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Abstract

The Minimum Sum Coloring Problem (MSCP) is an NP-
Hard problem derived from the graph coloring problem
(GCP) and has practical applications in different domains
such as VLSI design, distributed resource allocation, and
scheduling. There exist few exact solutions for MSCP, prob-
ably due to its search space much more elusive than that of
GCP. On the contrary, much effort is spent in the literature to
develop upper and lower bounds for MSCP. In this paper, we
borrow a notion called motif, that was used in a recent work
for upper bounding the minimum number of colors in an op-
timal solution of MSCP, to develop a new algebraic lower
bound called LBMΣ for MSCP. Experiments on standard
benchmarks for MSCP and GCP show that LBMΣ is sub-
stantially better than the existing lower bounds for several
families of graphs.

Introduction
The Minimum Sum Coloring Problem (MSCP) is a NP-
hard problem introduced in 1989 by Kubicka and Schwenk
(Kubicka and Schwenk 1989). As the widely studied Graph
Coloring Problem (GCP), MSCP also consists in assigning
one color to each vertex of a given graph G, respecting the
neighborhood constraints. But, MSCP considers in addition
a weight associated with each color. While an optimal solu-
tion of GCP is a coloring of G that uses the minimum num-
ber of colors, called the chromatic number of G and denoted
by χ(G), an optimal solution of MSCP is a coloring of G
such that the sum of weights associated with the used col-
ors is minimum. This minimum sum is called the chromatic
sum of G and is denoted by Σ(G). The minimum number
of colors required in an optimal solution of MSCP is called
the strength (or chromatic strength) of G, and is denoted by
s(G). It holds that χ(G) ≤ s(G).

Apart from the theoretical interest, MSCP has practi-
cal applications in different domains such as VLSI de-
sign, distributed resource allocation, scheduling (Bar-Noy
et al. 1998; Malafiejski 2004), and more particularly in
the field of the management of networks. Indeed, the qual-
ity of service (QoS) through a network of customers can
easily be reduced to an instance of MSCP of the corre-
sponding graph. To illustrate this, we consider an Alloca-
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tion Resource Problem (ARP ) (Chandy and Misra 1984;
Bar-Noy et al. 1998) with a set of jobs {J1,J2,...,Jn} that
have to run on some computer servers {P1,P2,...,Pm}. Each
job needs a unit of time to be completed and two jobs re-
quiring the same server cannot be executed simultaneously.
The set of constraints can be represented by a conflict graph,
where a vertex represents a job and an edge represents a con-
flict between two jobs. The aim is to compute a job schedul-
ing that minimizes the average response time for jobs. Such
a solution is given by an optimal sum coloring of the conflict
graph where colors are time units. Figure 1 shows an ARP
instance of 8 jobs and 7 computer servers. Figure 2 shows
the associated conflict graph, from which GCP resolution
provides the following scheduling : {J1, J2, J3, J5} at time
1 and {J4, J6, J7, J8} at time 2 with the average response
time (4 × 1 + 4 × 2)/8 = 1.5. MSCP resolution provides
the following scheduling : {J1, J2, J3, J6, J7, J8} at time 1,
{J4} at time 2 and {J5} at time 3 with the average response
time (6 × 1 + 2 + 3)/8 = 1.3. So, even if only 2 units of
time are sufficient to schedule the 8 jobs, it is better to use a
third unit of time to reduce the average response time and to
increase the global QoS.

P1P2P3P4 P5 P6 P7

J3J2J1 J6 J7 J8

J4 J5

Figure 1: An allocation resource problem
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Figure 2: GCP (a) and MSCP (b) on the conflict graph
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Recently, there is a growing interest on MSCP because
of its practical applications. Unfortunately, solving MSCP is
generally much harder than solving GCP, because it is sub-
stantially harder to reduce the number of colors to be con-
sidered when solving MSCP than when solving GCP. In fact,
when a GCP algorithm finds a valid coloring solution with k
colors, it immediately prunes the sub-space with k or more
colors. However, a MSCP algorithm cannot do this, because
an optimal solution of MSCP can involve more than k col-
ors. For this reason, most MCSP algorithms in the literature
are heuristic/meta-heuristic (Li et al. 2009; Sghiouer et al.
2010; Jin, Hao, and Hamiez 2014; Benlic and Hao 2012;
Moukrim et al. 2010), providing approximate solutions to
the problem. The few exact MSCP algorithms are based
on the branch-and-bound schema (Lecat et al. 2015), lin-
ear programming (Wang, Hao, and Glover 2013), CSP solv-
ing (Lecat et al. 2015; Minot, Ndiaye, and Solnon 2016), or
MaxSAT/MinSAT solving (Lecat et al. 2015), and can only
solve small graphs.

