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Abstract

A grid maze is a binary matrix where fields containing a 0 are
accessible while fields containing a 1 are blocked. A move-
ment sequence consists of relative movements up, down, left,
right – moving to a blocked field results in non-movement.
The simultaneous maze solving problem asks for the short-
est movement sequence starting in the upper left corner and
visiting the lower right corner for all mazes of size n × m
(for which a path from the upper left to the lower right cor-
ner exists at all). We present a theoretical problem analysis,
including hardness results and a cubic upper bound on the se-
quence length. In addition, we describe several approaches
to practically compute solving sequences and lower bounds
despite the high combinatorial complexity of the problem.

Introduction

We consider the problem of finding a short movement se-
quence that solves a set of n × m mazes simultaneously.
Here, a maze is a binary matrix with 1s indicating obstacles
and 0s obstacle-free fields, see Figure 1 for an example. Al-
lowed moves in the maze are up, down, left, and right. If
a move leads to a blocked field, no movement takes place.
The goal is to find a sequence of moves s ∈ {u, d, l, r}∗ such
that, starting in the upper left corner (’the start’) of the maze
and following the sequence s, the lower right corner (’the
goal’) is visited (not necessarily by the last move). In this
case, we call s a solving sequence. For a single maze, this is
an easy problem as the optimal sequence can be computed
via a shortest path algorithm in polynomial time interpreting
the maze as a graph. But we are interested in solving a set
of mazes simultaneously. We differentiate two problem ver-
sions depending whether we want to solve all feasible mazes
for given n,m or only a subset. Here we call a maze feasible
if there exists an obstacle-free path from the start to the goal.

Definition 1 Given n,m the All Simultaneous Maze Solv-
ing Problem (ASIMASOP) asks for the shortest solving se-
quence for all feasible mazes of size n×m.

Note that for ASIMASOP, we require unary encoding of n
and m as otherwise already the output has exponential size
in the input.

Copyright c© 2017, Association for the Advancement of Artificial
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Definition 2 Given a set M of feasible mazes, the Simul-
taneous Maze Solving Problem (SIMASOP) demands to find
the shortest solving sequence for all mazes in M.

If for a solving sequence the final position in all mazes is
the goal state, we call it a perfect solving sequence. Figure 2
illustrates these concepts for 3× 2 mazes.

Finding a solving sequence in practice incurs subprob-
lems interesting on their own, like the enumeration of all
feasible n × m mazes. There are already more than 9 tril-
lion 7 × 7 mazes, so just verifying a movement sequence
becomes a real challenge.

Related Work

The simultaneous maze solving problem can be seen as an
instance of conformant planning, where the goal is to syn-
thesize a plan under the assumption that there is no sensing
capability during plan execution (Smith and Weld 1998),
(Hoffmann and Brafman 2006). In fact, a solution for
ASIMASOP could be interpreted as en emergency protocol
for a robot whose sensors fail, that allows to reach the exit
of a room despite having no knowledge about the number
and positions of potential obstacles.

Furthermore, SIMASOP and ASIMASOP can be formu-
lated as instances of the problem of finding a synchronizing
sequence (Hennine 1964) for a graph. A synchronizing se-
quence of a labeled graph is a traversal that ends up in one
and the same state for every starting state. We can transform
our problem to the synchronizing sequence problem by con-
structing a graph for the union of all mazes in M and adding
one further state q to which all the goal states are connected
via all possible labels. The state q then also has a loop edge
to itself; hence we stay in this state once entered. A synchro-
nizing sequence for this graph without the last symbol/move
is a solving sequence for M. As synchronizing sequences
allow arbitrary start states (and not only the upper left cor-
ner), they might be significantly longer than shortest solving
sequences. Furthermore, applying any algorithm for con-
structing synchronizing sequences seems doomed by the ex-
ponential growth of |M| for ASIMASOP which implies ex-
ponential growth of the respective graph.

There is also a close connection of our problem to univer-
sal traversal sequences (UTS) (Aleliunas et al. 1979) for la-
beled d-regular graphs. A d-regular graph is called labeled
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Figure 1: Binary matrix representation (left) of
a 4 × 5 maze (center). Movement sequences
drrddrr, rdrdrdddrdr, drrrdddrrrr all correspond to
the solving path shown in blue (right).

