Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Learning to Prune Dominated Action
Sequences in Online Black-Box Planning

Yuu Jinnai, Alex Fukunaga
Department of General Systems Studies
Graduate School of Arts and Sciences
The University of Tokyo

Abstract

Black-box domains where the successor states generated by
applying an action are generated by a completely opaque
simulator pose a challenge for domain-independent planning.
The main computational bottleneck in search-based planning
for such domains is the number of calls to the black-box sim-
ulation. We propose a method for significantly reducing the
number of calls to the simulator by the search algorithm by
detecting and pruning sequences of actions which are dom-
inated by others. We apply our pruning method to Iterated
Width and breadth-first search in domain-independent black-
box planning for Atari 2600 games in the Arcade Learning
Environment (ALE), adding our pruning method significantly
improves upon the baseline algorithms.

1 Introduction

Planning is the task of deciding a sequence of actions for
an agent such that the agent achieves some set of goals,
where the goals can include the optimization of some ob-
jective function. Much of the previous work in Al planning
assumes that a model of the world and its dynamics is fully
specified and available to the planner. For example, in clas-
sical planning with the standard STRIPS or SAS+ models,
each action a available to the agent is specified precisely
in terms of its preconditions (constraints on the state vec-
tor required to execute a) and effects (changes in the state
vector as a result of executing a). Such transparent domain
models have enabled the development of effective search al-
gorithms which exploit the structure exposed by the model,
e.g., heuristic functions that use the model to estimate the
cost of achieving the goals from a given state.

Recently, planning in black-box domains with much more
opaque domain models has attracted attention, spurred by
interest in developing a game-independent Al playing algo-
rithm for video games (Bellemare et al. 2013). In black-
box planning, a state vector and a set of actions are avail-
able, as well as an objective function for evaluating states.
However, the only way to compute the successor state s’
resulting from applying an action a to state s is to execute
s’ = Simulate(s,a), a black-box simulation function for
which the internal dynamics are inaccessible.

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

839

Such black-box domains present a challenge for search-
based planning, because the pruning techniques which en-
abled effective search in domains with transparent domain
models are not applicable, leaving us only with brute-force
methods such as breadth-first search. However, it was re-
cently shown that Iterative Width (IW) (Lipovetzky and
Geffner 2012), a search strategy which prunes the search
space by focusing only on states which are “novel” com-
pared to previously expanded nodes, can be used as the basis
for a successful, search-based planner for black-box plan-
ning (Lipovetzky, Ramirez, and Geffner 2015).

In most traditional planning/search domains, successor
state generation is relatively cheap, while state evaluation
(e.g., calling a heuristic function) tends to be expensive.
For example, in classical planning, powerful but expensive
heuristic functions are often the bottleneck. In contrast, in
black-box domains, successor state generation is expensive,
since the successor computation (Simulate) can be a com-
plex simulation algorithm. State evaluation can also be slow
in black-box domains (it might require running another sim-
ulation), or evaluation might be cheap (e.g., in the Arcade
Learning Environment (ALE) (Bellemare et al. 2013), evalu-
ation is cheap because the score is computed as a side-effect
of state generation).

Slow state generation introduces a significant bottleneck
for black-box planning when the state space is a graph.
When searching in standard domains using algorithms such
as A* or breadth-first search, duplicate detection is relatively
cheap (e.g., a hashing operation) and since state generation
is fast, the presence of detectable duplicate states is usually
not a critical issue. In contrast, in black-box domains with
slow state generation, the duplicate check itself is fast (hash-
ing), but by the time a duplicate check is performed, it is
too late — a large cost has been incurred when the duplicate
state has been generated. To avoid this overhead, we must
avoid generating duplicate states. Previously proposed du-
plicate avoidance mechanisms (c.f. (Taylor and Korf 1993)),
are inapplicable because they depend on the ability to iden-
tify duplicate action sequences by analyzing the underlying
transparent domain models.

In this paper, we investigate duplicate avoidance in on-
line planning settings for black-box domains, as exemplified
by the on-line planning for the ALE (Bellemare et al. 2013),
where an agent plays video games by repeating the loop:

(1) solving a planning problem with a very limited resource
budget, and (2) execute an action. Because this setting poses
a series of related planning episodes, there is an opportunity
to improve planner performance over time by learning a du-
plicate avoidance strategy.

Specifically, we seek to eliminate actions (and sequences
of actions) which are dominated by others (and lead to
duplicate states). For example, in the ALE, which simu-
lates an Atari 2600 game machine, 18 actions are always
available (the joystick has 9 states — up/down/left/right/4
diagonals/“neutral”, and the “fire” button has 2 states,
9x2=18). Previous work in search-based planning for
the ALE treats all 18 actions as applicable at every state
(Lipovetzky, Ramirez, and Geffner 2015; Shleyfman, Tu-
isov, and Domshlak 2016). However, in any particular game,
many of these 18 actions are dominated (“useless”): First,
some actions are trivially dominated because they are com-
pletely ignored, or the program always treats them as being
equivalent to other actions (e.g., in some games, the state
of the “fire” button is irrelevant). Second, some actions are
conditionally dominated because, in a given context, the ac-
tion results in the same state as another action (e.g., in a
maze-based game, if the agent is stuck against a wall to the
left, then the “left” action is useless because (in some games)
it results in the same state as “no action”). More generally,
sequences of actions can be useless. For example, some ac-
tions can have cooldown periods, i.e, after action a is used,
executing a again has no effect for the next ¢ seconds (e.g.
firing missiles in shooting games).

