and two additional problems at
lower memory; it has difficulty taking advantage of anytime
tradeoffs. In contrast, the proposed search algorithms solve
significantly more problems to loose tolerance.

Fig. 3 and Fig. 4 show the time required to solve (to tol-
erance 10−3) the instances in each benchmark with memory
1GB and 16GB respectively. Again, we find that Z∗

ε is usu-

ally faster on CPD problems, but slower than our proposed
method on PIC’11 and Protein, and faster on only the easiest
of the BN instances. Among exact methods, M-D is often
faster on simple models, but then fails to solve harder models,
while VEC is usually both slower and solves fewer models
than our best-first search. We also observe that more memory
often leads to better performance for all methods. Our algo-
rithm and VEC generally improve more compared to other
baselines with more memory.
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“Loose”: logU − logL < 1.0
PIC’11 Protein BN CPD

#inst. 23 50 50 100
Memory: 1GB/4GB/16GB

A-G 20/20/21 23/29/30 39/42/43 100/100/100

A-U 20/20/21 23/29/30 39/42/43 100/100/100

O-G 19/20/21 12/13/16 35/37/40 100/100/100

Z∗
ε 14/14/15 13/13/13 30/31/31 100/100/100

“Tight”: logU − logL < 10−3

PIC’11 Protein BN CPD
#inst. 23 50 50 100

Memory: 1GB/4GB/16GB
A-G 18/18/19 16/17/19 32/40/42 95/98/100

A-U 18/18/19 15/17/19 32/40/41 93/95/100

O-G 16/18/19 9/12/13 28/36/38 95/98/100

Z∗
ε 13/13/15 12/12/12 30/31/31 100/100/100

VEC 12/14/19 14/15/15 36/38/39 36/52/56
M-D 14/14/14 9/9/11 23/23/24 7/7/8

Table 2: Number of instances solved to tolerance interval for
each benchmark & memory setting. Each entry contains the
number of solved instances in 1 hour with memory budget
1GB, 4GB, and 16GB from left to right. The highest (most
solved) for each setting is bolded. Exact methods (VEC, M-
D) are compared to the “tight” tolerance 10−3.

Search can sometimes effectively solve instances with very
high width, if there are relatively few high-weight configura-
tions of the model. For example, in the Protein instances, A-G
solves instance ‘1who’ in only 12 seconds and 1GB memory,
while the corresponding junction tree requires about 150GB
memory; even more extreme, instance ‘2fcr’ is solved in
21 minutes and 16GB memory, while junction tree would
require approximately 3.5PB.

A-G vs A-U As we observed from Fig. 2, A-U may out-
perform A-G early on in search, but A-G usually catches up.
One possible explanation is that, early on, the lower bound
heuristics from weighted mini-bucket are often significantly
worse than the corresponding upper bounds, and thus the
gap, U − L, is very close to U , and the priorities are similar.
However, our approximate procedure may not identify the
top gap-priority node; and moreover, A-U priority requires
slightly less computation than that of A-G, making it more
efficient during early search. However, as search proceeds
and the heuristics become more accurate, focusing on nodes
that have high gap, rather than merely high value, pays off;
for example, A-G solves slightly more instances than A-U to
tolerance in Table 2.

Conclusion

In this paper, we develop an anytime anyspace search al-
gorithm for bounding the partition function. It is a priority-
driven best-first search scheme on the AND/OR search tree
based on precompiled heuristics from state-of-the-art vari-
ational bounds, and is able to improve on these bounds in
an anytime fashion within limited memory resources. The

AND/OR search tree enables exploiting conditional indepen-
dence during search, while the heuristics and priority guide it
toward critical subtrees of the search space. In experimental
comparisons, our best-first algorithm outperforms existing,
state-of-the-art baseline methods on multiple standard bench-
marks and memory limits.
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Appendix

Proof of Proposition 2

First, it is obvious that Un and Ln are upper and lower bounds
of Vn respectively. For a solution tree T ∈ T(S) where T(S)
denotes the set of all solution trees of S , its mass is

vT =
∏

c∈T

wc

∏

s∈T∩OPEN

vs (13)

T also defines an upper bound of vT denoted as uT where

uT =
∏

c∈T

wc

∏

s∈T∩OPEN

us (14)

By taking the sum of masses over all the solution trees of
S, we obtain the exact partition function. Analogously, by
taking the sum of upper bounds over all its solution trees, we
can upper bound the partition function. Namely,

U =
∑

T∈T(S)

uT (15)

Now, for any solution tree T that contains n, gn contributes
to vT as a multiplicative factor. The rest of vT comes from
subtrees underneath nodes in {n}

⋃
branch(n). Thus, it is

easy to verify that

Vn =
∑

{T∈T(S) | n∈T}
vT (16)

i.e., Vn is the total mass of all solution trees that contain n.

Proof of Proposition 3

We can see that fully solving the subproblem underneath s
will decrease Us to

gs vs
∏

t∈branch(s)

ut (17)

This will improve U by

gs (us − vs)
∏

t∈branch(s)

ut (18)

By applying the same argument to lower bound, we know the
bound difference U − L will be reduced by

gs (us − vs)
∏

t∈branch(s)

ut + gs (vs − ls)
∏

t∈branch(s)

lt (19)

which is obviously a lower bound of gap(s) = Us − Ls.
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