Figure 2: All 8 feasible 3×2 mazes along with their shortest
solving sequence of length 5 ddrdd, which is also a perfect
solving sequence.

if each adjacent edge of a node v is assigned a unique la-
bel from {0, . . . , d − 1}. This labeling does not have to be
consistent, i.e., the edge vw might get different labels from
v and w. A string s ∈ {0, . . . , d − 1}∗ is called a UTS
for (N, d) if in any connected, N -node, d-regular, labeled
graph, starting from an arbitrary node and following s (al-
ways choosing the next edge according to the next character
in s) leads to a complete traversal of the graph. Finding a
UTS is more general than finding a solving sequence. In-
deed, every UTS for graphs of size N = n · m and degree
d = 4 is also a solving sequence for the set of all feasible
n × m mazes. In (Aleliunas et al. 1979) the existence of a
UTS of length O (|V |3 log |V |) is shown. We improve upon
this bound for maze solving. [t]

Contribution

This paper provides the following insights on the simulta-
neous maze solving problem: We first prove SIMASOP to
be NP-complete by reduction from CNFSAT. Furthermore,
we show that a solving sequence as well as a perfect solv-
ing sequence exists for every ASIMASOP instance and pro-
vide theoretical lower as well as upper bounds on the se-
quence length. To allow for practical solutions, we provide
an algorithm that explicitly enumerates all feasible mazes
for given n,m as well as an algorithm that finds an unsolved
maze for a given movement sequence. Based on that we de-
sign several practical approaches which find good solving
sequences, as well as lower bounds. Table 1 shows what
can be achieved with our current implementation. Due to
the high combinatorial complexity of ASIMASOP, even for
4× 4 the optimal sequence length remains unknown.

Hardness Result

We now prove the decision problem of SIMASOP to be NP-
complete. Given a tuple (M, k), the decision problem asks
whether there exists a solving sequence for the set of mazes
M which has length ≤ k. First, we show SIMASOP ∈ NP.
We can check if there exists a solving sequence shorter than
k nondeterministically in polynomial time: we simply guess
a sequence of length ≤ k and then verify if it really is a

(a) (b) (c) (d)

Figure 3: Building blocks for the reduction functions.

Figure 4: The mazes resulting from f((A∨B)∧(¬B∨C)∧
(A ∨ ¬A ∨ ¬C) ∧ (D)).

solving sequence by naively checking this property for ev-
ery maze in M. Note that the mazes are part of the input
and thus contribute to the input size. This is not the case
for ASIMASOP where the input is only n and m, and there-
fore we cannot prove that ASIMASOP ∈ NP using the same
argument. It remains to show NP-hardness for SIMASOP.
This is done by providing a polynomial time reduction from
CNFSAT.

Definition 3 (CNFSAT) Given a Boolean formula F in
conjunctive normal form (CNF), i.e., F =

∧c
i=1

∨ci
j=1 Ai,j .

The decision problem CNFSAT asks if there exists a satisfy-
ing assignment for F .

Given a formula in CNF F =
∧c

i=1

∨ci
j=1 Ai,j , we define

the function f that realizes the reduction as f(F ) = ({M}∪
{Mi|1 ≤ i ≤ c}, 9η − 6) where η is the number of distinct
variables X1, . . . , Xη in F , and M and the Mi are mazes as
described in the following. The maze M consist of an empty
3 × 2 block for every variable Xi in F ; see Figure 3(a).
These blocks appear in order of the index of the variable and
in between two of those blocks is one 3× 3 block as shown
in Figure 3(b). The mazes Mi – which correspond to the
clauses Ci of F – consist of a block like shown in Figure 3(c)
for every variable Xj , where the green field is not blocked
if and only if Xj is contained in the clause Ci while the red
field is not blocked if and only if ¬Xj is contained in the
clause Ci. In between those blocks there is a 3 × 3 block
like the one shown in Figure 3(d). The mazes contained in
f(F ) for the example formula F = (A ∨B) ∧ (¬B ∨C) ∧
(A ∨ ¬A ∨ ¬C) ∧ (D) can be seen in Figure 4. It remains
to show that f is indeed a reduction.

