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Abstract

Metaheuristics have been developed to provide general pur-
pose approaches for solving hard combinatorial problems.
While these frameworks often serve as the starting point for
the development of problem-specific search procedures, they
very rarely work efficiently in their default state. We combine
the ideas of reactive search, which adjusts key parameters
during search, and algorithm configuration, which fine-tunes
algorithm parameters for a given set of problem instances, for
the automatic compilation of a portfolio of highly reactive di-
alectic search heuristics for MaxSAT.
Even though the dialectic search metaheuristic knows noth-
ing more about MaxSAT than how to evaluate the cost of
a truth assignment, our automatically generated solver de-
fines a new state of the art for random weighted partial
MaxSAT instances. Moreover, when combined with an in-
dustrial MaxSAT solver, the self-assembled reactive portfolio
was able to win four out of nine gold medals at the recent
2016 MaxSAT Evaluation on random, crafted, and industrial
partial and weighted-partial MaxSAT instances.

Introduction

The meta-algorithmics community has seen major advances
in recent years. On the one hand, techniques for algorithm
selection (Gomes and Selman 2001; Leyton-Brown et al.
2003) have led to major advances in our ability to solve great
ranges of different types of instances in various domains (Xu
et al. 2008; O’Mahony et al. 2008; Kadioglu et al. 2011;
Xu et al. 2012; Malitsky et al. 2013; Bischl et al. 2016).
On the other hand, algorithm configurators have advanced
from limited tuning approaches (Adenso-Diaz and Laguna
2006) to scalable, high-powered general methods (Hutter
et al. 2009; Ansotegui, Sellmann, and Tierney 2009; Hut-
ter, Hoos, and Leyton-Brown 2011; Ansotegui et al. 2015;
Birattari et al. 2010). Combining portfolios and automatic
configuration has led to input-specific tuners (Xu, Hoos, and
Leyton-Brown 2010; Kadioglu et al. 2010; Ansótegui et al.
2016) that not only choose superior parameterizations for a
target algorithm, but also create new ones based on the input
to be processed.
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The methods above all focus on choices made before
the actual target algorithm is run. Approaches that aim
at modifying algorithm behavior a posteriori during the
actual run have also been developed. The reactive tabu
search (RTS) algorithm from (Battiti and Tecchiolli 1994)
is the prototypical example. RTS modifies the length of the
tabu list dynamically during search depending on how the
search progresses. Another example is the Stage approach
from (Boyan and Moore 2000), a heuristic local search
method that analyzes search trajectories to construct predic-
tive evaluation functions that are used during search to es-
cape local minima. New theoretical results (e.g. by (Doerr
and Doerr 2015)) prove that dynamic updates during search
can guarantee strictly better asymptotic performance. In ad-
dition, (Stützle and López-Ibáñez 2016) argues that offline
configuration can be used to create online control strategies.

In this paper we combine automatic, input-specific algo-
rithm configuration with reactive search. We do so with the
objective of complementing an existing MaxSAT solver with
a portfolio of automatically generated search algorithms
and thus achieve a more robust, state-of-the-art heuristic
MaxSAT solver.

We first give a review of the existing research, followed by
an introduction to our new reactive metaheuristic. Finally,
we apply it to MaxSAT and compare it empirically with
state-of-the-art MaxSAT solvers as well as its non-reactive
counterpart, both in combination with the existing solver
and in isolation. In the end, we obtain a solver that out-
performs the state of the art in various categories of heuris-
tic MaxSAT solving, as assessed independently in the 2016
MaxSAT Evaluation (Argelich et al. 2016).

Background

To position our contribution, we provide background infor-
mation in three areas. We first introduce the problem do-
main, MaxSAT. We then review instance-specific algorithm
configuration, and finally present the dialectic search meta-
heuristic that we make reactive. As we have to be brief, for
full details we refer the reader to the respective literature.