In this paper, we borrow a notion called motif, that was
used in (Lecat, Lucet, and Li 2016) for upper bounding the
chromatic strength s(G) of a graph G, to develop a new al-
gebraic lower bound called LBMΣ for Σ(G). A tight lower
bound lb of Σ(G) is useful, as illustrated by the following
two examples.

• A heuristic MSCP algorithm generally gives a valid color-
ing X of G and the corresponding sum Σ(X) of weights
of the used colors. The quality of this solution can be es-
timated using lb. In particular, if lb = Σ(X), Σ(X) is
proved to be an optimal solution of MSCP.

• A branch-and-bound MSCP algorithm needs to compute
lb at every search tree node. Let Xbest be the best valid
coloring found so far. If lb ≥ Σ(Xbest), then search below
the tree node can be pruned.

This paper is organized as follows. Section 2 presents the
necessary definitions. Section 3 presents the notion of motifs
and summarizes properties introduced in (Lecat, Lucet, and
Li 2016). Section 4 describes our approach based on motifs
to compute the lower bound LBMΣ of the chromatic sum
Σ(G). Section 5 analyses the empirical results. Finally, Sec-
tion 6 concludes the paper.

Basic Definitions
Let G = (V,E) be an undirected graph, where V is the set
of n vertices (|V | = n) and E ⊆ V 2 is the set of edges. A
coloring of G is a function c : V �→ {1, 2, ..., k} that assigns
a color c(v), represented by an integer, to each vertex v ∈ V .
A coloring is valid iff c(v) �= c(v′) ∀(v, v′) ∈ E. The color
class Xi (1 ≤ i ≤ k), is the set of vertices v such that c(v) =
i. A valid coloring is denoted by X = {X1, X2, ..., Xk}.
For MSCP, a weight wi is associated with each color i. In
this paper, we consider that wi = i. We denote by Σ(X) the
sum of color weights of the valid coloring X , calculated by
Equation 1.

Σ(X) = 1× |X1|+ 2× |X2|+ ...+ k × |Xk| (1)

An optimal solution of MSCP for a graph G, denoted by
Σ(G), is defined as follows :

Σ(G) = min{Σ(X)|X is a valid coloring of G} (2)

Refering to the graph in Figure 3, X =
{{c, d, f}1, {a, e}2, {b}3} is a valid coloring where
the vertices c, d and f are colored with the color 1, a
and e with the color 2 and b with the color 3. X is an
optimal solution for MSCP, and the chromatic sum is
Σ(G) = Σ(X) = 10.

a

b

c

d

e

f

Figure 3: A simple graph

A stable set of a graph G = (V,E) is a subset S ⊆ V
such that ∀(v, v′) ∈ S2, (v, v′) /∈ E. A clique of G is a
subset C ⊆ V such that ∀(v, v′) ∈ C2, (v, v′) ∈ E. We
denote by α(G) the cardinality of a maximum stable set of
graph G, called the independence number of G.

α(G) = max(|S| | ∀(v, v′) ∈ S2, (v, v′) /∈ E) (3)

A graph G = (V,E), where E = {(v, v′) ∈ V 2|(v, v′) /∈
E}, is called the complement graph of G. A clique of G is
clearly a stable set of G, and vice versa. Since the vertices
in a clique of G need different colors to be colored, α(G) is
a lower bound of the chromatic number of G, which itself is
a lower bound of the strength of G :

α(G) ≤ χ(G) ≤ s(G) (4)

The permutation of color classes of a valid coloring X
has no impact on its validity. Thus, the permutation set of
color classes of X forms an equivalent class, denoted by
Ψ(X). The colorings of Ψ(X) are symmetric, and use the
same number of colors. However, the sum of color weights
of the symmetric colorings is not necessarily the same. We
can notice it on Figure 3, where the sum associated to
{{c, d, f}1, {a, e}2, {b}3} is 10, while the sum associated
to the symmetric coloring {{a, e}1, {b}2, {c, d, f}3} is 13.
Because MSCP consists in minimizing the sum of weights, it
could be interesting to focus on colorings having the small-
est sum among those in Ψ(X). We call such a coloring a
major coloring, that is defined as follows :

