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Abstract

Exact cover is the problem of finding subfamilies, S∗, of a
family of sets, S , over universe U , where S∗ forms a par-
tition of U . It is a popular NP-hard problem appearing in a
wide range of computer science studies. Knuth’s algorithm
DLX, a backtracking-based depth-first search implemented
with the data structure called dancing links, is known as state-
of-the-art for finding all exact covers. We propose a method
to accelerate DLX. Our method constructs a Zero-suppressed
Binary Decision Diagram (ZDD) that represents the set of so-
lutions while running depth-first search in DLX. Constructing
ZDDs enables the efficient use of memo cache to speed up
the search. Moreover, our method has a virtue that it outputs
ZDDs; we can perform several useful operations with them.
Experiments confirm that the proposed method is up to sev-
eral orders of magnitude faster than DLX.

Introduction
The exact cover problem is the problem of finding subfam-
ily S∗ of a family of sets, S, over universe U , that forms
a partition of U . The exact cover problem is a popular NP-
hard problem that appears in a wide range of computer sci-
ence studies. For example, it is known that some puzzles
including pentominoes, n-queen problems (Knuth 2000),
and Sudoku (Gunther and Moon 2012) can be formulated
and solved as exact cover problems or slightly generalized
forms. Moreover the perfect matching problem (Korte and
Vygen 2012) is a special case of exact cover, and the graph
coloring problem can be solved by converting it into an exact
cover problem (Koivisto 2006).

Knuth’s algorithm X (Knuth 2000) is a dedicated algo-
rithm that can find all exact covers. It is a simple depth-
first backtracking-based search algorithm, but it runs ef-
ficiently when implemented with a data structure called
dancing links. Dancing links represent a binary matrix as
doubly-linked lists. Knuth calls algorithm X implemented
with dancing links algorithm DLX. DLX has been empiri-
cally confirmed to be the fastest for solving the problem of
finding all exact covers (Junttila and Kaski 2010).

Finding all exact covers are beneficial for several rea-
sons: we can find exact covers which allows maximization
of an objective function even if the objective is complex,
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e.g., non-linear or multiple objectives. The exact cover prob-
lem appears in designing combinatorial objects like electric
circuits (Chang and Jiang 2016) and 3D shapes (Hu et al.
2014), that made from small fragments. In these situations,
it is beneficial to output many candidates and allow design-
ers to interactively select from them.

Since DLX is a depth-first-search-based method, it may
encounter the same sub-problems several times. We can ac-
celerate DLX if we can avoid solving such duplicate sub-
problems. A naive approach is to use memo cache to store
the solutions of sub-problems. However, since the number
of solutions to sub-problems can be exponentially many,
storing them into memo cache requires a huge amount of
memory. Moreover, we have to combine solutions of sub-
problems to construct the solution of the main-problem. This
procedure incurs computation complexity proportional to
the size of the solution. These points make it inefficient to
naively introduce memo cache into DLX.

In this paper, we enable the efficient use of memo caching
on DLX by using Zero-suppressed Binary Decision Dia-
grams (ZDDs) (Minato 1993) to represent the set of ex-
act covers. ZDDs, a variant of Binary Decision Diagrams
(BDDs) (Akers 1978; Bryant 1986), represent a family of
sets as a directed acyclic graph (DAG). We modify DLX to
output the ZDD representing the set of exact covers. Since
we can make ZDDs that contain solutions to sub-problems,
sub-ZDDs (subgraphs), memo cache only requires constant
memory for each problem by storing the address of the
root node of the sub-ZDD representing the set of solutions.
Moreover, combining solutions of sub-problems can be done
in constant time if they are represented as ZDDs. Thus using
ZDD with DLX enables the effective use of memo caching
and can accelerate the search. To our knowledge, this is the
first work to improve DLX. We conduct experiments with
a wide range of benchmark instances of exact cover prob-
lems, and confirm that our proposal is up to several orders
of magnitude faster than DLX.