MaxSAT

The MaxSAT problem is the optimization version of the
well-known, quintessentially NP-hard Satisfiability (SAT)
problem. Formally:
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A truth variable is a variable that either takes true or false
as values. Such an assignment is called a truth assignment.
A literal is a truth variable (positive literal) or its negation
(negative literal). A positive literal is said to evaluate to true
iff its variable is set to true. A negative literal is said to eval-
uate to true iff its variable is set to false.

A clause is a disjunction of literals. A clause is said to be
satisfied under a truth assignment to its variables if at least
one of the literals in the clause evaluates to true. Otherwise
the clause is said to be falsified. A weighted clause is a pair
(C,w), where C is a clause and w is a natural number or
infinity, indicating the cost for falsifying clause C.

A Weighted Partial MaxSAT formula
(WPMS) is a set of weighted clauses ϕ =
{(C1, w1), ..., (Cm, wm), (Cm+1,∞), ..., (Cm+m′ ,∞)}
where the first m clauses are soft and the last m′ clauses are
hard. The objective of the MaxSAT problem is to find a truth
assignment that satisfies all hard clauses while minimizing
the total cost of all soft clauses that are falsified.

A Partial MaxSAT formula (PMS) is a WPMS formula
where the weights of soft clauses are all equal. A (plain)
MaxSAT formula is a partial MaxSAT formula where all
clauses are soft.

MaxSAT solvers have been used to effectively tackle
problems in several domains, such as scheduling (Vasquez
and Hao 2001), FPGA routing (Xu, Rutenbar, and Sakallah
2003), and circuit design and debugging (Safarpour et al.
2007), among many others. Driven by the annual MaxSAT
Evaluations (Argelich et al. 2016), MaxSAT solvers have
seen significant performance improvements in recent years.

Input-specific Algorithm Configuration

Automatic algorithm configurators accept a parameterized
target algorithm and a set of training inputs and search for
a set of parameters providing superior performance with the
target algorithm on the input. A typical application of algo-
rithm configurators is the search for good default parameters
for a given algorithm. The idea of input-specific algorithm
configuration is to choose a superior parameterization for a
target algorithm after inspecting the input that needs to be
processed at runtime (Xu, Hoos, and Leyton-Brown 2010;
Kadioglu et al. 2010; Ansótegui et al. 2016).

Although tempting, experience has shown that searching
for a new parameterization for a given input at runtime is ex-
tremely difficult. Consequently, state-of-the-art approaches
generate a set of high-performance parameterizations offline
during training by employing an (input-oblivious) algorithm
configurator such as SMAC (Hutter, Hoos, and Leyton-
Brown 2011) or GGA++ (Ansotegui et al. 2015). The input-
specific configurator ISAC++ (Ansótegui et al. 2016), e.g.,
first clusters the training input and then uses GGA++ to find
a good parameterization for each cluster.

GGA++ (Ansotegui et al. 2015) is a genetic algorithm that
uses a surrogate model to create offspring for two given par-
ents: Instead of using random recombination, a predictive
model is trained to estimate where superior parameteriza-
tions may be found. For two parents, the recombination of
the parents’ genes is then chosen so as to maximize perfor-
mance as predicted by the surrogate model. The use of sur-

rogates to guide the search for good parameterizations was
first introduced in (Hutter, Hoos, and Leyton-Brown 2011).

Once parameterizations for different clusters of input
data are determined, the last step in input-specific algo-
rithm configuration is to combine the parameterizations that
were generated in an algorithm portfolio, typically by us-
ing the SATzilla-2012 (Xu et al. 2012) method or, as in
ISAC++, by employing cost-sensitive hierarchical clustering
(CSHC) (Malitsky et al. 2013).