If the environment is deterministic, dominated action se-
quences lead to duplicate states, so this paper focuses on
avoiding dominated action sequences (in the . If the domain
is transparent, dominated actions can be detected trivially by
analyzing domain models, and dominated action sequences
can be pruned using methods such as duplicate action se-
quence detection (Taylor and Korf 1993), symmetry detec-
tion (Fox and Long 1999; Pochter, Zohar, and Rosenschein
2011), and strong stubborn sets (Wehrle et al. 2013). How-
ever, in black-box planning, pruning dominated actions and
action sequences is nontrivial because we can not be cer-
tain whether an action is truly dominated, or merely appears
to be dominated due to the context provided by the current
game state.

We propose Dominated Action Sequence Detection
(DASD), an approach to detecting actions which are likely to
be dominated by other action(s) in the course of online plan-
ning. DASD can be applied to online planning using any
standard search algorithm (e.g., breadth-first search, IW) in
order to prune dominated action sequences. We first pro-
pose Dominated Action Sequence Pruning (DASP), which
assumes a static environment and classifies actions as being
either dominated or non-dominated. Next, we propose Dom-
inated Action Sequence Avoidance (DASA), a method to
detect context-dependent (conditional) dominated action se-
quences, which learns the ratio of duplicate nodes generated
by actions. DASA assigns a low probability of expanding
action sequences that result in more duplicates (i.e., dom-
inated actions), in order to avoid wasting search resources
on unfruitful actions, and instead invests more resources

840

into more promising (non-dominated) actions. We evalu-
ate DASA and DASP applied to p-IW(1), IW(1) and breadth
first search (BrFS) on 53 games in the ALE, and show that
on all three search methods, DASA improved the perfor-
mance compared to the baseline search method as well as
the baseline method using a hand-coded (human-generated),
game-specific, restricted action set.

2 Background

A black box planning problem is a tuple B =
(V, A, Sim,I,U). V is a set of variables, each with a dis-
crete domain D(v;). A state is a combination of v; for each
V. A is the set of available actions. Any action in A can
be applied at any state. The effects of a € A are com-
puted using the black box simulation function Sim. Sim
is a function which takes two parameters. Sim(a, s) returns
the state resulting from applying a to state s. [is an initial
assignment of values to V. U is a utility function. The ob-
jective is to find a state s which maximizes U (s) (satisficing,
black-box planning uses a U which is maximal when desired
(goal) attributes are satisfied, zero otherwise). In this paper,
we assume that the environment is deterministic, i.e., Sim
is deterministic.

The lack of useful knowledge makes search difficult.
Brute-force, exhaustive search algorithms such as breadth-
first search can be applied, but does not scale well (Belle-
mare et al. 2013). More focused search techniques which
do not depend on heuristics are needed. Iterative Width
(Lipovetzky, Ramirez, and Geffner 2015) is breadth-first
search with novelty-based pruning: a newly generated state
is pruned if it does not make a new atom true. IW(1) has
been shown to perform well in classical planning (Lipovet-
zky and Geffner 2012), Atari games in the ALE environ-
ment (Lipovetzky, Ramirez, and Geffner 2015), and General
video game playing (Geffner and Geffner 2015). p-IW (Sh-
leyfman, Tuisov, and Domshlak 2016) further improves the
pruning by considering the reward in addition to novelty.

Online, black-box planning is a real-time search problem
(Korf 1990), where we are given an initial black-box plan-
ning instance By, and a resource limit (e.g., time limit, limit
on number of node generations, etc.). An agent for online
black-box planning behaves as follows: [Step 1, initializa-
tion]: [is initialized to Iy. [Step 2, termination check]: If
some termination condition has been met, then terminate.
[Step 3, planning episode]: The agent applies a planning
algorithm P until the resource limit is exhausted, at which
point the agent selects an action a to execute. [Step 4, world
update]: The agent executes a, resulting in an updated world
state s = Apply(a,s). In black-box domains where the
simulator Sim is a perfect model of the actual world inhab-
ited by the agent, then Apply(a,s) = Sim(a, s). [Step 51
Set I = s, and go to step 2.

In step 3 (planning episode), after the planning algorithm
is terminated, the selection of the action to execute in step
4 can be implemented in many different ways. In a satis-
ficing problem, if a path has been found to a goal (maximal
utility) state, then the first step on that path should be se-
lected. However, in most cases, such a path is unavailable,
so the action is chosen based on the search space that has

been explored so far, e.g., choose the first step in the path
with the highest utility frontier node. For example, in the
ALE domain, previous work selects the first step which leads
to the highest discounted accumulated reward (Bellemare et
al. 2013; Lipovetzky, Ramirez, and Geffner 2015). Plan-
ning episodes can re-use work (search) performed in previ-
ous planning episodes, and all nodes generated in previous
planning episodes can be cached.