Definition 1 A major coloring, denoted by Xm, is a color-
ing Xm = {X1, X2, . . . , Xk} such that |X1| ≥ |X2| ≥
. . . ≥ |Xk|.
Property 1 Let Ψ(X) be the set of symmetric colorings of
X , and Xm be a major coloring of Ψ(X), then ∀X ′ ∈
Ψ(X), Σ(Xm) ≤ Σ(X ′).
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Property 1 is a consequence of the specific structure of ma-
jor colorings that can be summarized by the intuitive idea
that the smallest weight should be assigned to the vertices
in the largest color class. Referring to Figure 3, the color-
ing {{c, d, f}1, {a, e}2, {b}3} is a major coloring with sum
equal to 10. Consequently, we only consider major colorings
in this paper, which allow to define the notion of motifs in
the next section. Such motifs are used to construct our lower
bound of the chromatic sum LBMΣ.

Motifs
The notion of motifs was used in (Bonomo and Valencia-
Pabon 2009; 2014) to solve MSCP for P4-sparse graphs
and in (Lecat, Lucet, and Li 2016) to define an algebraic
upper bound and an algorithmic upper bound for the chro-
matic strength of the graph. In this section, we briefly recall
this notion and its properties useful in the construction of
LBMΣ.

A motif is a representation of a major coloring by a non-
increasing sequence of integers as described in Definition 2.

Definition 2 The motif associated with a major coloring
X = {X1, X2, . . . , Xk} is a non-increasing sequence of
positive integers, denoted by p = (|X1|, |X2|, . . . , |Xk|).
The ith integer is p[i] = |Xi|. The sum of color weights
corresponding to p can be computed using Equation 5. The
length of p is the number of colors used by X , denoted by
|p| (|p| = k).

Σ(X) = Σ(p) = 1× p[1] + 2× p[2] + ....+ k × p[k] (5)

According to this definition, the motif associated with
X = {{c, d, f}1, {a, e}2, {b}3} is p = (3, 2, 1), where
p[1] = 3, p[2] = 2 and p[3] = 1. Σ(X) =
Σ(p) = 10. We note that different major colorings
can share the same associated motif. Indeed, the col-
orings Xa = {{c, d, f}1, {a, e}2, {b}3} and Xb =
{{c, d, f}1, {b, e}2, {a}3} both correspond to p = (3, 2, 1),
their sum of color weights are equal to Σ(p). Thus, if we
consider motifs instead of major colorings, we reduce fur-
ther the representation of the search space.

For a graph G = (V,E) with |V | = n, we denote by φ(n)
the set of all possible motifs associated with major colorings
of G, and φ(n, k) the set of motifs such that |p| = k. The sets
φ(n, k) in φ(n) are sorted by k in increasing order and the
motifs in φ(n, k) are sorted in the decreasing lexicographical
order defined below.

Definition 3 Let pk and qk be two motifs in φ(n, k). We say
that pk lexicographically precedes (or is greater than) qk iff
pk[1] > qk[1] or ∃t > 0 such that pk[x] = qk[x] for each
x < t and pk[t] > qk[t].

The decreasing lexicographical order allows to assign an
index i to each motif in φ(n, k): pik is the ith motif in φ(n, k)
in the decreasing lexicographical order. Table 1 lists the mo-
tifs of φ(8) and the corresponding sums of color weights.

We observe that the motif p13 = (6, 1, 1) is lexicographi-
cally greater than the motif p43(4, 2, 2), so p13 precedes p43 in
φ(8, 3). All motifs in φ(8, 3) precede the motifs in φ(8, 4).
This order is of great importance as shown in (Lecat, Lucet,

and Li 2016) to compute the upper bound of the chromatic
strength s(G). We take the same way to construct the lower
bound of MSCP, LBMΣ, based on the dominance relation
between motifs defined below.