ISAC++ was successfully applied to complete MaxSAT
solvers, i.e. those solvers that also prove the optimality of the
solutions found (Ansótegui et al. 2016). In 2016, e.g., ISAC-
based portfolios defined the state-of-the-art in 7 out of 9
complete categories (whereby portfolios were only allowed
to participate outside of the competition). At the same time,
however, ISAC-based portfolios could only score one sec-
ond and one third place in 2 out of 9 incomplete categories,
where solvers provide best-effort truth assignments without
proofs of optimality. This can either mean that progress in
incomplete MaxSAT solving is much faster than for com-
plete solvers (as the ISAC portfolio entries are based on
solvers from the year prior to the current competition). Or
it could mean that instance-specific tuning of local search
solvers is inherently too limited as an approach, and that we
need to open search heuristic parameters much more than
we currently do to allow automatic configuration to have the
desired impact.

Dialectic Search

The last ingredient we need for our work is the metaheuris-
tic that we aim to improve. Dialectic search was introduced
in (Kadioglu and Sellmann 2009), and its parameterized
form is shown in Algorithm 1. The algorithm accepts the
following parameters:

f : The objective function to be optimized.
g: The size of the greedy candidate set as percentage of all

variables in the problem.
al, au: A lower and upper bound on the percentage of variables

to be changed to construct an antithesis. The exact size
of the change is then chosen uniformly at random in the
interval given whenever a new antithesis is generated.

pa: The probability of greedily improving the antithesis.
pr: The probability of restarting the search.

rl, ru: A lower and upper bound on the percentage of variables
to be changed to construct a new starting point. The exact
size of the change is then chosen uniformly at random in
the interval for each restart.

The algorithm starts with an initial assignment to all vari-
ables, and aims to improve this assignment in a greedy
search, making the best individual variable change in each
step until any such change would lead to a worsening of
the objective function. Depending on the problem addressed,
the greedy search itself may take significant time. In dialec-
tic search, we therefore randomly limit the search for a best
variable to only alter a set of candidate variables that are
randomly selected in each greedy step. If none of these can
improve the objective, the greedy algorithm halts, otherwise
we make the best change of a candidate variable.
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Algorithm 1 Parameterized Dialectic Search
1: function DIALECTIC-SEARCH (f, g, al, au, pa, pr, rl, ru)
2: INIT(thes)

3: best ← thes ← GREEDY(thes, g)

4: while not timeout do

5: while true do

6: anti ← MODIFY(thes, al, au)

7: if ANTIGREEDY(pa) then

8: anti ← GREEDY(anti, g)

9: syn ← GREEDY(MERGE(thes, anti), g)

10: if f(syn) < f(best) then best ← syn

11: if f(syn) < f(thes) then

12: thes ← syn

13: else if RESTART(pr) then break

14: thes ← GREEDY(MODIFY(thes, rl, ru), g)

15: return best

The resulting assignment is called the “thesis.” Dialectic
search now alters parts of the thesis, thus generating a so-
called “antithesis” (function Modify). The antithesis may be
improved by a greedy search itself. Thus equipped with a
thesis and an antithesis, dialectic search then aims to gener-
ate a “synthesis” by searching the space between thesis and
antithesis (function Merge).

The synthesis is constructed by searching the area be-
tween the thesis and antithesis, for example by a nested local
search (Lourenço, Martin, and Stützle 2003) or, our choice
for this work, by path relinking (Glover, Laguna, and Marti
2000). Starting from the thesis, we greedily select the best
(in the sense that it most favorably affects the objective) vari-
able among those where the current assignment still differs
from the antithesis. We then set this variable to the value it
takes in the antithesis. We repeat this until we arrive at the
antithesis. The synthesis is then the best assignment we en-
countered. Then, we greedily improve the synthesis. If the
resulting synthesis improves the current thesis, it becomes
the new thesis. If the synthesis is worse than the thesis, we
restart with a given probability at a new starting point that
obtained by applying some random modification to the cur-
rent thesis. If we do not restart, we choose a new antithesis.
One such iteration is called a “move.” Each change in a vari-
able, either within a greedy search or when traversing from
thesis to antithesis, is called a “step.”