Taylor and Korf (1993) proposed a standard method for
dominated action sequence elimination in deterministic do-
mains with transparent models, based on the following cri-
terion for determining dominance: An action sequence S1
dominates S2 if and only if (1) Cost(S1) < Cost(52), (2)
S1 is applicable whenever S2 is applicable, and (3) Apply-
ing S1 and S2 to state s always result in the same result-
ing state s’. In black-box planning, all available actions are
always “applicable” — any action can be given as input to
the simulator. However, action effects can not be predicted
without executing the simulation, i.e., any conclusions about
the equivalence of actions is only valid with respect to states
which have actually been generated, and are not guaran-
teed to hold for states which have not yet been generated.
Thus, it is not possible be certain whether Taylor and Korf’s
dominance criterion holds for any two action sequences in
a black-box domain. Also, their method, which was origi-
nally designed for a single planning episode, learns a finite
state machine (FSM) which detects and prunes sequences of
actions leading to dominated states in a preprocessing step
prior to the search; the FSM is used to prune actions dur-
ing the single planning episode. In an online planning set-
ting, instead of a single preprocessing/learning step, we can
continuously apply learning, constantly improving a learned
model across planning episodes. Therefore, we propose an
approach which is adapted for online, black-box planning.

3 Dominated Action Sequence Pruning
(DASP)

To improve the performance of planning episodes (Step 3) of
the online black-box planning, we propose Dominated Ac-
tion Sequence Pruning (DASP), a method to eliminate dom-
inated action sequences in black-box planning.

The set of all actions which can be executed by an agent is
the set of available actions (Aqyq4). For example, there are
18 available actions in Atari games. The available action se-
quence set AL, . is the set of sequences of available actions
with the maximum length of L. Out of these, many are "use-
less* for a given domain that the resulting state of the action
is always duplicated. We refer to such action sequences as
dominated action sequences. More formally:

Definition 1. An action sequence set A" dominates action
sequence a if for all s there exists an action sequence a’ €
AN such that succ(a, s) = succ(a’, s)

where succ(a, s) is the successor generator function and
succ(a, s) returns the state which results from applying the
sequence of actions a = (ag, a1, ...,a,—1) to state s, i.e.,
suce(a, s) = sy, 8; = succ(si—1,a;-1), S0 = S.

A set of action sequences of maximum length L (A”) is

. L
sufficient if it dominates all action sequences in A, ...

841

Fact 1. Let AL be a sufficient action sequence set. For every
state s, a set of successor states of s generated by A” is equal

to a set of successor states of s generated by Agwil.

Proof. Foralla' € AL .\ A%, asa’is dominated by A",
{s'|s' = succ(a,s),a € AL} = {s|s' = succ(a,s),a €
Au{a'}} = {s|s’ = succ(a,s),a € AL U (AL .\
AR O

Therefore, a sufficient action sequence set is sufficient to
search the entire search space for the planning domain. To
reduce the number of calls to succ, it is always beneficial
to have smaller action sequence set. A minimal action se-
quence set is a sufficient action sequence set with the small-
est cardinality.

Algorithm 1. [Find minimal action sequence set]

1. Initialize AL, to the set of all action sequences which
generate one or more non-duplicate nodes.

2. Let G = (V, E) be a hypergraph where v; € V repre-
sents an action sequence a; with no non-duplicate search
nodes, and hyperedge e(vg,v1,..,v,) € E if there exist
one or more duplicate search nodes generated by all of
ap,ay, ..., &, but not by any other action sequences.

3. Add the minimal vertex cover of G to A%, .

During the first £ planning episodes, DASP performs no
pruning. After the k-th planning episode, L-step DASP finds
an action sequence set A" using Algorithm 1, based on the
search tree explored in previous planning episodes. The in-
put of Algorithm 1 is a set of sets of action sequences which
generated one or more common duplicate nodes from the
same state in any of the previous planning episodes. Based
on this input, Algorithm 1 generates its hypergraph G with
hyperedge e(vo, v1, .., vy,) iff action sequences ag, a1, as, ..
corresponding to vg, vy, ve... generated common duplicate
nodes from some state s, but not by any other actions se-
quences. In this way, Algorithm 1 returns a minimal set
of action sequences which generated nodes by these action
sequences covers all generated nodes in previous episodes
(minimal set cover).

DASP only uses A% for the rest of the planning episodes,
except for the first node expansion in each episode. That
is, when expanding a state s, which is reached by a tra-
jectory (ag, a1, ...,an), an action a is applied only if all
of (a), (an,a), (an_1,an,a), ... are in AL, As a heuristic
mechanism for recovering from incorrectly pruned action
sequences, for the first node expansion in each episode, we
apply all the available actions including dominated action
sequences. If a dominated action sequence generates a non-
duplicate node, then the action sequence will be put in A%
for the next planning episode by Algorithm 1.

Given complete knowledge of whether a set of action se-
quences have duplicate nodes in common, Algorithm 1 re-
turns a minimal action sequence set. We say that an envi-
ronment a static environment if all pairs of action sequences
either always generate duplicated nodes or never generates
duplicate nodes. In a static environment, expanding all ac-
tion sequences from one node is sufficient to obtain a mini-
mal action sequence set using Algorithm 1. More formally:

Definition 2. An environment (domain) is static if for all
pair of action sequences a,a’, if 3 sg s.t. succ(a, sg) =
succ(a’, sp), then succ(a, s) = succ(a’, s) holds Vs.