Lemma 4 F ∈ CNFSAT ⇔ f(F ) ∈ SIMASOP.

Proof. Let us first show that F ∈ CNFSAT ⇒ f(F ) ∈
SIMASOP. Assume F ∈ CNFSAT. It follows that there ex-
ists an assignment A under which F evaluates to true. From
the assignment A we construct a solving sequence s by iter-
ating over the assignment of the variables in order. If a vari-
able Xi is set to true, we append si = ddr, else si = rdd.
In between we always append rruurr. Note that this con-
structs a sequence of length 9η−6, which was chosen as k of
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n\m 2 3 4 5 6

lt lp up ut lt lp up ut lt lp up ut lt lp up ut lt lp up ut

2 2 3 3 480 3 5 5 1680 4 7 7 4032 7 11 11 7920 8 13 13 13728
3 4 11 11 5760 5 17 17 13728 10 26 67 26880 11 27 111 46512
4 6 27 29 32640 13 28 222 63840 14 29 434 110400
5 16 29 551 124800 19 30 1520 215760
6 20 31 3728 372960

Table 1: The entries lt, lp, up, ut denote the theoretical (lt) and practical (lp) lower bounds, as well as the practical (up) and
theoretical (ut) upper bounds for ASIMASOP on i × j mazes. For example, the entries in row 4, column 4 denote that the a
priori lower bound for the length of solving sequences for all 4 × 4 mazes is 6, whereas we could prove algorithmically that
such a sequence must have length at least 27. We could also algorithmically find a solving sequence of length 29, whereas our
analytic cubic upper bound is 32640. If lp = up, the optimal solution is known. But this only applies up to 4× 3.

the decision problem. Also note that s is a solving sequence
for M . It remains to show that it is a solving sequence for
each Mi. For this, consider the variable Xj with the small-
est index that makes Ci evaluate to true. Before we execute
the sequence sj appended to s for Xj , we are in the first row
of Mi. By construction, we are in the third row of Mi after
executing sj . Note that no up movement can bring us back
to the first row. As – again by construction – no right move-
ment of s is blocked in Mi, we end up in the goal state after
executing s in Mi.

For the second half of the proof we have to show that
f(F ) ∈ SIMASOP ⇒ F ∈ CNFSAT. For this assume
f(F ) ∈ SIMASOP and let (M, k) := f(F ). Furthermore,
let s, |s| ≤ k be the sequence that solves M. By construc-
tion of the reduction |s| = k, which is the length of the
shortest solving sequence of M . Thus, no right movement
of s is blocked in M or any of the Mi and we are therefore
always in the same column in all of the mazes during the
execution of s. As s solves all the mazes in M, we have
to cross the second row at some point of the traversal. The
crossings of the middle row imply an assignment A that
satisfies F . If we cross at the green field of Figure 3(c),
then we set Xj = 1, else we set Xj = 0. The variable that
corresponds to the block where the middle row of Mi is
crossed satisfies the clause Ci. As s is a solving sequence
for M, all middle rows are crossed and thus A satisfies F .

Existence of a Solving Sequence

Next, we are going to show that there indeed exists a solv-
ing sequence for any ASIMASOP (and therefore also any
SIMASOP) instance and provide a simple algorithm to find
such a sequence. In addition, we prove that also a per-
fect solving sequence always exists. However, as this proof
leverages the probabilistic method, it is not constructive.

Solve in Order To find a solving sequence for a set of
mazes M, we put them into an arbitrary ordering and then
solve one after another while appending to the already exist-
ing sequence. This means: we solve the first maze, then exe-
cute this sequence in the second maze, then solve the second
maze from the position we end up in, then we execute the re-
sulting sequence in the third maze, solve the third maze, and
so on. This algorithm always produces a feasible solving

sequence, but the order in which the mazes are considered
heavily influences the sequence length in the end.

Perfect Solving Sequence Next, we prove an even
stronger result – but unfortunately not in a constructive way.

Theorem 5 For given n,m, there exists a perfect solving
sequence for all feasible mazes of size n×m.