φ(n,k) p∈ φ(n,k) Σ(p)
φ(8,1) (8) 8

φ(8,2)

(7,1) 9
(6,2) 10
(5,3) 11
(4,4) 12

φ(8,3)

(6,1,1) 11
(5,2,1) 12
(4,3,1) 13
(4,2,2) 14
(3,3,2) 15

φ(8,4)

(5,1,1,1) 14
(4,2,1,1) 15
(3,3,1,1) 16
(3,2,2,1) 17
(2,2,2,2) 20

φ(8,5)
(4,1,1,1,1) 18
(3,2,1,1,1) 19
(2,2,2,1,1) 21

φ(8,6)
(3,1,1,1,1,1) 23
(2,2,1,1,1,1) 24

φ(8,7) (2,1,1,1,1,1,1) 29
φ(8,8) (1,1,1,1,1,1,1,1) 36

Table 1: φ(8): the set of all possible motifs for n = 8 vertices

Definition 4 Let p and q be two motifs in φ(n). We say that
p dominates q, denoted by p � q, if and only if ∀t such that

1 ≤ t ≤ min{|p|, |q|},
t∑

x=1
p[x] ≥

t∑
x=1

q[x].

Example 1 Let p and q be two motifs of a graph G with 8
vertices, p = (5, 2, 1) and q = (4, 3, 1).
For t = 1 : 5 > 4 ;
For t = 2 : 5 + 2 ≥ 4 + 3 ;
For t = 3 : 5 + 2 + 1 ≥ 4 + 3 + 1.
Thus p � q.

Property 2 Let G be a graph, p and q two motifs, respec-
tively associated with two valid colorings X and X ′ of G. If
p � q, then Σ(X) ≤ Σ(X ′).

We note that the dominance relation is a partial order,
contrary to the decreasing lexicographical order which
is total. Referring to Table 1, (4, 3, 1) � (3, 2, 1, 1, 1),
but (3, 1, 1, 1, 1) and (2, 2, 2, 2) are incomparable, because
(3, 1, 1, 1, 1) �� (2, 2, 2, 2) and (2, 2, 2, 2) �� (3, 1, 1, 1, 1).

The first motif in φ(n, k) in the decreasing lexicographi-
cal order is p1k. It has the following specific structure:

(n− k + 1,

k−1 times︷ ︸︸ ︷
1, 1, . . . , 1)

855



In φ(8), p12 = (7, 1), p13 = (6, 1, 1), p14 = (5, 1, 1, 1), etc.
The Properties 3 and 4 are consequences of this structural
property.

Property 3 Let G(V,E) be a graph, and k ≤ n an integer.
The motif p1k = (n− k + 1, 1, 1, . . . , 1) dominates all other
motifs in φ(n, k).

Proof 1 Let q be a motif in φ(n, k). Then ∀t such that 1 ≤
t ≤ k,

k∑
x=t+1

p1k[x] ≤
k∑

x=t+1
q[x], because p1k[x] = 1 ≤

q[x] when x > 1. So,
t∑

x=1
p1k[x] = n −

k∑
x=t+1

p1k[x] ≥ n −
k∑

x=t+1
q[x] =

t∑
x=1

q[x].

Property 4 Let G(V,E) be a graph, and k and k′ be two
integers such that 1 ≤ k < k′ ≤ n. p1k = (n − k +
1, 1, 1, . . . , 1) dominates p1k′ = (n− k′ + 1, 1, 1, . . . , 1).

Proof 2 According to the specific structure of a first motif,

∀t ≤ k, we have
t∑

x=1
p1k[x] = n− k+ 1+ t− 1 ≥ n− k′ +

1 + t− 1 =
t∑

x=1
p1k′ [x].

Consequently, we conclude that p1k dominates all its suc-
cessors in φ(n) in the decreasing lexicographical order, and
then, its associated sum of color weights is the smallest one
over all the colorings that use at least k colors, in the search
space.

Algebraic Lower Bound for Chromatic Sum
An algebraic lower bound LBKok for the chromatic sum
Σ(G) was proposed in (Kokosiński and Kwarciany 2007).
In this Section, we firstly re-state LBKok in terms of motifs,
and then present the new lower bound LBMΣ of Σ(G).

As mentionned in the previous section, Properties 3 and 4
mean that the motif p1k dominates all the motifs pik′ such that
i ≥ 1 and k′ ≥ k. That is to say, we cannot find an MSCP
solution X that uses k or more colors, such that Σ(X) <
Σ(p1k). More formally:

∀q ∈
n⋃

x=k

{φ(n, x)}, p1k � q and Σ(p1k) ≤ Σ(q).