Theorem 1. Assume a static environment. If an input
to Algorithm 1 includes all generated nodes from node s;
(succ(a, s;),a € AL), then Algorithm 1 returns a mini-
mal action sequence set.

Proof. In a static environment, for all s succ(a,s) =
succ(a’, s) if succ(a,s;) = succ(a’,s;) (Definition 2).
Therefore we have complete and correct knowledge of ac-
tion sequences which generate one or more non-duplicate
nodes, and all sets of action sequences with one or more
duplicate search nodes in common. As we have complete
knowledge, Algorithm 1 returns a minimal action sequence
set. O

Theorem 2. In a static environment, if an input includes
a node s; that we expanded all of succ(a, s;),a € AL ..
then Algorithm 1 returns a minimal action sequence set.

Proof. In a static environment, since the input to Algorithm
1 in the first planning episode includes a node s; for which
we expanded all of succ(a,s;),a € AL .. then by The-
orem 2, Algorithm 1 returns a minimal action sequence
set AY. By the reordering criteria, all action sequences
a(e AL) < a'(e AL .\ AL). As A% is minimal and
sufficient, every action sequences a € A’ generates a new
node with probability of 1, so p(a, 2) = 1. Action sequences
in a minimal action sequence set A" always generate a new
node as they are ordered in front, thus DASA expands them
with probability of 1. As action sequences not in A" are
all dominated by AL and ordered after sequences in AL
they always generate old nodes. Therefore, they are applied
with a probability of e(< 1). Therefore a set of action which
DASA expands with probability of 1 is a minimal action se-
quence set. O

In many cases, the environment is not static. However,
even in a dynamic environment, using Algorithm 1, we get
an action sequence set smaller or equal to the size of a min-
imal action sequence set.

Fact 2. Let A" be the action sequence set returned by Al-
gorithm 1. |A”| is smaller or equal to the size of a minimal
action sequence set.

Proof. Action sequences which generate one or more non-
duplicate nodes can be modeled as a node with a self-loop
edge in G. The size of a minimal vertex cover only decreases
when we remove an edge from G. O

4 Dominated Action Sequence Avoidance
(DASA)

DASP assumes a static environment where actions are ei-
ther effective all the time or not at all. However, in many
domains, most of the actions are conditionally effective, an
action has a unique outcome for some states, but not for all
states in the domain. We define conditional dominance as:

842

Definition 3. A set of action sequences A% conditionally
dominates an action sequence a if there exists a state s and
an action sequence a’ € AL s.t. succ(a, s) = succ(a/, s).

For example in PACMAN, the up action is only effective
when there is no obstacle above the agent (pacman). Thus,
up is conditionally dominated by neutral.

Unfortunately, DASP does not work well on condition-
ally dominated action sequences. First, DASP may preemp-
tively prune conditionally dominated action sequence out of
the search completely if the action sequence is dominated
in the first & planning steps (i.e., false positives). The only
mechanism in DASP to recover an incorrectly pruned action
sequence is when it is applicable from the first node in the
search. Figure 1b shows the maximum size of action set de-
tected as non-dominated actions throughout the game (from
the k-th planning episode to the end of the game) in the
ALE environment by 1-step DASP, compared to the human-
generated restricted action set. This suggests that many of
the actions are preemptively pruned and never recovered.

Second, even if an action sequence is almost always dom-
inated, the inability of DASP to identify conditionally dom-
inated action sequences means that such action sequences
are always generated, significantly increasing the number of
calls to the expensive succ function.

Therefore, it should be more beneficial to consider
whether an action is valid in the current context rather than
to consider whether an action is used in the whole domain.
To this end, we propose DASA, a method to estimate the
probability of actions being dominated in the next planning
episode.

Definition 4. Let “<” denote a total ordering on an action
sequence set. s’ = succ(a, s) is new if there is no action
sequence a,, (< a,) such that succ(a,, s) = succ(an,, s).
A node is old if it is not new.

Let p(a, t) be the fraction of new nodes generated by ac-
tion sequence a in the t¢-th planning episode. We define
p*(a,t+1) as:

p*(a, 0) =1,
pr(at+1)=(p(at) + ap™(a,t))/(1+a), (D

where « is a discount factor. p*(a,t + 1) is an estimate
for the ratio of new nodes by action sequence a on ¢t + 1-th
planning episode based on the experience of previous ¢ plan-
ning episodes. If the number of nodes generated (including
new/old nodes) by action sequence a in the ¢-th planning
episode is 0, then p*(a, t + 1) = p*(a, t).

Unlike DASP which prunes sequences only after k-th
planning episode, DASA prunes action sequences from the
second episode using p* value. DASA applies actions with
higher p value more frequently, and action with lower p
value less frequently. The trajectory to reach state s is given
asT = (ag, as, .., a,). For each node expansion, action a is
applied and s’ = succ(a, t) is generated with a probability:

P(a,t) = (1 —€)s(p*(a,t))s(p"((an-1,a),1))
SO ((@nety ey an,a),t)) + €, @)

where s(x) is an activation function, ¢(< 1) is a param-
eter for the minimal probability for applying an action, and

l is the length of the longest dominated action sequences to
detect. We used a product of estimated proportions because
longer paths are less reliable (less training data). To avoid
preemptive pruning based on scarce training data, we con-
sider the p value of shorter paths, in addition to € to smooth
the probability.