Proof. For n < 2 or m < 2 the claim is obviously true.
The idea of the proof is to create a random sequence accord-
ing to the probabilities pu, pd, pl, pr which are the probabil-
ities of moving up, down, left, and right, respectively. This
defines a Markov chain. By choosing the length of the ran-
dom sequence large enough, we can show – because of con-
vergence to a stationary distribution – that the probability of
being in the goal state in all mazes M ∈ M is larger than
3
4 . Thus, there exists a sequence with the property of being
a perfect solving sequence.

Let the probabilities be given as pu = pl = c, pd =
pr = 1

2 − c, c =
(
1
4

)nm ≤ 1
4 . We claim that the stationary

distribution of every Markov chain corresponding to a maze

in M is given by pi,j ∝
(

1
2−c

c

)i+j

where pi,j denotes the
probability of being in position (i, j) if the field is reachable
from the starting field. Note that this distribution does not
depend on any structure of the maze except the reachability
of the fields from the starting state – which is incorporated
in the proportionality.

We now show that this is indeed the stationary distribu-
tion. The probabilities obviously sum up to 1 . To show that
the probabilities stay the same after one step, we show at first
that it does not matter for the calculation if a field is next to
a wall or a free field. And secondly, that the sum evaluates
to the claimed value. The following equation shows that the
sum’s value does not change if there is a wall or a free field
above or to the left. The ”below” and ”left” case is analog
and thus omitted.

pi,j−1 · pr = pi−1,j · pd =

( 1
2 − c

c

)i+j−1

·
(
1

2
− c

)

=

( 1
2 − c

c

)i+j

· c = pi,j · pu = pi,j · pl
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Now we show the stationarity. We use vi,j to denote the
node of the Markov chain corresponding to position (i, j).∑

vk,l∈V

pk,lp((vk,l, vi,j))

= 2

( 1
2 − c

c

)i+j

· c+ 2

( 1
2 − c

c

)i+j

·
(
1

2
− c

)

=

(
2c+ 2

(
1

2
− c

))
·
( 1

2 − c

c

)i+j

= pi,j

From the fact that the probability of being in the goal state
is not equal to 1, we can derive that: in the stationary dis-
tribution the (non-proportional) probability to be in a certain
state that is not the goal state is less than 4c:

( 1
2 − c

c

)n+m

< 1 ⇔
( 1

2 − c

c

)n+m−1

<
c

1
2 − c

and
c

1
2 − c

≤ c
1
2 − 1

4

≤ 4c

As the defined Markov chains are not periodic, every initial
distribution converges to the stationary distribution. Thus,
for a long enough sequence it holds for every maze that

P (not in goal state) < 4c(nm− 1) = 4

(
1

4

)nm

(nm− 1)

where (nm − 1) is the maximal number of reachable fields
other than the goal. The equality results from plugging in c.
It then follows with Boole’s inequality:

P (not all in goal state) ≤
∑

M∈M
4

(
1

4

)nm

(nm− 1)

≤ 2nm−2 · 4
(
1

4

)nm

(nm− 1) ≤ 1

4

The second inequality holds as there are less than
2nm−2 feasible mazes of size n × m. It follows that
P (all in goal state) = 1 − P (not all in goal state) ≥ 1 − 1

4

= 3
4 > 0

Lower and Upper Bounds on the Sequence Length

Next, we show that the length of an optimal solving se-
quence can always be bounded a priori. We provide a lower
bound linear in nm and an upper bound which is cubic in
nm, also proving ASIMASOP ∈ PSPACE.

Lower Bounds For ASIMASOP we can easily see that
the length of solving sequences for smaller sizes are lower
bounds for the length of solving sequences for larger sizes
(i.e., the solving sequence for n × m is shorter than for
n + 1 ×m). This holds as the smaller mazes are contained
as sub-mazes in the larger mazes and so already a subset
of the larger mazes implies this lower bound. The relation
is strict as we have to take at least one additional step to
reach the new goal field. Another rather naive lower bound
is the length of the longest shortest path of a maze in M.
For ASIMASOP, we can easily give a lower bound on that

number. By blocking the right fields we can always create
a zigzag path as shortest solving sequence which goes all to
the bottom, two steps to the right, all to the top, two steps
to the right, and so on. The exact length of such a zigzag
path is

(
2
⌊
m−1
4

⌋
+ 1

)
(n+1)+((m− 1 mod 4)− 2); so,

approximately nm
2 . Note that we might obtain a better lower

bound if we construct a ”horizontal zigzag path”. To get its
length, simply swap n and m in the formula.