In addition to accelerating DLX, our proposal has the
virtue that it outputs ZDDs. ZDDs support useful operations
that can run in time proportional to ZDD size. For exam-
ple, ZDDs support model counting, enumeration of subsets,
finding the best subset that maximizes an objective func-
tion (Darwiche and Marquis 2002; Knuth 2011), and effi-
cient binary operations over families of sets, called family
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⎛
⎜⎜⎜⎝

1 2 3 4 5 6

1 1 1 1 0 1 0
2 1 1 0 0 0 0
3 0 0 0 1 0 1
4 0 0 1 1 0 1
5 0 0 1 0 1 0

⎞
⎟⎟⎟⎠

Figure 1: An instance of an exact cover problem represented
as a binary matrix.

algebra (Knuth 2011; Minato 1994). These operations make
it easy to manipulate a set of exact covers. For example, us-
ing family algebra makes it easy to find exact covers that
satisfy additional constraints.

Exact Cover Problem and Algorithm DLX
Given universe U = {1, . . . ,M} and family of sets S over
U , the exact cover problem is finding S∗ ⊆ S that is a par-
tition of U , i.e., every i ∈ U is contained in exactly one
subset in S∗. An instance of an exact cover problem can be
represented as a 0-1 binary N ×M matrix, where M is the
cardinality of universe U , and N is the number of subsets
contained in S. Every column corresponds to an element in
the universe, and every row corresponds to a set contained
in S. With this representation, the exact cover problem cor-
responds to finding a set of rows that contains exactly one
1 for each column. Fig. 1 is an example of a binary matrix
that represents an exact cover problem, where N = 5 and
M = 6. In this example, the set of rows {1, 3} and {2, 3, 5}
forms an exact cover.

Knuth’s algorithm X (Knuth 2000) finds all exact covers
by performing depth-first backtracking-based search. We de-
tail the procedure in Alg.1. The main procedure of the algo-
rithm is Search(A,R) which recursively searches for exact
covers of input binary matrix X . Procedure Search(A,R)
first checks whether A is an empty matrix or not. If A is
empty, the algorithm determines that we have found a new
exact cover, and so outputs solution R and returns (line 2-
4). Otherwise, it first selects column c by using some cri-
terion (line 5)1, and then row r such that A[r, c] = 1. If r
is selected, we include r into R (line 7), and then for every
column, j, satisfying A[r, j] = 1, delete every row, i, satis-
fying A[i, j] = 1 and column j from A to make a submatrix
of A (line 8-11). We recursively apply Search(A,R) to the
obtained submatrix. After subprocedure Search(A,R) fin-
ishes, it recovers the rows and columns deleted after row r
was selected (line 14). It then repeats the same procedure
for all different r such that A[r, c] = 1, which completes the
procedure.
Example 1. Suppose that the matrix shown in Fig. 1 is given
as the input of algorithm X. It first calls Search(X, ∅). Sup-
pose that c = 1 is selected at line 5. Then, the rows satisfying
A[r, 1] = 1 are r = 1, 2. We process the loop from line 6-
14 with every r. If we select r = 2, then columns 1, 2 are

1Knuth recommends the simple heuristic of selecting the col-
umn with minimum number of 1s.

Algorithm 1: Knuth’s algorithm DLX.
Input: Binary Matrix X

1 function Search(A,R):
2 if A is empty then
3 Output R
4 return
5 Select a column, c
6 for r such that A[r, c] = 1 do
7 Include r into R
8 for j such that A[r, j] = 1 do
9 Delete column j from A

10 for i such that A[i, j] = 1 do
11 Delete row i from A

12 Search(A,R)
13 Delete r from R
14 Recover rows & columns deleted in lines 9, 11

15 return
16 Search(X, ∅)

deleted since A[2, 1] = 1 and A[2, 2] = 1. After that, rows
that have 1 in a deleted column are also deleted. In this case,
rows 1, 2 are deleted. The resulting submatrix obtained by
deleting rows and columns is

⎛
⎝

3 4 5 6

3 0 1 0 1
4 1 1 0 1
5 1 0 1 0

⎞
⎠ . (1)

We recursively call Search(A,R) by setting the submatrix
as its argument. Suppose that column c = 5 is selected. Then
there is only one row r = 5 that satisfies A[r, 5] = 1. Thus
columns 3, 5 and rows 4, 5 are deleted, which yields subma-
trix

( 4 6

3 1 1
)

Next, the only choice, selecting r = 3, makes the subma-
trix empty, thus selected rows {2, 5, 3} form an exact cover.
After a solution has been found, the algorithm continues to
search for the next cover by backtracking to recover deleted
rows and columns. If we select c = 4 and r = 4 on Search
whose input is (1), the resulting matrix is

( 5 )
.