As the definition of new/old depends on the ordering of
actions, the action sequences should properly be ordered.
DASA finds an action sequence set A" using Algorithm 1.
DASA orders the action sequences preferring sequences in
AL and breaking ties in favor of higher p value. This re-
ordering guarantees that:

Theorem 3. In a static environment, if a search tree of the
Ist planning episode includes a node s; that we expanded all
of succ(a, s;), a € Agwil, a set of action sequences which

DASA applies with probability of 1 from the 2nd episode is
a minimal action sequence set.

The additional runtime overhead due to DASP/DASA
should be negligible when node expansion is slow enough,
which is likely in many black-box domains. For exam-
ple, DASA(L=2) took 0.16 seconds on average per plan-
ning episodes in the ALIEN domain, while the planning per
episode took 6 seconds on average with a 10000 frame bud-
get.

S Experimental Evaluation

We evaluate our proposed dominated-action sequence detec-
tion strategies on a set of 53 single-player Atari 2600 games
in the Arcade Learning Environment (ALE) (Bellemare et
al. 2013). The 53 games selected are the same as the set used
in previous work (Shleyfman, Tuisov, and Domshlak 2016).
Each game in ALE is a different, black-box domain. Al-
though Atari 2600 games are stochastic, the ALE interface
provides deterministic environment. The state of the game
is represented by a fully observable, 128-byte RAM array.
The meaning of the contents of this RAM is not known to
the agent. However, ALE provides an API call which, for
all games, returns the score for any state (higher is better).
Following previous work on search-based planning on the
ALE (Lipovetzky, Ramirez, and Geffner 2015), we repre-
sent the state vector as 128 variables, with domain of 256
values. ALE provides a an API which returns the restricted
action set, which is a hand-coded set of minimal actions for
the game. We use this hand-coded restricted action set as
one of the baselines against which our DASD strategies are
evaluated.

We evaluated p-IW(1) (Shleyfman, Tuisov, and Domshlak
2016), IW(1)(Lipovetzky and Geffner 2012), and Breadth-
first search algorithms with the following action set deter-
mination policies.

default: use all available action set

restricted: use (hand-coded) restricted action set

DASPI: 1-step DASP (L = 1).

DASAL1: 1-step DASA (L = 1).

DASA2: 2-step DASA (L = 2).

Following (Lipovetzky, Ramirez, and Geffner 2015), we
discounted the accumulated reward as R(s’) = R(s) +

843

4 5)+ 1y (s, a) where s is the parent node of s’, and the dis-
count factor was set to v = 0.995. A maximum budget of
10,000 simulated frames is applied. This simulated frames
limit is roughly equivalent to limiting the lookahead time, as
most of the time in the planning is spent in calls to the em-
ulator. For example, in ALIEN, p-IW(1) with DASA2 used
>99% of the time for running simulator.

As with previous work (Bellemare et al. 2013; Lipovet-
zky, Ramirez, and Geffner 2015), all algorithms cache sim-
ulation results, so simulations are not executed for cached
states, and cached states do not count against the simula-
tion frame budget. As the cost of reusing cached frame
is negligible, we do not apply DASD pruning to cached
states. We apply DASD pruning only to new frames which
requires simulations. Following previous work, all algo-
rithms select an action every 5 frames (Bellemare et al. 2013;
Lipovetzky, Ramirez, and Geffner 2015). That is, a suc-
cessor node succ(a, s) in a search tree is a state after exe-
cuting s < Apply(a, s) five times to the parent node, thus
(simulation frame budget)/5 = max. # nodes generated.

During the first 12 planning episodes (i.e., k=12),
DASP performs no pruning, and uses all available actions
(5x12=60 in-game frames = 1 second). As the minimal ver-
tex cover is NP-hard (Karp 1972), We calculate the opti-
mal vertex cover if there are < 5 nodes, and otherwise use a
greedy algorithm which adds a vertex with the highest num-
ber of uncovered edges one by one. For DASA, we used a
sigmoid function s(z) = W, minimal chance of
applying action sequence € = 0.04, discount factor for p
value « = 0.95. To reduce the variance, each game was
played 5 times, with the reported results averaged across
these runs.

Table 1 and row “p-IW(1)” in Table 2 show the perfor-
mance of DASA and DASP applied to p-IW(1). Overall,
DASAZ2 outperformed the default action set and restricted
action set. DASA and DASP successfully pruned dominated
action sequences and expanded more nodes than baseline.
Although the maximum number of generated nodes is fixed
for all methods, DASA and DASP spent fewer resources for
unnecessary node generation, resulting in deeper search and
therefore, better scores. Note that cached nodes are included
in the number of expanded nodes, and the depth of the search
tree also includes the cached nodes.

Figure 1a shows the average number of actions applied
per state using DASA?2 compared to the size of restricted ac-
tion set. Figure 1b shows the maximum number of actions
detected as non-duplicate using DASP compared to the size
of restricted action set. For DASA, the number of actions
applied is expected to be higher because it every action is ap-
plied with at least the minimal probability ¢, so the number
of applied actions exceeds the restricted action set size when
the restricted action set size is small. The number of action
applied is smaller when it successfully detects and prunes.
DASP tends to have smaller action set size compared to re-
stricted action set, especially when the restricted action set
size is large. This is because DASP is aggressively pruning
conditionally dominated actions before the states on which
these actions have novel effects are discovered.