There are a number of decisions that dialectic search must
make: What is the best size for the candidate set in the
greedy search (parameter g)? How many variables should be
changed to generate the antithesis (parameters al, au)? With
what probability should we greedily improve the antithe-
sis (parameter pa)? With what probability should we restart
the search (parameter pr)? When a restart is triggered, how
many variables should be changed to new random values to
generate a new starting point (parameters rl, ru)?

Note that the parameters could be set to realize a wide va-
riety of search algorithms, from an iterated local search with
an outer random walk over nested greedy searches (pr = 1,
al = au = 0, g = 1) to iterated path relinking between the
currently best known solution and randomly generated local
optima (pr = 0, g = 1, al = au = 0.5, pa = 1).

We could simply employ meta-algorithmics technology
to automatically and, possibly input-specifically, tune our
metaheuristic solver for any application. As such, our start-
ing point is similar to the SATenstein solver that was devel-
oped for SAT (KhudaBukhsh et al. 2009). SATenstein is a
highly parameterized local search SAT solver that can be in-
stantiated to behave like virtually any successful existing lo-
cal search approach. SATenstein was configured in an input-
specific fashion. That is, the SATenstein solver is really a
portfolio of different parameterizations of a very flexible lo-
cal search framework specifically designed for SAT. In a
similar fashion, multi-objective evolutionary algorithms are
configured by (Bezerra, López-Ibáñez, and Stützle 2016).

In the following, we go one step further by making all di-
alectic search parameters reactive. That is, we do not simply
build a portfolio of different dialectic searches for MaxSAT
(and thus build some sort of MaxSATenstein). Instead, we
allow the metaheuristic to change its characteristics dynam-
ically during search based on the search progression.

Reactive Dialectic Search Portfolios

To set the parameters that guide the search, we will track the
progress of the time-limited search as it is unfolding. In par-
ticular, we propose to track the following eleven values. We
emphasize that other properties could be tracked in addition
to these ones:

1. Time elapsed as percentage of total time before timeout.
2. Number of restarts conducted as a percentage of total

restarts expected to be completed within the time limit.
3. Number of moves as a percentage of the total moves ex-

pected to be completed within the time limit.
4. Number of steps as a percentage of the total steps ex-

pected to be completed within the time limit.
5. Total number of improving syntheses found over the to-

tal number of dialectic moves expected to be completed
within the time limit.

6. Number of moves in the current restart over the total num-
ber of dialectic moves expected to be completed within
the time limit.

7. Number of moves since the current best known solution
was found over the total number of dialectic moves ex-
pected to be completed within the time limit.

8. Number of moves since the last thesis update in the cur-
rent restart over the total number of dialectic moves ex-
pected to be completed within the time limit.

9. Number of steps in the current restart over the total num-
ber of steps expected to be completed within the time
limit.

10. Number of steps since the current best known solution
was found over the total number of steps expected to be
completed within the time limit.

11. Number of steps since the last thesis update in the cur-
rent restart over the total number of steps expected to be
completed within the time limit.

The objective is now to find a way to make the search use
these values to set the seven parameters that guide the search
dynamically. Note that all parameters are values between 0
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and 1, either because they represent probabilities or percent-
ages of the total number of variables in the given problem
instance. Naming the values above v1, . . . , v11, we set

pk =
1

1 + e(w
k
0+

∑
i viw

k
i )

for each dialectic search parameter pk, k = 1 . . . 7.
We have thus transformed the configurable dialec-

tic search with seven static parameters into a hyper-
configurable reactive dialectic search (HRDS) with 84 (7
times 12) meta-parameters.

An adequate interpretation of this approach is that the de-
pendence of the dialectic search parameters from the statis-
tics of the unfolding search is determined by a logistic re-
gression (in the original sense, not its common application
to classification). The obvious challenge now is to learn the
meta-parameters wk

i in a way that will lead to good search
performance.