Upper Bounds We already showed that UTS is a more
general concept of a solving sequence for ASIMASOP. In
(Aleliunas et al. 1979) the authors prove that there always
exists a UTS with length O((nm)3 log(nm)), using our no-
tation. Simply calculating the shortest solving sequence by
brute-force is therefore possible in polynomial space. We
only have to hold the current sequence and the maze we are
currently checking in memory. This implies ASIMASOP ∈
PSPACE.

We now improve the upper bound on the solving sequence
length by explicitly taking the maze structure into account.
Theorem 6 For every set of feasible n×m mazes there ex-
ists a solving sequence of length O((nm)3).
Before we conduct the main proof, we state an important re-
sult about random walks that is needed for the proof. The
proof of this claim is included in (Aleliunas et al. 1979) as
Theorem 4 and in (Motwani and Raghavan 1995) as Theo-
rem 6.8. We therefore omit it here.
Lemma 7 Let G = (V,E), |V | = n, |E| = m be an undi-
rected, connected graph and let T (v, ·) be the cover time of
G starting from v ∈ V , i.e., the expected number of edge
traversals by a random walk starting in v until all vertices
in G have been visited. Then T (v, ·) ≤ 2m(n− 1).
Now we give the proof for Theorem 6.

Proof. Let s be a random sequence with |s| = 2 ·
4nm(nm − 1)(nm + 1) ∈ O (

(nm)3
)
. The moves of s

– which can be interpreted as random variables – are cho-
sen independently and with all moves being equally likely.
Let Mn,m be the set of all feasible n × m mazes, and let
XM ,M ∈ Mn,m be a random variable such that:

XM =

{
0, if s is a solving sequence of M
1, otherwise

Additionally, let Y :=
∑

M∈Mn,m
XM . The sequence s

is a solving sequence for Mn,m iff Y = 0. Therefore, if
we can show that E[Y ] < 1, it follows that there exists a
solving sequence of length |s|. We claim that E[XM ] ≤
2−(nm+1). With |Mn,m| ≤ 2nm it then follows that:

E[Y ] = E
[∑

M∈Mn,m
XM

]
=

∑
M∈Mn,m

E[XM ] ≤
2nm ·2−(nm+1) < 1. Therefore, it only remains to show that
indeed E[XM ] ≤ 2−(nm+1). For this, let us consider s as a
concatenation of nm+1 random sequences s1, . . . , snm+1,
each being of length 2 · 4nm(nm − 1). Let Z be a random
variable that equals the number of transitions we need to
visit all reachable fields in a maze, starting from an arbitrary
field, when executing a random sequence. Using Lemma 7,
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n 1 2 3 4 5 6

#feasible mazes 1 3 51 3, 828 1, 225, 194 1, 636, 193, 228

n 7

#feasible mazes 9, 009, 490, 924, 794

Table 2: Number of feasible mazes of size n × n according
to (The On-Line Encyclopedia of Integer Sequences ).

we know that E[Z] ≤ 2 · 2nm(nm − 1) (as the graph is
undirected). With Markov’s inequality we then get:

P (Z ≥ 2 · 4nm(nm− 1)) ≤ E[Z]

2 · 4nm(nm− 1)

≤ 2 · 2nm(nm− 1)

2 · 4nm(nm− 1)
≤ 1

2

In other words, the probability that during the exe-
cution of si, 1 ≤ i ≤ nm + 1 we do not visit the
goal field – starting on an arbitrary field – is at most
1
2 . Therefore, the probability that we do not visit
the goal field when executing s = s1 . . . snm+1 is:
P (XM = 1) ≤ (

1
2

)nm+1
= 2−(nm+1) By plug-

ging in the definition of the expected value we get:
E[XM ] = P (XM = 1) ≤ 2−(nm+1)

Enumeration of Feasible Mazes

Number of Feasible Mazes

The exact number of feasible mazes of size n × n for n
up to 7 is part of the OEIS (The On-Line Encyclopedia of
Integer Sequences ), see Table 2 for the results. While the
numbers are listed there, no explicit formula or algorithm
to calculate them is given. We will calculate the number of
feasible mazes in the following by enumerating them.