Table 2 shows the results for a smaller simulation frame

= Y
o o
o e

(&)
.o

o

average #action applied

5 10 15
restricted action set

(a) DASA2

maximum action set size

o
|
cemhume

5 10
restricted action set

(b) DASPI (jittered)

Table 2: #Best games

search method | DASA2 DASAI DASP1 default restrict
p-IW(1) 22 10 4 6 10
i p-IW(1) (2000) 24 14 6 5 7
IW(1) 22 9 7 7 8
BrFS 18 11 11 6 11
p-IW(1) (extd) 39 22 19 16 -

Figure 1: Figure 1a shows average number of actions applied for each node expansion using DASA?2. Figure 1b shows the size
of the largest non-dominated action set detected in DASP1.
Table 2 compares #Best, the number of games on which each method had the best score. #Best includes ties (except when
all 5 algorithms have the same score). p-IW(1) (2000) is limited to 2000 simulation frames, while all others are limited to
10000 frames. For “extd”, the agent has two additional dummy buttons in addition to the Atari controller (total of 72 available
actions). Overall, DASA?2 outperformed other methods for all search algorithm.

Table 1: Performance of p-IW(1) with different action sets on 53 Atari 2600 games using 10000 simulator frames per planning
episode. “default” uses all actions available to the agent. “restricted” uses the hand-coded minimal action set provided by
ALE. Scores are averaged over 5 runs with the same set of different random seeds for all algorithms. “expanded” shows the
average number of nodes expanded including cached nodes for each planning, “depth” shows the average depth of the search
tree including cached nodes.