Lacking any other supervision than the total search perfor-
mance, we employ ISAC++ (Ansótegui et al. 2016) for this
task. We first cluster training inputs, then run GGA++ (An-
sotegui et al. 2015) on each cluster, and finally build a port-
folio of the parameterizations found using cost-sensitive hi-
erarchical clustering (CSHC) (Malitsky et al. 2013).

It is noteworthy that, until now, nothing in our approach
has been MaxSAT specific. That is, in principle we can em-
ploy the reactive dialectic search approach outlined above
on any combinatorial search problem. Additionally, the idea
can be adapted to any reactive search metaheuristic. To use it
for time-limited local search for MaxSAT, however, we need
to make some decisions.

Evaluating Parameterization Performance: We first
need to set a metric to ascertain when a parameterization
is better than another. For each MaxSAT training instance,
we record the best known-solution from prior experience.
When HRDS finds a truth assignment with that quality, we
will consider the instance ”solved” for training purposes and
stop the dialectic search run.

In the beginning of our tuning, all parameterizations may
be so bad that, within our training time limit, none can find
a solution with that best known cost. Therefore, all parame-
terizations time out and all we can compare is how well they
did relative to the best known solution within the time limit.
Later, when some parameterizations get some instances to
solve to the best known solution quality before the time
limit, we can count the number of instances the parameter-
ization is able to “solve” in this way, and the one with the
highest count wins. Finally, towards the end of the tuning,
we will hopefully have high quality parameterizations that
can “solve” all instances. In this case, we can consider the
average time it took to solve the instances to determine the
winning parameterization.

Algorithm 2 shows the comparison function that guides
how we determine top-performing parameterizations within
GGA++ accordingly. Rather than giving each parameteri-
zation a numeric score (such as a penalized runtime, e.g.,
as done in many prior applications of algorithm tuners such
as (Hutter et al. 2015)) at the end of each tournament, we

Algorithm 2 Parameterization Comparison Function
1: function SELECTWINNER (p1, p2)
2: if num-solved-bk(p1) �= num-solved-bk(p2) then

3: return argmaxp∈{p1,p2}(num-solved-bk(p))

4: if num-finished(p1) �= num-finished(p2) then

5: return argmaxp∈{p1,p2}(num-finished(p))

6: G1 ← sort-by-gap(results(p1))

7: G2 ← sort-by-gap(results(p2))

8: for i = 1 . . . |G1| do

9: if G1[i] < G2[i] then return p1

10: else if G1[i] > G2[i] then return p2

11: return argminp∈{p1,p2}(avg-cpu-time(p))

have defined a comparison algorithm that allows us to sort
the parameterizations and to determine the winners.

The first criterion is which parameterization solves more
instances to the best known quality within the time limit.
If these are the same (for example because neither p1 nor
p2 can “solve” any instances), then the second criterion is
to compare the number of runs that finished correctly, i.e.,
where there were no problems with memory etc. We next
compare which parameterization is closer to getting one
more instance solved to best-known quality by considering
the quality gap to best-known solutions. Finally, if all these
criteria do not lead to a winner (for example because both p1
and p2 “solve” all instances) we return the parameterization
that needs lower average runtime, with ties broken randomly.

We devised this method so as to give the GGA++ tuner a
responsive objective function that guides the tuning search
effectively no matter how well the current pool of parame-
terizations currently performs. However, this leaves us with
a problem for the surrogate model used to genetically en-
gineer the offspring within GGA++. Namely, the surrogate
model needs to predict in what regions of the parameter
space we may expect superior parameterizations to be found.
We solved this problem by using relative ranks rather than
absolute performance when training the surrogate.