The sum of color weights associated with p1k is easily
computed using Equation 6. Moreover, we know that the
minimum number of colors to color a given graph G is its
chromatic number χ(G). Then Σ(p1χ(G)) is the lowest sum
of color weights that can be reached. We deduce the lower
bound LBKok given by Equation 7, equal to Σ(p1χ(G)). Of
course, the chromatic number is not necessarily known for
G. In that case, any lower bound of χ(G) (e.g., the cardinal-
ity of a maximum clique of G) can replace χ(G) in Equation
7 to give a lower bound of Σ(G).

Σ(p1k) = (n− k) +
k × (k + 1)

2
(6)

LBKok = (n− χ(G)) +
χ(G)× (χ(G) + 1)

2
(7)

The main drawback of LBKok is the lack of consideration
of the structural properties of the graph G. Hence, we pro-
pose to consider one of the characteristics of G, the indepen-
dence number α(G) combined with the motif representation
to improve the lower bound. Indeed, since each integer in a
motif represents the cardinality of one color class and each
color class is a stable set, any motif containing an integer
greater than α(G) cannot match a valid coloring of G. In
particular, if pik[1] > α(G), pik can be excluded from the
search space.

The principal idea of the construction of LBMΣ consists
in finding a motif pik (i ≥ 1 and 1 ≤ k ≤ n) such that
pik[1] = α(G) and pik dominates all its successors q in φ(n)
with q[1] ≤ α(G). If such a motif exists, the correspond-
ing associated sum Σ(pik) is a lower bound for Σ(G). For
this purpose, we borrow the notion of major motif that has
been introduced in (Lecat, Lucet, and Li 2016) based on the
following observation : Let X be a valid major coloring, it
could be possible to find two color classes Xi and Xj , with
|Xi| ≥ |Xj | and i < j, such that shifting a vertex of Xj to
Xi induces a valid coloring X ′ with Σ(X ′) < Σ(X). Thus,
we define for a motif p the left-shifting operation as follows.

Definition 5 Let p be a motif. The left-shifting operation is
the transformation of p to p′ such that p′[i] = p[i] + 1,
p′[j] = p[j] − 1 for two positive integers i < j, and
p′[x] = p[x] for x �= i, x �= j, and p′ remains a non-
increasing sequence of positive integers.

Because p′ should remain a non-increasing sequence of
positive integers, the left-shifting operation is not always
applicable. Thus, a motif in φ(n, k) that cannot be trans-
formed into another motif in φ(n, k) by a left-shifting oper-
ation without incrementing the first integer is called major
motif in (Lecat, Lucet, and Li 2016). A left-shifting opera-
tion incrementing the first integer of a motif is excluded in
the notion of major motif, because incrementing the first in-
teger may make it bigger than α(G), so that the obtained
motif does not correspond to any valid coloring of G.

Roughly speaking, a motif is major if it gives the smallest
sum of color weights among all motifs that use the same
number of colors and in which the first integer is the same.
Referring to Table 1, there are two motifs in Φ(8, 3) in which
the first integer is 4: (4, 3, 1) and (4, 2, 2), the motif (4, 3,
1) is major; and there are two motifs in Φ(8, 4) in which the
first integer is 3: (3, 3, 1, 1) and (3, 2, 2, 1), the motif (3, 3, 1,
1) is major. Intuitively, a major motif in φ(n, k) contains the
maximum number (β) of integers equal to its first integer,
denoted by λ (

⌈
n
k

⌉ ≤ λ ≤ n− k + 1). The remaining value
of n (i.e. n−β×λ) should be partitioned into k−β positive
integers. So β is the maximum integer satisfying n−β×λ ≥
k−β, or β ≤ n−k

λ−1 after excluding the trivial motif (1, 1, . . . ,

1) and assuming λ > 1. So, β =
⌊
n−k
λ−1

⌋
.

A major motif is formally defined in (Lecat, Lucet, and Li
2016) as follows.

Definition 6 Let λ and β be two integers such that
⌈
n
k

⌉ ≤
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λ ≤ n − k + 1 and β =
⌊
n−k
λ−1

⌋
. A motif pik in φ(n, k) is

major if :

1. pik[x] = λ, if 1 ≤ x ≤ β;

2. pik[x] = n− β × λ− (k − β − 1), if x = β + 1;

3. pik[x] = 1, if β + 1 < x ≤ k.