Practical Enumeration

To calculate the exact number of feasible mazes, we enu-
merate them via their solving right-hand path. The solving
right-hand path of a maze is the path we get when solving
the maze while always keeping a wall at our right-hand side,
starting in the upper-left corner. This technique is guaran-
teed to produce a solving sequence for a maze as long as
the maze is feasible. In Figure 5 the blue trajectories are all
solving right-hand paths.

Note that every feasible maze has exactly one solving
right-hand path. However, some feasible mazes have the
same solving right-hand path. So, instead of enumerating
the mazes themselves, we enumerate all the possible solv-
ing right-hand paths. Then we calculate the number of fea-
sible mazes for every solving right-hand path and add them
up. To get all possible solving right-hand paths we use a
simple tree search. Every node of the tree contains a maze
and a position in this maze. The root of the tree contains an
empty maze with the current position being the start field.
For every possible move in the maze of the parent node a
child node is created. A child is pruned if the move con-
tradicts a solving right-hand path. Note that by performing

Figure 5: All possible right hand paths in a 3× 3 maze. The
red-marked fields can be set arbitrarily as they do not affect
the right hand path. Thus, the number of feasible 3×3 mazes
is: 22 + 22 + 22 + 22 + 21 + 22 + 23 + 20 + 22 + 24 = 51.

the moves, we might have to set fields to be blocked or free
for the right-hand path property to be preserved. A solving
right-hand path is found when the goal field is reached. How
do we now calculate the number of mazes for a given solv-
ing right-hand path? This is done by counting the fields in
the maze which can still be arbitrarily set. There are two
types of fields which cannot be arbitrarily set: the fields on
the solving right-hand path (they have to be free) and the
fields that define the solving right-hand path (they have to be
blocked). A blocked field is said to define a solving right-
hand path if the solving right-hand path changes if the field
is not blocked. Let the number of fields that can still be ar-
bitrarily set be a. Then the number of different mazes with a
certain solving right-hand path is 2a, i.e. all possible assign-
ments of those fields. See Figure 5 for an example.

Finding Unsolved Mazes

There are several reasons why we need algorithms that find
unsolved mazes given a sequence s. First, we can use those
algorithms to check if s is a solving sequence. Secondly, we
will use this as a black box for our practical algorithms.

The general idea is to perform a depth first search where
the depth of the tree corresponds to the position in s. The
children of a node depend on whether we are blocked in this
step or not. Thus, in every node we have a position in a
certain maze with fields that are either blocked, free or un-
known. The maze of the root node has two free fields – start
and goal – and all the others are unknown. Note that often
a child node will not be created because it contradicts the
maze of its parent or because it is not feasible. This is im-
portant as it prunes the tree and therefore greatly reduces the
runtime of the search. See Figure 6 for an illustration.

Computing Solving Sequences in Practice

Exact Algorithms

Brute Force. The naive way to calculate a shortest solving
sequence is to try for every possible sequence, in ascending
order of their length, if it is a solving sequence for the given
set of mazes. The runtime is in O (

4k · |M|) where k is the
length of the shortest solving sequence of M. We have 4
different moves to choose from for all sequences up to the
length of k, and for every sequence we have to check if it
solves all the mazes in M. Note that if M is not explic-
itly given as in ASIMASOP and the implicitly used M is too
large to compute explicitly, we have to use an algorithm to
find an unsolved maze.
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Figure 6: Tree for 3 × 2 mazes and s = rrdr. There are
two types of children: The ones connected with a red edge,
which are those where the move is blocked and the ones
connected with a green edge in the other case. The cur-
rent position is marked with a red square. Blocked fields
(gray) have to be blocked. The mandatory free fields are
marked with blue color. The tree is constructed by a depth
first search where first ”green children” are explored. In two
of the leaves we stop exploring because we found a solved
maze; in three of the leaves we stop because the maze is not
solvable anymore; and in the upper leaf we find an unsolved
maze, which is then returned by the algorithm.

