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Abstract

We consider non-monotone DR-submodular function maxi-
mization, where DR-submodularity (diminishing return sub-
modularity) is an extension of submodularity for functions
over the integer lattice based on the concept of the di-
minishing return property. Maximizing non-monotone DR-
submodular functions has many applications in machine
learning that cannot be captured by submodular set functions.
In this paper, we present a 1

2+ε
-approximation algorithm with

a running time of roughly O(n
ε
log2 B), where n is the size

of the ground set, B is the maximum value of a coordinate,
and ε > 0 is a parameter. The approximation ratio is almost
tight and the dependency of running time on B is exponen-
tially smaller than the naive greedy algorithm. Experiments
on synthetic and real-world datasets demonstrate that our al-
gorithm outputs almost the best solution compared to other
baseline algorithms, whereas its running time is several or-
ders of magnitude faster.

Introduction
Submodular functions have played a key role in various
tasks in machine learning, statistics, social science, and eco-
nomics. A set function f : 2E → R with a ground set E is
submodular if

f(X ∪ {e})− f(X) ≥ f(Y ∪ {e})− f(Y )

for arbitrary sets X,Y ⊆ E with X ⊆ Y , and an ele-
ment e ∈ E \ Y . The importance and usefulness of sub-
modularity in these areas are due to the fact that submodu-
lar functions naturally capture the diminishing return prop-
erty. Various important functions in these areas such as the
entropy function, coverage function, and utility functions
satisfy this property. See, e.g., (Krause and Golovin 2014;
Fujishige 2005).

Recently, maximizing (non-monotone) submodular func-
tions has attracted particular interest in the machine learn-
ing community. In contrast to minimizing submodular func-
tions, which can be done in polynomial time, maximizing
submodular functions is NP-hard in general. However, we
can achieve a constant factor approximation for various set-
tings. Notably, (Buchbinder et al. 2012) presented a very el-
egant double greedy algorithm for (unconstrained) submod-
ular function maximization, which was the first algorithm
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achieving 1
2 -approximation, and this approximation ratio is

tight (Feige, Mirrokni, and Vondrak 2011). Applications of
non-monotone submodular function maximization include
efficient sensor placement (Krause, Singh, and Guestrin
2008), privacy in online services (Krause and Horvitz 2008),
and maximum entropy sampling (Ko, Lee, and Queyranne
1995).

The models and applications mentioned so far are built
upon submodular set functions. Although set functions are
fairly powerful for describing problems such as variable se-
lection, we sometimes face difficult situations that cannot be
cast with set functions. For example, in the budget allocation
problem (Alon, Gamzu, and Tennenholtz 2012), we would
like to decide how much budget should be set aside for each
ad source, rather than whether we use the ad source or not.
A similar issue arises when we consider models allowing
multiple choices of an element in the ground set.

To deal with such situations, several generalizations of
submodularity have been proposed. (Soma et al. 2014) de-
vised a general framework for maximizing monotone sub-
modular functions on the integer lattice, and showed that
the budget allocation problem and its variant fall into this
framework. In their framework, functions are defined over
the integer lattice ZE

+ and therefore effectively represent dis-
crete allocations of budget. Regarding the original motiva-
tion for the diminishing return property, one can naturally
consider its generalization to the integer lattice: a function
f : ZE

+ → R satisfying

f(x+ χe)− f(x) ≥ f(y + χe)− f(y)

for x ≤ y and e ∈ E, where χe ∈ R
E is the vector with

χe(e) = 1 and χe(a) = 0 for every a �= e. Such functions
are called diminishing return submodular (DR-submodular)
functions (Soma and Yoshida 2015) or coordinate-wise con-
cave submodular functions (Milgrom and Strulovici 2009).
DR-submodular functions have found various applications
in generalized sensor placement (Soma and Yoshida 2015)
and (a natural special case of) the budget allocation prob-
lem (Soma et al. 2014).