It is easy to see that the left-shifting operation is not appli-
cable to a major motif without incrementing its first integer.
The following property gives an insight to the notion of mo-
tifs.

Property 5 (1) Let p be a motif in φ(n, k), then
⌈
n
k

⌉ ≤
p[1] ≤ n − k + 1. (2) Let O denote the decreasing lexi-
cographical order. For any number λ such that

⌈
n
k

⌉ ≤ λ ≤
n − k + 1, consider the subset of motifs {p | p[1] = λ} of
φ(n, k), the left-shifting operation is not applicable to the
greatest motif m w.r.t. O in this subset without increment-
ing m[1]; furthermore, if a motif q in this subset is not the
greatest motif w.r.t. O, the left-shifting operation is always
applicable to q to transform it into a greater one w.r.t. O.

Proof 3 (1) If p[1] > n − k + 1, then p[1] + p[2] + · · · +
p[k] > n, because p[x] ≥ 1 for x > 1. If p[1] <

⌈
n
k

⌉
, then

p[1] + p[2] + · · ·+ p[k] ≤ k × ⌈
n
k

⌉− k < n.
(2) It is easy to see that a left-shifting operation applied

to a motif p results in a motif p′ such that p′ precedes p w.r.t.
O. So, the left-shifting operation cannot be applied to the
greatest motif m w.r.t. O in {p | p[1] = λ} of φ(n, k) with-
out incrementing m[1]. Let q be a motif in the subset such
that m precedes q w.r.t. O. By definition, there is a number
t > 0 such that m[x] = q[x] for x < t and m[t] > q[t].
Let y be the greatest number such that m[y] < q[y] (y ex-

ists because
k∑

x=1
q[x] =

k∑
x=1

m[x] = n). We can apply the

left-shifting operation by decrementing q[y] and increment-
ing q[t] to obtain a motif preceding q w.r.t. O.

Property 5 says that only the greatest motif w.r.t. O in the
subset {p | p[1] = λ} of φ(n, k) is major, meaning that,
although the total number of motifs in φ(n) is exponential,
the number of major motifs is only quadratic.

The following properties are the consequences of the
structure of major motifs.

Property 6 Let p and q be two motifs in φ(n, k) such that p
is major and p[1] = q[1], then p � q.

Proof 4 Let β =
⌊

n−k
p[1]−1

⌋
. Since p is major, we have p[1] =

p[2] = . . . = p[β] = q[1] ≥ q[2] ≥ . . . ≥ q[β]. So, ∀t such

that 1 ≤ t ≤ β,
t∑

x=1
p[x] ≥

t∑
x=1

q[x].

Moreover, ∀t such that β+1 ≤ t < k, we have p[t+1] =
p[t+2] = . . . = p[k] = 1 ≤ q[k] ≤ q[k−1] ≤ . . . ≤ q[t+1].

So,
t∑

x=1
p[x] = n−

k∑
x=t+1

p[x] ≥ n−
k∑

x=t+1
q[x] =

t∑
x=1

q[x].

Therefore, p � q.

Property 7 Let p and q be two major motifs in φ(n, k). If
p[1] > q[1] then p � q.

Proof 5 Let βp =
⌊

n−k
p[1]−1

⌋
and βq =

⌊
n−k

q[1]−1

⌋
. Clearly

βp ≤ βq . We have p[1] = p[2] = . . . = p[βp] > q[1] =

q[2] = . . . = q[βp]. So, ∀t such that 1 ≤ t ≤ βp,
t∑

x=1
p[x] >

t∑
x=1

q[x].

Moreover, ∀t such that βp+1 ≤ t < k, we have p[t+1] =
p[t+2] = . . . = p[k] = 1 ≤ q[k] ≤ q[k− 1] . . . ,≤ q[t+1],

implying
t∑

x=1
p[x] = n −

k∑
x=t+1

p[x] ≥ n −
k∑

x=t+1
q[x] =

t∑
x=1

q[x]. Therefore, p � q.

Property 8 Let pik ∈ φ(n, k) be a major motif and pjk ∈
φ(n, k) such that j > i. Then pik � pjk.
Proof 6 This result is a consequence of the Property 6 and
the Property 7.