game p-IW(1) DASA2 p-IW(1) DASA1 p-IW(1) DASPI p-IW(1) default p-IW(1) restricted
score expanded depth | score expanded depth | score expanded depth | score expanded depth | score expanded depth
ALIEN 14018 406.0 116.1 | 10992 258.1 733 3596 115.1 32.1 3596 115.2 33.8 | 3596 1152 338
AMIDAR 1504 401.6 162.8 | 1223 279.5 80.4 939 116.7 39.5 | 296 116.3 36.6 1010 203.4 57.3
ASSAULT 1300 314.0 60.7 1365 209.5 425 1211 115.1 259 | 1571 114.7 26.1 1341 290.1 53.6
ASTERIX 234500 313.1 107.2 | 272600 197.2 67.5 288500 118.6 42.0 | 315700 118.7 42.0 | 292400 2303 75.6
ASTEROIDS 36354 216.1 56.1 19720 145.8 47.0 9120 115.7 40.8 10192 115.5 40.8 | 34210 146.7 47.8
ATLANTIS 151400 3235 214.3 | 182740 3225 1882 | 169700 121.6 64.3 183280 121.1 63.2 | 190120 4579 261.7
BANK HEIST 749 262.2 67.6 342 171.1 47.6 232 114.7 33.0 | 232 114.7 33.0 | 232 114.7 33.0
BATTLE ZONE 12000 208.1 26.9 19000 160.7 21.4 7800 112.9 16.2 | 7800 112.9 16.2 | 7800 112.9 16.2
BEAM RIDER 8130 333.1 159.6 | 7513 264.9 833 3210 120.3 37.7 | 2825 120.8 357 | 5424 233.8 67.3
BERZERK 528 172.9 52.0 526 125.4 355 368 113.1 35.0 | 368 113.1 35.0 | 368 113.1 35.0
BOWLING 56 222.1 1742 | 47 172.9 126.9 | 38 140.0 739 | 38 140.0 739 |71 329.5 254.3
BREAKOUT 121 195.5 172.8 | 353 212.5 121.9 | 509 121.7 444 | 603 121.6 427 | 595 251.5 120.2
CARNIVAL 4760 284.9 153.8 | 5668 243.4 94.9 4830 123.4 448 | 4462 120.0 39.7 | 6128 346.3 130.9
CENTIPEDE 138036 218.5 65.6 151729 1412 42.8 156930 1149 34.9 154167 1149 34.9 154167 114.9 34.9
CHOPPER COMMAND 2600 158.7 27.5 4620 129.7 24.1 3280 113.5 21.7 | 3280 113.5 21.7 | 3280 113.5 21.7
CRAZY CLIMBER 94920 151.1 63.7 128780 156.6 583 33720 109.3 38.8 125980 108.9 394 | 131680 203.7 66.0
DEMON ATTACK 24101 431.8 129.2 | 26523 2484 63.7 31860 116.0 32.8 | 30348 1158 322 | 30138 338.9 81.4
DOUBLE DUNK -7 152.2 25.0 -14 121.6 21.1 -14 114.6 19.8 | -14 114.6 19.8 | -14 114.6 19.8
ELEVATOR ACTION 7340 161.6 57.9 8720 121.3 28.0 0 113.8 25.5 | 4480 114.1 26.1 | 4200 114.2 26.1
ENDURO 0 338.6 45.6 0 205.8 30.3 0 113.7 193 |0 113.5 192 |0 224.6 323
FISHING DERBY -10 262.7 49.8 -6 179.0 27.3 -21 115.1 194 | -31 114.4 189 | -31 114.4 18.9
FREEWAY 32 267.5 116.0 | 32 191.8 73.4 30 125.0 435 |29 125.3 43.7 | 32 537.2 268.5
FROSTBITE 1114 162.3 61.2 998 128.3 44.7 272 125.4 433 | 272 125.4 433 | 272 125.4 433
GOPHER 20144 3751 189.4 | 23940 2394 117.1 | 25073 118.7 57.9 | 26444 118.8 56.6 | 24932 256.4 119.5
GRAVITAR 1570 182.0 278 1420 139.6 22.3 990 115.7 19.7 | 990 115.7 19.7 | 990 115.7 19.7
HERO 2176 164.8 46.3 2052 123.5 36.1 1078 113.8 31.1 1078 113.8 31.1 1078 113.8 31.1
ICE HOCKEY 1 152.7 33.6 -3 1225 26.3 -3 114.7 245 | -5 114.7 245 | -5 114.7 24.5
JAMESBOND 170 276.2 48.4 0 163.7 29.6 67 113.9 225 | 60 113.9 225 | 60 113.9 225
JOURNEY ESCAPE -2500 187.6 36.9 -6820 139.0 28.3 -7180 114.8 242 | -3120 114.5 239 | -160 128.0 26.3
KANGAROO 4980 217.6 168.1 | 5200 189.3 89.7 1511 129.8 43.4 1600 130.2 43.8 1600 130.2 43.8
KRULL 7128 189.7 54.8 7104 176.9 525 2410 116.5 39.8 | 10726 115.2 364 | 10726 115.2 36.4
KUNG FU MASTER 53620 216.6 77.0 70440 171.5 54.7 68000 118.0 36.0 | 70880 117.8 36.0 | 74960 149.5 441
MONTEZUMA REVENGE | 0 205.3 45.6 20 144.8 30.5 0 114.0 244 10 114.0 244 10 114.0 244
MS PACMAN 29241 363.8 159.3 | 29009 271.6 118.5 | 12068 116.2 548 | 7594 1157 48.6 12826 2274 87.6
NAME THIS GAME 12768 255.6 1144 | 14618 158.9 48.7 15110 117.1 36.3 14550 117.1 36.3 13848 340.7 93.7
PONG 14 299.3 1199 | 19 245.1 584 19 115.4 227 | -2 115.0 220 |21 382.9 97.4
POOYAN 11193 3174 207.8 | 14604 2827 151.1 | 15155 121.0 60.7 | 15604 120.5 60.1 14362 340.4 182.8
PRIVATE EYE 100 154.0 26.2 80 119.3 21.0 -500 112.6 199 | -140 112.6 19.9 | -140 112.6 19.9
QBERT 4670 167.5 1532 | 13880 301.4 159.0 | 14160 121.4 53.5 10435 119.9 50.6 | 16945 323.7 130.5
RIVERRAID 8182 193.5 51.0 6920 146.8 41.7 8026 115.8 32.1 7972 115.8 32.1 7972 115.8 32.1
ROAD RUNNER 13700 246.2 46.4 9620 156.5 30.9 0 115.8 250 | O 115.8 250 | O 115.8 25.0
ROBOTANK 3 145.1 30.2 2 120.1 26.0 1 114.8 264 |3 114.8 264 |3 114.8 26.4
SEAQUEST 1822 188.0 60.7 1136 1359 39.6 908 115.5 36.1 908 115.5 36.1 908 115.5 36.1
SPACE INVADERS 2261 259.0 65.8 2517 178.7 473 1646 116.7 323 1646 116.7 323 | 2813 338.6 86.8
STAR GUNNER 1280 173.5 61.9 1160 124.6 46.5 1211 117.5 44.8 1220 117.5 44.8 1220 117.5 44.8
TENNIS 24 292.5 1273 | 20 196.6 71.4 11 120.9 382 |11 120.9 382 |11 120.9 38.2
TIME PILOT 44020 313.0 160.6 | 44400 237.7 88.9 32960 119.0 42.3 | 32960 119.1 429 | 38780 206.2 75.3
TUTANKHAM 203 191.3 67.4 221 148.6 31.8 195 114.1 242 | 202 114.0 23.8 150 254.2 49.8
UP N DOWN 12080 306.0 111.7 | 85140 237.7 66.1 58070 116.1 36.5 | 29400 115.8 36.5 | 132320 3384 84.0
VENTURE 0 286.8 94.7 0 187.2 48.4 0 115.6 308 |0 115.4 300 |0 115.4 30.0
VIDEO PINBALL 197072 418.2 111.6 | 375420 225.6 58.1 595012 1155 349 | 381514 1154 3477 | 442129 2264 59.4
WIZARD OF WOR 50020 302.9 104.0 | 69580 202.5 522 31700 116.3 272 16040 115.3 248 | 36500 204.1 434
ZAXXON 13540 1789 36.4 5320 124.5 25.7 22 113.2 235 | 40 113.2 235 | 40 113.2 23.5
Average [- 254.9 828 |- 191.1 595 - 119.9 346 |- 119.6 341 |- 234.0 40.8

844

budget (2000) on p-IW(1). With 2000 simulator frames, the
maximum # of nodes generated (excluding cached nodes)
is 400. Even with small search trees and thus less training
data for learning, DASA and DASP successfully improves
upon the baseline p-IW(1). DASA and DASP also improves
the performance on IW(1) and BrFS (Table 2), showing that
DASD is effective on wide range of search algorithms.