Since this matrix has an undeleted column but no row re-
mains, we cannot delete the column and the search fails.

The running time of algorithm X strongly depends on how
fast it can move forward (i.e., selecting a row and deleting
rows and columns) and backward (i.e., recovering deleted
rows and columns). The data structure called dancing links is
based on doubly-linked lists. It offers high efficiency on re-
moving and restoring rows and columns of matrices through
the following two operations. Let L[x] and R[x] point to the
predecessor and successor of element x in a doubly-linked
list. Then the operations

L[R[x]] ← L[x], R[L[x]] ← R[x]
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Figure 2: A ZDD representing {{1, 2}, {1, 3}, {2, 3}}
.

remove x from the list. Suppose that we do not change val-
ues L[x] and R[x] after x is removed, then the following
operations

L[R[x]] ← x, R[L[x]] ← x

puts x back into the list. Algorithm X implemented with
dancing links, called DLX, represents an input binary ma-
trix by using dancing links, and it extensively uses the above
two operations to efficiently remove and restore rows and
columns of matrices.

Zero-suppressed Binary Decision Diagrams
The data structure Zero-suppressed Binary Decision Di-
agram (ZDD) represents a family of sets as a directed
acyclic graph (DAG). Fig. 2 is an example ZDD that repre-
sents the family of sets {{1, 2}, {1, 3}, {2, 3}} over universe
{1, 2, 3}. ZDDs have two types of nodes: terminal nodes
and branch nodes. A terminal node has no outgoing edges.
A ZDD has exactly two terminal nodes that have labels �
and ⊥. Terminal nodes are represented as rectangles in the
figure. Branch nodes are non-terminal nodes, and are rep-
resented as circles in the figure. Every branch node has a
label representing the element the node corresponds to, and
two outgoing edges, called lo-edge and hi-edge. Child ZDD
nodes that are pointed to by lo- and hi- edges are called lo-
child and hi-child, respectively. Every branch node is rep-
resented by a tuple (i, l, h), where i is the label, l is the
lo-child, and h is the hi-child of the node. In the figure,
the label of a branch node is represented as a symbol ap-
pearing in the circle, and hi and lo edges are represented
by solid lines and dashed lines, respectively. A branch node
that has no ancestor node is the root node, and a ZDD al-
ways has exactly one root node. Every path from the root
to � terminal node corresponds to subset S contained in the
family of sets that the ZDD represents, where S is made
from the path created by selecting the labels of the branch
nodes whose hi-edges lie on the path. The ZDD in Fig. 2 has
three such paths:1 → 2 → �, 1 → 2 ��� 3 → �, and
1 ��� 2 → 3 → �. They corresponds to subsets {1, 2},
{1, 3}, and {2, 3}.

A ZDD is ordered if labels of visited branch nodes in a
path from the root to a terminal node always follow an order
over the elements. The ZDD in Figure 2 is an ordered ZDD
since every path from the root to a terminal node follows the
order 1, 2, 3. For ordered ZDDs (OZDDs), there are reduc-
tion rules that can remove redundant substructures from an
OZDD to reduce its size. We say an OZDD is reduced if no

Algorithm 2: Algorithm DXZ.
Input: Binary Matrix X

1 C ← empty memo cache
2 Z ← empty ZDD node table
3 function Search(A):
4 if A is empty then
5 return �
6 if col(A) found in C then return C[col(A)]
7 Select a column, c
8 x ← ⊥
9 for r such that A[r, c] = 1 do

10 for j such that A[r, j] = 1 do
11 Delete column j from A
12 for i such that A[i, j] = 1 do
13 Delete row i from A