Properties 6, 7 and 8 show that major motifs dominate
their successors in φ(n, k). So, the sum coloring associated
with major motif pik such that pik[1] = α(G) is minimal in
φ(n, k) for G.
Property 9 Let k and k′ be two integers such that k < k′.

Let pik be a major motif. Then ∀q ∈
n⋃

y=k′
φ(n, y) such that

q[1] ≤ pik[1], we have pik � q.

Proof 7 Let β =
⌊

n−k
pi
k[1]−1

⌋
. Since pik is major, we have

pik[1] = pik[2] = . . . = pik[β] ≥ q[1] ≥ q[2] ≥ . . . ≥ q[β].

So, ∀t such that 1 ≤ t ≤ β,
t∑

x=1
pik[x] ≥

t∑
x=1

q[x].

Moreover, ∀t such that β+1 ≤ t < k, we have pik[t+1] =
pik[t + 2] = . . . = pik[k] = 1 ≤ q[k] ≤ q[k − 1] ≤ . . . ≤
q[t+1] (q is a sequence of non-increasing positive integers),

implying
t∑

x=1
pik[x] = n −

k∑
x=t+1

pik[x] ≥ n −
k∑

x=t+1
q[x] =

t∑
x=1

q[x]. Therefore, pik � q.

Property 9 shows that a major motif pik dominates its suc-
cessors q in φ(n) such that q[1] ≤ pik[1]. Then, the sum col-
oring associated with major motif pik such that pik[1] = α(G)
is minimal in φ(n) for G. Σ(pik) is a lower bound for Σ(G),
named LBMΣ. Based on Definition 6, LBMΣ can be com-
puted by Equation 8.

LBMΣ =α(G)× β × (β + 1)

2
+

(n− β × α(G)− (k − β − 1))× (β + 1) +

k∑
j=β+2

j

(8)
In our results, we used χ(G) as the value for k if it is

known and the best known lower bound of χ(G) otherwise.
If α(G) is unknown then we used an upper bound of α(G).

857



Graph |V | α∗ k∗ LBKok LBMΣ TLBMΣ LBBest TLBBest
UBBest

DSJC1000.1 1000 (175) 20 1190 3480 1540 2762 5193 8991
DSJC1000.5 1000 15 87 1105 33835 408 6708 155 37594
DSJC1000.9 1000 6 215 24005 85235 223 26557 2741 103464
DSJC125.1 125 34 5 135 297 0 247 24 973
DSJC125.5 125 10 16 245 851 0 549 2040 1012
DSJC125.9 125 4 43 1028 2108 0 1691 1128 2503
DSJC250.1 250 44 4 256 840 117 570 2940 970
DSJC250.5 250 12 26 575 2745 0 1287 3936 3210
DSJC250.9 250 5 71 2735 6651 24 4312 N/A 8277
DSJC500.1 500 (85) 12 566 1746 1039 1250 1269 2841
DSJC500.5 500 13 13 578 9867 16 2923 3936 10897
DSJC500.9 500 5 123 8025 25581 84 11053 4116 29869

flat1000-50-0 1000 20 50 2225 25500 263 6601 118 25500
flat1000-60-0 1000 17 60 2770 29914 296 6640 414 30100
flat1000-76-0 1000 15 76 3850 33880 466 6632 98 37167
flat300-20-0 300 15 20 490 3150 0 1531 4506 3150
flat300-26-0 300 12 26 625 3901 0 1548 4212 3966
flat300-28-0 300 12 28 678 3906 0 1547 3750 4238
le450-15c 450 41 15 555 2705 1602 2610 3438 3487
le450-15d 450 41 15 555 2705 2266 2628 3294 3504
le450-5a 450 (94) 5 460 1310 2430 1193 4044 1350
le450-5b 450 (96) 5 460 1290 1083 1189 4020 1350
le450-5c 450 90 5 460 1350 2 1278 4008 1350
le450-5d 450 90 5 460 1350 2 1282 4296 1350
myciel3 11 5 4 17 20 0 17 0 21
myciel4 23 11 5 33 41 0 34 0 45
myciel5 47 23 6 62 81 0 70 0 93
myciel6 95 47 7 116 158 0 142 18 189
myciel7 191 95 8 219 308 0 286 144 381

Table 2: Our new lower bound LBMΣ of the chromatic sum for some instances of the DSJC, flat, le450 and myciel families
of graphs and the runtime TLBMΣ to compute LBMΣ, compared with the results LBKok of (Kokosiński and Kwarciany 2007),
the best known lower bound LBBest in the literature and the runtime TLBBest

to compute LBBest. When the independence
number α∗ of a graph cannot be obtained in reasonable time, an upper bound between parentheses was used to compute LBMΣ.
UBBest is the best known upper bound of the chromatic sum in the literature and k∗ is the best known lower bound of χ(G).