A∗. To improve the runtime, we can use Dijkstra’s algo-
rithm (Dijkstra 1959) or A∗ (Hart, Nilsson, and Raphael
1968) to find a shortest solving sequence. The set of nodes
of the graph that the algorithm is working on is the power set
of states of the single mazes. The edges are possible transi-
tions between those states. The runtime on a set of mazes M
of size n×m is in O (

(nm)|M| · |M| log(nm)
)
. For A∗, we

use the longest shortest path of all mazes to the goal state as
heuristic. For A∗ not to expand a node more than once, the
used heuristic has to be consistent. A heuristic h is consis-
tent iff h(v) ≤ c(v, w)+h(w) and h(goal state) = 0, where
c is the transition cost function. If we are in the goal state,
then the longest shortest path is 0, i.e., h(goal state) = 0. In
our scenario, we have c(v, w) ∈ {0, 1}. If c(v, w) = 0, we
stay in the same state (v = w) and the inequality holds. If
c(v, w) = 1, we know that we took one step and the heuris-
tic can decrease at most by one. Thus, the inequality holds.
Consistency follows.
Exact Solving Sequence (ESS). ESS iteratively builds a set
of mazes and computes a shortest solving sequence for this
set. In every round a new unsolved maze is included in the
set. By construction, the length of the solving sequence stays
the same or increases in every round. Additionally, we know
that we found a shortest solving sequence if there is no un-
solved maze left. To compute a shortest solving sequence for
a set of mazes, we can use A∗. To find an unsolved maze,
we can use the already presented algorithm.

Heuristic Solutions

Random Sequence (RS). A rather naive way of finding a
solving sequence is to create a long random sequence (mim-
icking the probabilistic argument of the proof of Theorem 6)
and then check if it solves all mazes. The probability for it

being a solving sequence increases with its length. Interest-
ingly, this method produces good results as we show in our
experiments.
Solve in Order (SO). We gave a constructive proof for the
existence of a solving sequence, which implies a heuristic
algorithm. By choosing different orderings, we can improve
the approximation in practice. This method requires that it
is feasible w.r.t. runtime to iterate through all the mazes.
Iteratively Append to Sequence (IAS). To make the SO
algorithm work, we just need one unsolved maze in every
round. If the explicit construction of all mazes is too ex-
pensive, we use our described algorithm to find an unsolved
maze as a remedy. So, we iteratively compute an unsolved
maze and then append moves to the already existing se-
quence to also make it a solving sequence for this maze.
Greedy Lookahead (GL). The ESS algorithm always com-
putes a shortest solving sequence for a set of mazes. How-
ever, instead of computing an exact shortest solving se-
quence with this function, we can also just use an approx-
imation. We compute an approximate shortest solving se-
quence by greedily choosing the best sequence (according
to some value function) out of a sequence of lookahead se-
quences L. In our experiments we set L to be the set of
all sequences of length 3, and the value function to be the
sum of the squared distances to the goal in every maze. This
change accelerates the algorithm significantly while slightly
impairing the length of the returned solving sequence.

All of the above methods can be combined with a simple
minimization postprocessing where moves are deleted from
the solving sequence while maintaining feasibility.

Practical Lower Bounds

Above, we considered heuristics for finding good solving
sequences in practice. The length of the resulting sequence
constitutes an upper bound on the length of the shortest solv-
ing sequence. In the algorithms that compute an exact short-
est solving sequence, we can use any intermediate result as
a lower bound.