14 y ← Search(A)
15 if y �= ⊥ then
16 x ← Unique(r, x, y, Z)

17 Recover rows & columns deleted in lines 11, 13

18 Store pair (col(A), x)) into C. return x

19 z ← Search(X)
20 return root ZDD node z

further application of the reduction rule is successful. It is
known that a reduced OZDD is canonical, i.e., if there are
two reduced OZDDs α and β that follow the same ordering
and represent set families f and g, then α and β are isomor-
phic if and only if f = g. The canonicity of reduced OZDDs
is quite useful since it enables constant time equivalency
checking, and efficient family algebra operations. We call
non-ordered ZDDs Free ZDDs (FZDDs). Both OZDDs and
FZDDs support several useful operations that run in poly-
nomial time. Operations supported by ZDDs are found in
(Knuth 2011) and (Darwiche and Marquis 2002) 2.

OZDDs are closely related to OBDDs. The main differ-
ence is the reduction rule called the zero-suppression rule,
that deletes an OZDD node whose hi-edge is connected to
⊥. Due to this rule, OZDDs tend to become more compact
than OBDDs when representing a family of sets that consists
of small numbers of subsets.

Algorithm DXZ
We show our proposed algorithm, called DXZ (DLX with
ZDD) in Alg. 2. The algorithm is only slightly different from
DLX. The main difference is the existence of some addi-
tional operations for constructing ZDDs (lines 5, 8, 14, 16)
and for referring to memo caches (lines 6, 18). We first show
how ZDDs are constructed in DXZ.

Similar to DLX, DXZ performs depth-first recursive
backtracking search. The main difference is that Search(A)
returns the ZDD representing the set of all exact covers
of problem A. DXZ uses the following recursive relation-
ships of exact covers. Let Cover(A) be the family of sets

2Precisely, operations supported by BDDs are shown in (Dar-
wiche and Marquis 2002). However, operations supported by
BDDs in polytime are also supported by ZDDs in polytime
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Figure 3: An example of the running procedure of DXZ. Arrows represent current state, and ZDDs in red rectangles represent
the latest ZDDs constructed by DXZ.

representing the set of all exact covers of matrix A. Let
i1, i2, . . . , in be the rows that have a non-zero element in
column c, and let A1, A2, . . . An be the submatrices ob-
tained by selecting rows i1, i2, . . . , in and deleting all cor-
responding rows and columns from A. By using Cover(Aj),
Cover(A) is recursively defined as

Cover(A) =
n⋃

j=1

({{ij}} 	 Cover(Aj)) (2)

where 	 represents the join of set families and is defined as
f 	 g = {a ∪ b | a ∈ f and b ∈ g}.

DXZ uses the above recursion to combine sub-ZDDs rep-
resenting Cover(Ai). At line 8, it introduces ZDD x = ⊥
to represent the set of all exact covers of input matrix A.
The algorithm updates x by x ← Unique(r, x, y, Z), where
Unique(i, l, h, Z) returns the address of the ZDD node that
has label i and the addresses of its lo and hi child nodes are
l and h, respectively. It checks whether there already exists
a node in Z that has the same triple (i, l, h) . If such node is
found, it returns the address of the node. Otherwise it creates
a new ZDD node (i, l, h), inserts it into Z, and returns the
address of the node. ZDD node (i, l, h) represents the family
of sets

〈l〉 ∪ ({{i}} 	 〈h〉) ,
where 〈z〉 is the family of sets that ZDD node z represents.
Since 〈y〉 (line 14) corresponds to Cover(Aj) for some ij ,
updating x ← Unique(r, x, y, Z) with some r satisfying
A[r, c] = 1 corresponds to updating x to ZDD node rep-
resenting 〈x〉 ∪ {{ij}} ∪ Cover(Aj). Therefore, repeating
this procedure for all r satisfying A[r, c] = 1 corresponds
to constructing a ZDD that represents Cover(A) defined in
(2).

We show some theoretical results.