Evaluating Truth Assignments: HRDS solves the
MaxSAT problem using an (incremental) evaluation of a
truth assignment. We simply maintain make-profits and
break-costs (the weighted variants of make-counts and
break-counts (Gomes et al. 2008)) for each variable to
quickly compute the effect on the objective when flipping a
variable’s truth assignment.

Characterizing MaxSAT Instances: For instance-
specific configuration we need features to characterize the

Category Solver
MS PMS WPMS

Time # Time # Time #

Crafted
HRDS 0.80 79 18.73 48 41.68 24

CDS 6.44 79 24.79 45 17.40 21

Random
HRDS 9.67 82 73.44 37 2.29 99
CDS 3.73 76 25.41 24 2.64 99

Table 1: Average time to best bound and number of best up-
per bounds found for HRDS and CDS.
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Solver Time #
WPM3 17.73 5
CDS 6.44 79
HRDS 0.80 79
CDS/WPM3 6.56 79
HRDS/WPM3 0.87 79
CCLS 5.69 81

CnC-LS 2.49 80
CCEHC 3.42 80

(a) MS Crafted (81 instances)

Solver Time #
WPM3 17.30 106
CDS 24.79 45
HRDS 18.73 48
CDS/WPM3 18.69 114
HRDS/WPM3 18.52 116

WPM3-2015-in 15.93 107
Optiriss6 37.85 99
Dist 6.97 81

(b) PMS Crafted (136 instances)

Solver Time #
WPM3 26.61 34
CDS 17.40 21
HRDS 41.68 24
CDS/WPM3 19.22 44
HRDS/WPM3 23.20 46

CCEHC 18.54 39
Ramp 12.18 29
SC2016 4.13 27

(c) WPMS Crafted (65 instances)

Solver Time #
WPM3 0.00 0
CDS 3.73 76
HRDS 9.67 82
CDS/WPM3 3.74 76
HRDS/WPM3 11.87 83
CnC-LS 2.05 89

borealis 2.28 89
SC2016 2.37 89

(d) MS Random (89 instances)

Solver Time #
WPM3 34.75 8
CDS 25.41 24
HRDS 73.44 37
CDS/WPM3 12.09 25
HRDS/WPM3 53.49 34
Dist-r 2.07 42

SC2016 2.55 42
CCLS 3.00 42

(e) PMS Random (42 instances)

Solver Time #
WPM3 91.72 1
CDS 2.64 99
HRDS 2.29 99

CDS/WPM3 2.67 99
HRDS/WPM3 2.56 99
SC2016 2.53 99
Ramp 4.22 99
CCLS 4.46 99

(f) WPMS Random (99 instances)

Table 2: Average time and number of best upper bounds found on MS, PMS and WPMS crafted (top) and random (bottom) for
WPM3, the various solvers developed in this paper, and the top 3 solvers of each category from the MaxSAT Evaluation 2016.

inputs. We use the features proposed in (Ansótegui et al.
2016) for this purpose.

Numerical Results

Having developed our approach in the previous section, we
now evaluate it empirically.

Benchmark Set: Recall that we eventually intend to com-
plement a solver that was already designed for industrial
instances, WPM3 (Ansótegui, Didier, and Gabàs 2015). As
this solver already achieves state-of-the-art performance on
industrial MaxSAT instances, we focus the training of our
hyper-configurable dialectic search approach on randomly
generated instances (Random category) as well as instances
that are derived as encodings of other problems (Crafted cat-
egory). Our base set of MaxSAT instances are all instances
in the Random and Crafted categories in the MaxSAT Eval-
uation 2016 (MSE16) (Argelich et al. 2016).

The three variants of the MaxSAT problem divide the
base set further: (plain) MaxSAT (MS), Partial MaxSAT
(PMS), and Weighted Partial MaxSAT (WPMS). In each cat-
egory, instances are grouped into families: 3 families for MS
crafted, 2 for MS random, 11 for PMS crafted, 4 for PMS
random, 11 for WPMS crafted and 3 for WPMS random.
We cleanly split each group randomly 80 to 20, whereby
the 80% are assigned to our training set while the remaining
20% are set aside for testing.