Empirical Results and Analysis

In this section, we present our lower bound LBMΣ on the
instances of the literature. To compute a maximum stable
set of a graph G, we work on the complement graph G and
compute a maximum clique of G by running the state-of-the-
art exact MaxClique algorithm IncMaxCLQ (Li, Fang, and
Xu 2013). The test set is composed of DIMACS (Dimacs
) and COLOR (Color02 ) graphs. The experimental results
are obtained on a processor Intel Westmere Xeon E7-8837
(2.66GHz) under Linux.

Table 2 shows the results of LBMΣ. For each graph,
we denote by Graph its name, |V | the number of vertices,
α∗ the cardinality of a maximum stable set of G when this
one is known, an upper bound between brackets otherwise
, k∗ the best known lower bound for the chromatic number
χ(G), LBKok the results according to (Kokosiński and
Kwarciany 2007), LBMΣ the result of our new algebraic
bound, TLBMΣ the time expressed in seconds to com-
pute LBMΣ (including the time of the maximum stable

set searching). Column LBBEST gives the best known
lower bound of Σ(G) in the literature (Jin and Hao 2016;
Moukrim et al. 2010; Qinghua and Jin-Kao 2013), all are
based on a partition of the graph into cliques and TLBBest

is time in seconds to compute LBBEST . UBBEST is the
best known upper bound of Σ(G) (Jin and Hao 2016;
Sghiouer 2011).

The results in Table 2 focus on instances of the DIMACS
and COLOR benchmarks where LBMΣ improves results of
the literature. Among the 70 tested instances, LBMΣ gives
an improved value of the lower bound of MSCP for 29 in-
stances and reaches the best known lower bound Σ(G) in the
literature for 13 instances. In particular, LBMΣ proves the
optimal solution for MSCP for the instances flat1000-50-0,
flat300-20-0, le450-5c and le450-5d for the first time in the
literature, because the lower bound LBMΣ is equal to the
best known upper bound for these graphs. However, for 28
instances our algebraic bound LBMΣ is less effective.
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The following observations can be made from Table 2:

• The heuristic methods of the literature are generally
based on a partition of G into cliques (Moukrim et al.
2010; Qinghua and Jin-Kao 2013) : if G can be par-
titioned into r cliques C1, C2, . . . , Cr, then Σ(G) ≥
r∑

i=1

|Ci| × (|Ci|+ 1)

2
. These methods can give a lower

bound of Σ(G) near the optimum for some graphs. In this
case, it is hard for any other method to give a better lower
bound.

• Our approach is based on searching a maximum stable set
of G, which can be very hard for large sparse graphs. In
this case, an upper bound of the independence number can
be used to compute LBMΣ.

• For other graphs G, such as random graphs DSJC and
flat, whose independence number α(G) is known or
can be efficiently computed using IncMaxCLQ, our lower
bound LBMΣ gives good results. Indeed, although the
maximum stable set problem is a NP-hard, we observe
that the time needed to find a maximum stable and to com-
pute LBMΣ is comparable with the time of the methods
based on partition of graph into cliques.

Conclusion
We present in this paper a new lower bound LBMΣ for the
Minimum Sum Coloring Problem (MSCP). We first remind
the notion of motifs, that is an abstraction for the solutions of
MSCP. Next, we re-state a previous algebraic lower bound
for MSCP in terms of motifs. Then, we extend and improve
such a lower bound by focusing on the major motifs and
using a structural property of a graph G, i.e., the indepen-
dence number α(G). This one is computed using the effi-
cient IncMaxCLQ solver on the complement graph G. Fi-
nally, we evaluate this approach by comparing our results
with those of the literature, showing that LBMΣ gives sub-
stantially better lower bound of the chromatic sum for some
families of graphs in the famous benchmarks DIMACS
and COLOR. In particular, LBMΣ allows to reach opti-
mal MSCP solutions for four graphs in these benchmarks
for the first time in the literature.
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