Proposition 1. The number of ZDD nodes stored in table
Z does not exceed the number of ZDD nodes required to
represent the set of exact covers of the input matrix.

Proof. Every sub-ZDD made in the child procedures always
appears in the ZDD made by the parent procedure. It means
that there are no branch nodes that appear in sub-ZDDs but
do not appear in parent ZDDs. Therefore, the number of
ZDD nodes stored in the table is bounded by the size of the
finally obtained ZDD.

Proposition 2. The running time overhead of DXZ is always
constant.

Proof. Proving this fact is easy since it only involves com-
puting Unique for every row selection in Search. Since we
can implement the procedure by using a hash table whose
size is at most equal to the size of the ZDD representing the
set of all exact covers, Unique can be performed in constant
time.

We also note that the ZDD generated by DXZ is a FZDD.
However, if we use a consistent rule on selecting column
c (Alg. 2 line 7), we can make the algorithm generate an
OZDD. We show details in a later section.

Example 2. Here we show an example of how DXZ con-
structs ZDDs. Fig. 3 shows the procedure of constructing
the ZDD representing the set of all exact covers of the input
matrix of Fig. 1. In this figure, the depth-first search proce-
dure of DXZ is represented by a search tree, where every
matrix at a node represents the input matrix A of search(A),
and every child node represents a sub-matrix of A which
is used as the input of the recursive call. ZDDs constructed
in search procedure appear at the right of each search tree
node.

We first select c = 1, r = 2 to obtain the subproblem
represented as the left child of the root node. Then we select
c = 5, r = 5, and then r = 3 to reach an empty matrix.
It means {2, 3, 5} forms an exact cover. When finding an
empty matrix, the procedure search returns terminal ZDD
� (Fig.3 (a)). In the backtracking procedure, the returned
ZDD is then combined with branch ZDD nodes correspond-
ing to selected rows and the ZDD representing {{2, 3, 5}} is
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made at the top level (Fig.3 (b)). Then, c = 1, r = 1 and
c = 1, r = 3 are selected and we find another exact cover
{{1, 3}}. The ZDD representing {1, 3} is recursively con-
structed in the backtracking, and finally combined with the
ZDD representing {{2, 3, 5}}, and the solution ZDD repre-
senting {{1, 3}, {2, 3, 5}} is obtained (Fig.3 (c)). Combin-
ing two ZDDs representing {{1, 3}} with {{2, 3, 5}} is eas-
ily performed by adding the root node in Alg.2 line 16.

Memo Caching
In the example of Fig. 3 (c), the same subproblem whose
input is (1 1) appears in both left and right subtrees. If we
store the solution of the problem, we do not need to solve
the same problem many times. We use memo cache to store
the address of ZDD nodes returned by the recursive Search
procedures.

If submatrices B equal B′, then Cover(B) = Cover(B′).
Therefore, the naive memo caching technique of using sub-
matrix as a key to memorize/access its exact covers can re-
duce the amount of computation. Actually, we do not need
to store the whole matrix as a key as it is sufficient to use
the set of column IDs of the matrices as the key. We use the
following fact.

Proposition 3. Suppose that an exact cover problem is rep-
resented as binary matrix A. Let B,B′ be binary matrices
obtained by running DXZ and selecting some rows from A
and deleting corresponding columns and rows. Then, if the
set of remaining columns of B and B′ are equivalent, then
B = B′.

Proof. After selecting row r, DXZ deletes every column,
j, that satisfies A[r, j] = 1, and every row, i, that satisfies
A[i, j] = 1. It means deleted rows are those that have at
least one 1 in a deleted column. Therefore, after selecting
some rows, the remaining submatrices have rows that have
no 1 in any of the deleted columns. Therefore, the set of
deleted columns uniquely determines the set of remaining
rows, and the submatrices are identical.

This fact suggests that the set of remaining columns are
enough to judge the equivalence of submatrices. We thus use
an M -bit sequence, which represents the set of remaining
column IDs, as the key to the memo cache.