Results with Extended Action Set To see the scalability
of DASA and DASP with a larger available action set, we
implemented an extended action set which adds two spuri-
ous buttons with no effect to the Atari controller (1 direc-
tional joystick, a fire button, and two spurious buttons), for
a total of 72 actions. The additional buttons have no effect,
so for every action in the Atari action set, there are 4 equiva-
lent actions in the extended action (but an agent has no prior
knowledge of this). Row “p-IW(1) (extd)” in Table 2 com-
pares the scores using the extended action set on p-IW(1).
We observed that p-IW(1) without DASD suffers from the
sheer amount of available actions, and the number of nodes
expanded was about 27% on average compared to the stan-
dard 18-action setting. Although DASA?2 performed worse
compared to the original 18 action setting, we observed that
the number of applied actions per state is still decreasing at
the end of the game.Therefore, given enough data for learn-
ing, we expect the performance of DASA2 to improve.

6 Conclusion

We proposed DASD, an approach to speeds up search in
black-box planning domains with expensive node genera-
tions by avoiding the generation of duplicate nodes. DASD
identifies action sequences which result in the same result-
ing state, and learns a minimal set of non-dominated ac-
tions (and action sequences), which is then used to restrict
node generation so that duplicate states are not generated.
We first proposed DASP, which learns a static minimal ac-
tion set which is valid throughout the course of a game.
We then proposed DASA, which learns conditional minimal
action sets which are dependent on the current context of
the game. We evaluated DASP and DASA on 53 games in
the ALE arcade game environment, and showed that DASD
significantly improves the performance of black-box plan-
ning in these domains compared to baseline algorithms with-
out DASD. DASP was shown to yield performance com-
parable to using a human-generated set of minimal actions
for a game, and DASA, by exploiting conditionally dom-
inated actions, significantly outperformed both DASP and
the human-generated minimal action set.

In this paper, we focused on eliminating short (1 or 2 step)
dominated action sequences, and showed that this was suf-
ficient for obtaining significant speedups. Many domains
have many, longer dominated action sequences, but accu-
rately learning longer sequences requires significantly more
training data (longer / more numerous planning episodes).
Future work will address this scaling issue.

Shleyfman, Tuisov, and Domshlak reported that p-IW(1)
and IW(1) typically exhaust a search node and did not use
the entire budget of 150000 simulated frames per planning
episode (2016). In this case, DASP/DASA would not im-

845

prove the score. However, p-IW(1) and IW(1) with 150000
frames run much slower than real-time. DASP/DASA helps
close the gap with real-time because it enables searching
deeper with a much lower budget.

In this paper, we evaluated DASD on the ALE environ-
ment, which has 18 available actions. However, the Atari
2600 is a relatively simple environment, and modern gam-
ing systems have significantly more complicated controllers
(i.e., many more available actions). For example, the Retro
Learning Environment (Bhonker, Rozenberg, and Hubara
2016) has at least 720 available actions, and the Playstation3
game controller has at least 9x9x2x2x2x2 = 1296 available
actions. In such complex environments search-based ap-
proaches will be overwhelmed by dominated actions without
effective DASD. Our results for the extended action set (2
additional buttons) showed that the gap between DASD and
the default grows significantly even with a modest increase
in the number of available actions. Evaluation of DASD in
more complex environments is future work.

In stochastic domains, one can repeatedly apply the same
action to see the distribution of the outcome (Geffner and
Geffner 2015). It should be able to extend DASA to stochas-
tic domains by redefining succ(a, s) as a set of possible re-
sulting states. Applying DASA to stochastic domains (e.g.
GVG-AI) is future work.

References

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013.
The arcade learning environment: An evaluation platform for gen-
eral agents. Journal of Artificial Intelligence Research 47:253-279.
Bhonker, N.; Rozenberg, S.; and Hubara, I. 2016. Playing SNES
in the Retro Learning Environment. ArXiv e-prints.

Fox, M., and Long, D. 1999. The detection and exploitation of
symmetry in planning problems. In Proc. IJCAI, volume 2, 956—
961.

Geffner, T., and Geffner, H. 2015. Width-based planning for gen-
eral video-game playing. In The IJCAI-15 Workshop on General
Game Playing, 15-21.

Karp, R. M. 1972. Reducibility among combinatorial problems. In
Complexity of computer computations. Springer. 85-103.

Korf, R. E. 1990. Real-time heuristic search. Artif. Intell. 42(2-
3):189-211.

Lipovetzky, N., and Geffner, H. 2012. Width and serialization of
classical planning problems. In Proc. ECAI, 540-545.

Lipovetzky, N.; Ramirez, M.; and Geftner, H. 2015. Classical
planning with simulators: Results on the Atari video games. In
Proc. 1JCAI, 1610-1616.

Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploiting
problem symmetries in state-based planners. In Proc. AAAI, 1004—
1009.

Shleyfman, A.; Tuisov, A.; and Domshlak, C. 2016. Blind search
for Atari-like online planning revisited. In Proc. IJCAI, 3251-
3257.

Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate nodes in
depth-first search. In Proc. AAAI, 756-761.

Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmiiller, R. 2013.
The relative pruning power of strong stubborn sets and expansion
core. Proc. ICAPS 1-9.