As a related notion, a function is said to be lattice sub-
modular if

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y)

for arbitrary x and y, where ∨ and ∧ are coordinate-wise
max and min, respectively. Note that DR-submodularity is
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stronger than lattice submodularity in general (see, e.g.,
(Soma et al. 2014)). Nevertheless, we consider the DR-
submodularity to be a “natural definition” of submodular-
ity, at least for the applications mentioned so far, because
the diminishing return property is crucial in these real-world
scenarios.

Our contributions

We design a novel polynomial-time approximation al-
gorithm for maximizing (non-monotone) DR-submodular
functions. More precisely, we consider the optimization
problem

maximize f(x)
subject to 0 ≤ x ≤ B,

(1)

where f : Z
E
+ → R+ is a non-negative DR-submodular

function, 0 is the zero vector, and B ∈ Z
E
+ is a vector rep-

resenting the maximum values for each coordinate. When
B is the all-ones vector, this is equivalent to the original
(unconstrained) submodular function maximization. We as-
sume that f is given as an evaluation oracle; when we spec-
ify x ∈ Z

E
+, the oracle returns the value of f(x).

Our algorithm achieves 1
2+ε -approximation for any con-

stant ε > 0 in O( |E|
ε ·log(Δδ ) logB ·(θ+logB)) time, where

δ and Δ are the minimum positive marginal gain and max-
imum positive values, respectively, of f , B = ‖B‖∞ :=
maxe∈E B(e), and θ is the running time of evaluating (the
oracle for) f . To our knowledge, this is the first polynomial-
time algorithm achieving (roughly) 1

2 -approximation.
We also conduct numerical experiments on the revenue

maximization problem using real-world networks. The ex-
perimental results show that the solution quality of our algo-
rithm is comparable to other algorithms. Furthermore, our
algorithm runs several orders of magnitude faster than other
algorithms when B is large.

DR-submodularity is necessary for obtaining polynomial-
time algorithms with a meaningful approximation guaran-
tee; if f is only lattice submodular, then we cannot obtain
constant-approximation in polynomial time. To see this, it
suffices to observe that an arbitrary univariate function is
lattice submodular, and therefore finding an (approximate)
maximum value must invoke O(B) queries. We note that
representing an integer B requires �log2 B bits. Hence, the
running time of O(B) is pseudopolynomial rather than poly-
nomial.

Fast simulation of the double greedy algorithm

Naturally, one can reduce the problem (1) to maximization
of a submodular set function by simply duplicating each
element e in the ground set into B(e) distinct copies and
defining a set function over the set of all the copies. One
can then run the double greedy algorithm (Buchbinder et al.
2012) to obtain 1

2 -approximation. This reduction is simple
but has one large drawback; the size of the new ground set
is

∑
e∈E B(e), a pseudopolynomial in B. Therefore, this

naive double greedy algorithm does not scale to a situation
where B is large.

For scalability, we need an additional trick that reduces
the pseudo-polynomial running time to a polynomial one.
In monotone submodular function maximization on the in-
teger lattice, (Soma and Yoshida 2015; 2016) provide such
a speedup trick, which effectively combines the decreasing
threshold technique (Badanidiyuru and Vondrák 2014) with
binary search. However, a similar technique does not apply
to our setting, because the double greedy algorithm works
differently from (single) greedy algorithms for monotone
submodular function maximization. The double greedy al-
gorithm examines each element in a fixed order and marginal
gains are used to decide whether to include the element or
not. In contrast, the greedy algorithm chooses each element
in decreasing order of marginal gains, and this property is
crucial for the decreasing threshold technique.

We resolve this issue by splitting the set of all marginal
gains into polynomially many small intervals. For each in-
terval, we approximately execute multiple steps of the dou-
ble greedy algorithm at once, as long as the marginal gains
remain in the interval. Because the marginal gains do not
change (much) within the interval, this simulation can be
done with polynomially many queries and polynomial-time
overhead. To our knowledge, this speedup technique is not
known in the literature and is therefore of more general in-
terest.