Memo caching is used in lines 6 and 18 in Alg. 2. C is
memo cache, and it maps an M -bit vector to a ZDD node
pointer. In line 6, it checks if the current Search(A) was
previously solved. Here col(A) represents the set of column
IDs. If col(A) is found in C, it returns the associated ZDD
C[col(A)]. At line 18, the algorithm stores solution ZDD x
into memo cache by associating it with col(A).

Note that the memo caching technique is independent
from the ZDD-based representation of exact covers, and we
can use memo cache with the original DLX. However, ZDD-
based representation is suitable for memo caching because a
ZDD can be represented as a pointer to a branch node stored
in table Z. Therefore, every cache entry is represented by a
pair of M -bit array and a branch node pointer, and the mem-
ory overhead of using memo cache is small.

Fixed Ordering and OZDD
In general, the ZDD obtained by DXZ is not ordered. This
is because we dynamically select column c by using some
criterion that reflects the values of input matrix A. We can
modify DXZ to construct reduced OZDDs. Modifications
for constructing ordered ZDDs are simple; we alter the way
of selecting column c and the order of examining row r such
that A[r, c] = 1. Specifically, we select the leftmost column
c, and select rows r such that A[r, c] = 1 in descending order
of r. The resulting ZDD is an ordered and reduced ZDD.

Proposition 4. ZDDs constructed by DXZ with the above
criteria of selecting c and r are ordered and reduced, where
the order of rows follows descending order of pairs (cr, r),
where cr is the smallest column, c, that X[r, c] = 1 for given
input matrix X .

Proof. We first show that output ZDDs are ordered. Since
we employ fixed ordering in selecting left-most columns in
DXZ, if column c is selected, then current submatrix does
not have columns 1, . . . , c−1 nor rows, r, for which cr < c.
It means the ZDD representing exact covers of the current
submatrix does not contain nodes whose label r satisfies
cr < c. Thus ZDD nodes whose label is r never appear be-
fore nodes with label r′ such that c′r < cr. If there are two
rows r < r′ such that cr = cr′ , then, DXZ always selects
r′ before r at line 9 of Alg. 2. This means the ZDD node
whose label is r′ is never an ancestor of the node with la-
bel r in the updating procedure of x. Therefore, constructed
ZDDs follow the descending order of pairs (cr, r).

Next we show that the OZDDs output by DXZ are re-
duced. Reduced OZDDs satisfy the following two condi-
tions: (1) do not have branch nodes whose hi-child is ⊥, and
(2) do not have branch nodes whose label, lo- and hi- child
nodes are equivalent. The OZDDs made by the above order-
ing satisfies (1) because the algorithm does not create ZDD
nodes whose hi-child is ⊥, and it also satisfies (2) because
Unique(i, l, h) checks that no duplicated branch nodes are
created. Therefore, the constructed OZDDs are reduced.

Reduced OZDDs are strict subsets of FZDDs, and sup-
port more polytime operations than FZDDs (Darwiche and
Marquis 2002). One important operation specific to OZDDs
is family algebra, which combines two OZDDs to make a
new OZDD. Using family algebra makes it easy to find ex-
act covers that satisfy one or more external constraints, or
combining exact covers of different problems.

Experiments
Dataset
We use three different datasets: polyominoes, exact cover
benchmarks, and set partitioning benchmarks. A polyomino
is a plane geometric figure formed by joining one or more
equal squares edge to edge, and polyomino tiling is the prob-
lem of locating sets of polyominoes on a given field made
of squares. This problem can be seen as an exact cover
problem (Knuth 2000). We use tiling problems of dominoes
(polyominoes with two cells) with 8 × 8 and 10 × 10 fields
and tetrominoes (four cells) with 6 × 6 and 8 × 8 fields as
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Computation time (seconds) DXZ statistics
Instance # col # row D DLX Z DXZ F c2d SS # covers |ZDD| Memory

domino 8 8 64 112 1.23 5.21 1.74 0.001 0.001 1.26 0.08 12988816 2316 32.4
domino 10 10 100 180 24282 > 600 > 600 0.003 0.003 109.45 6.94 258584046368 13550 33.4
tetromino 6 6 36 381 0.15 0.19 0.17 0.023 0.013 > 600 155.74 178939 25819 34.7
tetromino 8 8 64 800 16475 > 600 > 600 42.62 0.88 > 600 > 600 19077209438 10387777 1187.3