Infrastructure: We run all our experiments on a cluster
featured with Intel Xeon CPU E5-26020 @ 2.6GHz proces-
sors, a memory limit of 3.5 GB, and each machine runs an
instance of Rocks Cluster 6.5 (Linux 2.6.32), which is the
exact same environment used in the MSE16.

ISAC++ Setup: We perform algorithm configuration ex-
clusively on the instances marked for training for each group
of instances within the MSE16 dataset that have more than

15 training instances left after the 80/20 split. We use a dis-
tributed version of GGA++ with 8 machines with 8 cores
each, a population size of 100 individuals and 100 genera-
tions, using a 30 second target algorithm timeout. The time
limit for the test instances is as in the MSE16, 300 seconds.

Competitors: We compare the following algorithms.
HRDS is the new hyper-configurable reactive dialectic
search. CDS is an ISAC++ generated portfolio of the stat-
ically parameterized dialectic search with seven parameters.
HRDS/WPM3 is a portfolio built from HRDS parameter-
izations plus ISAC++-tuned parameterizations of WPM3.
CDS/WPM3 is a portfolio built from CDS parameterizations
plus ISAC++-tuned parameterizations of WPM3.

Reactive vs. Non-Reactive Dialectic Search: Our first in-
quiry is to find out whether making dialectic search hyper-
configurable is at all beneficial. The hyper-configuration
space includes all static parameterizations, which are ob-
tained by setting all 11 weights corresponding to search
statistics to zero and setting the constant weight for each of
the seven parameters to the right value. This means that the
best parameterization for HRDS will always be at least as
good as that of CDS. However, there is no guarantee that the
ISAC++ tuner is able to find that parameterization, nor that
the best parameterization thus found for the training set also
generalizes well to the test instances.

Table 1 shows that our doubts are unfounded. In all cat-
egories we tested, HRDS outperforms CDS. The difference
in performance is particularly noticeable in two categories.
First, on random PMS instances where the reactive dialectic
search finds 37 best upper bounds compared to only 24 for
the non-reactive counterpart of the otherwise identical ap-
proach. Second, on random MS instances HRDS solves 82
instances compared to 76 for CDS. This shows that the algo-
rithm configurator can tune the hyper-configurable heuristic
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effectively.
Figure 1 sheds light on the inner workings of HRDS. On

top, we track the effective running averages of the antithe-
sis size on the left and the greedy candidate set size on the
right for one parameterization, run on a PMS random in-
stance with a time limit of 300 sec. Not shown here is that
this parameterization holds the restart probability at zero and
anti-greedy probability steady at 1. In this parameterization,
the dialectic search thus never restarts, and it always con-
ducts an antithesis greedy improvement, while during the
search decreasing the level of difference between thesis and
antithesis and simultaneously increasing the greedy candi-
date set size.

Contrast this with another parameterization, shown at the
bottom. This one holds the restart probability and greedy
candidate size firmly at 100% (not shown here). In the be-
ginning, the antithesis size is 100%, which means there is
a full greedy search started on the exact opposite pole from
the current thesis and a path-relink conducted between the
thesis and the result of that greedy run. At the same time,
the restart size is somewhere between 20 and 50%, leading
to an almost entirely new random starting point with only a
slight bias towards keeping parts of the current thesis intact
in the antithesis. During the course of the optimization, the
restart and antithesis sizes are then reduced further and fur-
ther, making the search stay closer and closer to the current
thesis. This behavior, moving from vast exploration in the
beginning to more and more conservative moves in the end,
is familiar from the simulated annealing metaheuristic. Yet
this HRDS parameterization was not invented by a human,
but found as an effective method for solving some MaxSAT
instances by an algorithm configurator.