Experimental Results

We implemented all discussed approaches in Python. Ex-
periments were conducted on an Intel Core i7-4510U CPU
and 12GB of RAM.
Enumeration. Our explicit enumeration algorithm worked
well for small n,m. The 30,754,544 feasible mazes for 5×6
(induced by 152,668 right-hand paths) could be enumerated
in less than a second. For 7 × 7 (the largest known value
in the On-Line Encyclopedia of Integer Sequences), it took
about 5 minutes to list the more than 83 billion mazes by
enumerating the respective right-hand paths. The largest val-
ues that we could handle was 7 × 8, which took about 224
minutes and resulted in 939,356,338,522,456 (over 900 tril-
lion) mazes. Given better hardware and more computation
time, we think that 8 × 8 should be possible with our algo-
rithm; but for larger values, new insights might be required.
Finding Unsolved Mazes. The tree based method to find
an unsolved maze outperformed the naive baseline (parsing
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n RS IAS GL SO

1 < 0.1 < 0.1 < 0.1 0.3

2 < 0.1 < 0.1 < 0.1 0.9

3 2.7 < 0.1 < 0.1 10.9

4 170.7 0.3 8.7 842.3

Table 3: Runtimes (in seconds) for ASIMASOP with size n×
n. The times are without minimization, except for RS where
minimization is inherent. As RS and SO are randomized,
we executed them 10 and 20,000 times, respectively.

through all mazes) by far. The gap grows with increasing
maze size and number of mazes. Finding an unsolved maze
of size 8×8 for a random sequence of length 1000 took only
a few minutes, while explicit enumeration was infeasible.
Exact Solutions. Brute force took several minutes on 3× 3
and was already infeasible for 3 × 4. A∗ could solve 3 × 4
in 99 seconds, ESS in about 5 seconds. For 4 × 4, unfor-
tunately no exact solution could be computed by any of the
approaches.
Heuristic Solutions. With our proposed heuristics we could
compute solving sequences up to 6 × 6. In fact, this was
possible using IAS, which depends on our fast routine to
find an unsolved maze; but nevertheless it already took sev-
eral days for 6 × 6 (while 5 × 5 took a few hours). The
other approaches only produced results up to 4 × 4. Table
3 presents the runtimes of all heuristics (RS, IAS, GL and
SO) for ASIMASOP and Table 4 shows a comparison of the
produced sequence lengths. Using SO leads to the shortest
sequences. But thousands of runs with randomly permuted
maze orders were necessary to obtain these results. Mini-
mization costs (for all heuristics) are a few seconds for 3×3
but already a few minutes for 4 × 4. Hence SO with mini-
mization quickly becomes expensive. As it relies on explicit
enumeration of the mazes, large instances cannot be solved.

Lower Bounds. The best practical lower bounds we found
are reported in Table 1. They are all due to the ESS al-
gorithm which easily outperformed all other suggested ap-
proaches w.r.t. runtime and solution quality. With the help
of these lower bounds we can estimate the quality of our
found solutions. For 4 × 4, the gap is very small. We can
prove that the optimal solution length is between 27 and 29.
But already for 4× 5, our best solution is about a factor of 8
larger than the lower bound, for 6× 6 the factor is over 100.
So either better heuristics or better lower bounds (or both)
are necessary to narrow down this gap.

Conclusions and Future Work

We considered the problem of computing short solving se-
quences for sets of n × m mazes. Apart from establishing
NP-hardness for SIMASOP, we showed a linear lower and
a probabilistic cubic upper bound (in the size of the mazes)
for the length of solving sequences both in the SIMASOP
and ASIMASOP case. The complexity status of ASIMASOP
is unclear, though. While we showed ASIMASOP to be in
PSPACE, a proof for PSPACE-hardness is unknown. From a

n RS IAS GL SO

2 250 (3) 3 (3) 3 (3) 3 (3)

3 250 (14) 20 (17) 15 (14) 12 (11)

4 250 (51) 109 (53) 74 (53) 50 (29)

5 – 551 – –
6 – 3728 – –

Table 4: Approximate shortest solving sequence length of
the different algorithms for ASIMASOP with size n × n. In
brackets we note the length of the minimized sequence.

practical point of view, we were able to compute exact solu-
tions for mazes up to size 4×3, and heuristic solutions up to
6×6, solving interesting subproblems for moderate instance
sizes along the way. A natural goal is to narrow the gap be-
tween upper and lower bounds for larger problem instances.
Parallelization of our approaches could help. However, for
much larger instances, additional insights in the structure of
the problem are probably necessary.
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