bell-09 9 511 0.002 0.006 0.003 0.002 0.002 39.38 1.20 21147 3356 32.5
bell-10 10 1023 0.017 0.034 0.023 0.012 0.010 440.23 19.70 115975 10353 33.5

doublefact-17 18 153 2.00 10.19 2.95 0.007 0.008 > 600 > 600 34459425 30510 34.9
doublefact-19 20 190 37.89 194.43 60.68 0.022 0.022 > 600 > 600 654729075 89665 41.5

kts15-ptpt-0020 132 391 0.003 0.003 0.003 0.003 0.73 5.04 0.15 8 171 32.2
kts15-ptpt-0021 132 388 0.002 0.003 0.003 0.003 0.83 14.06 0.46 72 1139 32.3
latin7-blk-00008 90 125 0.017 0.028 0.042 0.039 0.22 47.77 2.14 27072 122203 43.5
latin7-blk-00009 90 125 0.018 0.028 0.040 0.037 0.15 45.67 2.37 27776 118214 43.3

delta 126 1142 0.35 0.32 0.34 0.31 > 600 > 600 43.08 27 299 32.7
exotic fives 72 2440 96.50 97.30 97.38 92.87 > 600 > 600 > 600 31520 184656 52.1

heart 180 900 8.58 8.91 8.62 7.70 > 600 > 600 > 600 3082 28898 35.3
meteor 60 1690 0.40 0.40 0.39 0.34 > 600 > 600 135.61 300 1569 32.7

sppnw07 36 3108 285.27 > 600 371.66 9.96 31.47 > 600 > 600 1993195009 2037119 221.1
sppnw08 24 356 0.038 0.080 0.049 0.008 0.015 57.19 1.90 168255 10426 33.3
sppnw09 40 2305 1469.18 > 600 > 600 19.18 67.76 > 600 > 600 8785116944 5308978 616.4
sppnw10 24 659 0.13 0.18 0.16 0.034 0.035 481.73 15.01 193640 28735 35.0
sppnw12 27 454 48.48 107.59 60.61 0.008 0.39 33.14 0.61 226514057 3997 32.6
sppnw15 31 465 0.004 0.004 0.004 0.002 0.024 15.71 0.70 40 58 32.2
sppnw19 40 2145 393.56 > 600 485.27 3.01 18.96 > 600 > 600 2128793883 540714 105.1
sppnw20 22 566 0.061 0.103 0.069 0.018 0.023 > 600 22.00 216884 15890 33.8
sppnw21 25 426 0.031 0.052 0.036 0.010 0.012 409.13 13.82 110458 11350 33.3
sppnw22 23 531 0.039 0.056 0.047 0.017 0.020 > 600 23.87 88884 20446 34.5

Table 1: Experimental results on benchmark problems. D: DLX that does not store any solution, DLX: DLX that stores every
exact cover as an array, Z: DXZ without memo cache, DXZ: DXZ, F: DXZ with fixed ordering, c2d: c2d compiler, and
sharpSAT: sharpSAT solver. # covers: number of exact covers, |ZDD| : number of ZDD nodes constructed by DXZ, and
Memory: maximum amount of memory used by DXZ (MByte). The best results are shown in bold fonts.

benchmark problems. Exact cover benchmark dataset used
in (Junttila and Kaski 2010)3 contains several artificial ex-
act cover problems. The dataset contains 217 instances of 6
categories. Since similar results were obtained for instances
of the same category, we show only the results for typical
instances of each category. We also used the set partitioning
problem benchmark instances available at OR-LIBRARY4.
It contains several real-world set partitioning problem in-
stances. We omit instances for which none of the methods
finished within 600 seconds and instances for which both
DXZ and DLX finished within 1 milliseconds.