Random Weighted-Partial MaxSAT: The next question
of interest is whether a solver that consists of reactive dialec-
tic search parameterizations, a solver that is based on a local
search metaheuristic that lacks any domain knowledge and
only has access to an incremental evaluator of the target ob-
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Figure 1: Statistics recorded during search for two different
HRDS parameterizations.

1st 2nd 3rd

Random

MaxSAT
borealis SC2016 Swcca-ms

2.29 454 2.30 454 2.40 454

Partial
Dist-r CCEHC SC2016

2.08 209 3.86 209 2.46 208

W. Partial
HRDS/WPM3-s SC2016 HRDS/WPM3

26.04 501 2.60 500 9.12 500

Crafted

MaxSAT
CCLS CCEHC SC2016

3.56 402 3.49 399 2.62 398

Partial
HRDS/WPM3 WPM3-2015-in HRDS/WPM3-s

20.26 575 13.33 539 17.99 522

W. Partial
HRDS/WPM3 CCEHC HRDS/WPM3-s

28.15 204 19.53 192 29.53 183

Industrial

MaxSAT
CnC-LS HRDS/WPM3 WPM3-2015-in

49.00 47 40.84 40 22.57 38

Partial
HRDS/WPM3 WPM3-2015-in Optiriss6-in

26.70 513 22.29 505 37.57 433

W. Partial
WPM3-2015-in HRDS/WPM3 HRDS/WPM3-s

17.80 405 22.98 402 18.37 339

Table 3: MaxSAT evaluation 2016 winners, with the average
solution time (sec.) and number of best upper bounds found.

jective function, a solver that was programmed in only two
working days and was then left to be tuned automatically,
whether such a solver could outperform solvers that have
been devised by teams of humans that have often developed
and evolved their programs for years.

Table 2-(f) gives the answer: on random WPMS instances,
HRDS outperforms all competitors from the MSE16. While
multiple solvers manage to solve 99 test instances within
the time limit, it is remarkable to see that the automatically
generated solver can even outperform SC2016, which itself
works significantly better than all other competitors.

Augmenting an Industrial Solver: We finally arrive at
our original objective, namely to make WPM3, a solver de-
signed for industrial MaxSAT instances, a serious contender
in other categories as well. Table 2 shows how WPM3 by
itself compares with HRDS/WPM3 and CDS/WPM3 on all
six random and crafted categories from the MSE16.

We observe that for some categories WPM3 is better than
HRDS or CDS, while for others it is the other way around.
However, joining WPM3 with HRDS or CDS parameteri-
zations creates an algorithm portfolio that often exceeds the
performance of the best choice for each category, and other-
wise trails the best performance only slightly. In summary,
augmenting a human-developed industrial MaxSAT solver
with a machine-trained solver results in a much more robust
and across-the-board applicable MaxSAT solver.

2016 MaxSAT Evaluation: Using the methodology
above, we entered the MSE16 with an earlier version of
HRDS/WPM3 (DSAT-WPM3 at MSE16) with less HDRS
parameterizations. In Table 3 we present the official results.
Our two submissions (with one version, *-s, using a static
schedule in the portfolio) won gold medals in 4 out of 9 cat-
egories: WPMS crafted and random, and PMS crafted and
industrial. Overall, the two entrants won 10 medals out of
18 possible.
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Conclusion

We introduced hyper-configurable dialectic search portfo-
lios and applied them to MaxSAT. We demonstrated that
reactive search methods can be tuned effectively and out-
perform static instance-specific configuration in practice.
By itself, the new method was able to define a new state-
of-the-art for the random WPMS category, despite its gen-
eral ignorance regarding the problem it is solving. Used to
automatically complement an existing industrial MaxSAT
solver, it defined a new approach that works robustly for
random, crafted, and industrial instances. The approach was
independently evaluated and compared with state-of-the-art
MaxSAT solvers at the 2016 MaxSAT Evaluation where it
won 4 out of 9 possible gold medals.
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