Methods and Settings
We compared DXZ with DLX, as well as c2d and Sharp-
SAT. c2d (Darwiche 2004) is a system that compiles a CNF
into a d-DNNF (deterministic, decomposable negation nor-
mal form). An exact cover problem can be formulated and
solved as the problem of enumerating all models of a CNF,
and the problem can be solved by compiling a CNF into d-
DNNF. SharpSAT (Thurley 2006) is a solver of #SAT prob-
lems. Comparison was also made to SharpSAT since DXZ
can be used to counting the numbers of solutions. There are
several CNFs that represent the same exact cover problem.

3The dataset is available at http://www.tcs.hut.fi/∼tjunttil/
experiments/CP2010/

4http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/

We employed the ladder CNF encoding used in (Junttila and
Kaski 2010). We also compared two variants of DXZ. The
first one does not use memo cache and the second one builds
OZDDs by employing a fixed order in selecting columns.
Since it is a difficult problem to find an appropriate ordering
of columns, we did not apply any preprocessing for finding
good orderings except for pentominoes tiling. In pentomi-
noes, the order of columns that starts from a corner field and
ends at the opposite corner field works well.

Algorithms were implemented in C++. Experiments were
conducted on a Linux machine with a Xeon E5-2687W 3.10
GHz CPU and 128 GB RAM. We set the sizes of memo
cache used in DXZ and its fixed ordered version to 32
MBytes, where every memo cache entry is represented by
a pair of a 192-bit (24 Bytes) column ID vector and an 8
Byte pointer indicating a ZDD node (total 32 Bytes) and the
memo cache table has 220 = 1M entries.

Results
We show the results in Tab. 1. The compared methods are
“D”: DLX without storing found covers5, “DLX”: DLX with
storing of found covers into an array, “Z”: DXZ without

5Strictly speaking, “D” does not solve exact cover problems
since it does not store solutions. We show the results of “D” to
confirm that DXZ is nearly always faster than DLX when we omit
time for storing solutions.
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memo cache, “DXZ”: DXZ with memo cache, “F”: DXZ
with memo cache where the order of columns is fixed,
“c2d”: results of c2d solver, and “SS”: results of sharpSAT
solver.

Comparing DLX with DXZ, we can see DXZ nearly al-
ways yields equivalent or much better results. It tends to be
much faster than the other methods with instances that have
huge numbers of covers. Comparing DXZ with Z, we find
that the improvements come from the use of memo cache.
For example, DXZ and F run much faster than other methods
on the domino 10 10 instance. This result comes from their
efficient use of memo cache. Memo cache tends to works
well if the same col(A) appears frequently on the search. In
the domino tiling problem, col(A) corresponds to the set of
fields without domino cells. Since there are many possible
ways to tile cells that makes the same patterns of unfilled
fields, the same col(A) frequently appears in the problem.

The fixed order variant F is generally slower than origi-
nal DXZ, but it tends to be faster than the other baselines
when instances have huge numbers of solutions. An inter-
esting exception is tetromino, where F is much faster than
normal DXZ. This is because there is a reasonable order-
ing of columns (cell order that starts from a corner cell and
ends at the opposite corner cell) in the problem. If such good
ordering of columns exists, fixed ordering can be fast since
similar columns will be deleted in Search procedure, and
memo cache works well.

We can see that the number of ZDD nodes is much smaller
than the number of exact covers in some instances. These
results indicate the superiority of ZDDs as condensed rep-
resentations of sets of exact covers. Once represented as
ZDDs, we can efficiently select, enumerate, and sample ex-
act covers using them. The amount of memory consumed by
algorithm DXZ can be estimated as the size of memo cache
(32 MByte) plus that needed to represent the ZDD. If ZDD
size is large, the amount of used memory also becomes large.
However, we should remember that in such cases ZDDs are
much smaller than the number of covers.

Conclusion
We proposed a new algorithm, DXZ, by extending DLX,
the state-of-the-art method for finding all exact covers. Our
innovation lies in combining DLX with Zero-suppressed
Binary Decision Diagrams. DXZ can fully exploit memo
caching and so offers significant speed enhancement. The al-
gorithm outputs valid ZDDs representing the set of all exact
covers, thus the set of exact covers can be easily manipulated
with ZDD operations.
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