Very recently, (Ene and Nguyen 2016) pointed out that
a DR-submodular function f : {0, 1, . . . , B}E → R+

can be expressed as a submodular set function g over a
polynomial-sized ground set, which turns out to be E ×
{0, 1, . . . , k − 1}, where k = �log2(B + 1). Their idea
is representing x(e) in binary form for each e ∈ E, and
bits in the binary representations form the new ground set.
We may want to apply the double greedy algorithm to g
in order to get a polynomial-time approximation algorithm.
However, this strategy has the following two drawbacks:
(i) The value of g(E × {0, 1, . . . , k − 1}) is defined as
f(x), where x(e) = 2k − 1 for every e ∈ E. This means
that we have to extend the domain of f . (ii) More cru-
cially, the double greedy algorithm on g may return a large
set such as E × {0, 1, . . . , k − 1} whose corresponding
vector x ∈ Z

E
+ may violate the constraint x ≤ B. Al-

though we can resolve these issues by introducing a knap-
sack constraint, it is not a practical solution because exist-
ing algorithms for knapsack constraints (Lee et al. 2009;
Chekuri, Vondrák, and Zenklusen 2014) are slow and have
worse approximation ratios than 1/2.

Notations For an integer n ∈ N, [n] denotes the set
{1, . . . , n}. For vectors x,y ∈ Z

E , we define f(x | y) :=
f(x + y) − f(y). The �1-norm and �∞-norm of a vec-
tor x ∈ Z

E are defined as ‖x‖1 :=
∑

e∈E |x(e)| and
‖x‖∞ := maxe∈E |x(e)|, respectively.

Related work

As mentioned above, there have been many efforts to max-
imize submodular functions on the integer lattice. Perhaps
the work most related to our interest is (Gottschalk and
Peis 2015), in which the authors considered maximizing
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lattice submodular functions over the bounded integer lat-
tice and designed 1

3 -approximation pseudopolynomial-time
algorithm. Their algorithm was also based on the double
greedy algorithm, but does not include a speeding up tech-
nique, as proposed in this paper.

In addition there are several studies on the constrained
maximization of submodular functions (Feige, Mirrokni,
and Vondrak 2011; Buchbinder et al. 2014; Buchbinder and
Feldman 2016), although we focus on the unconstrained
case. Many algorithms for maximizing submodular func-
tions are randomized, but a very recent work (Buchbinder
and Feldman 2016) devised a derandomized version of the
double greedy algorithm. (Gotovos, Karbasi, and Krause
2015) considered maximizing non-monotone submodular
functions in the adaptive setting, a concept introduced
in (Golovin and Krause 2011).

A continuous analogue of DR-submodular functions is
considered in (Bian et al. 2016).

Algorithms

In this section, we present a polynomial-time approximation
algorithm for maximizing (non-monotone) DR-submodular
functions. We first explain a simple adaption of the double
greedy algorithm for (set) submodular functions to our set-
ting, which runs in pseudopolynomial time. Then, we show
how to achieve a polynomial number of oracle calls. Finally,
we provide an algorithm with a polynomial running time
(details are placed in the full version).

Pseudopolynomial-time algorithm

Algorithm 1 is an immediate extension of the double
greedy algorithm for maximizing submodular (set) func-
tions (Buchbinder et al. 2012) to our setting. We start with
x = 0 and y = B, and then for each e ∈ E, we tighten the
gap between x(e) and y(e) until they become exactly the
same. Let α = f(χe | x) and β = f(−χe | y). We note
that

α+ β = f(x+ χe)− f(x)− (f(y)− f(y − χe)) ≥ 0

holds from the DR-submodularity of f . Hence, if β < 0,
then α > 0 must hold, and we increase x(e) by one. Simi-
larly, if α < 0, then β > 0 must hold, and we decrease y(e)
by one. When both of them are non-negative, we increase
x(e) by one with probability α

α+β , or decrease y(e) by one

with the complement probability β
α+β .

Theorem 1. Algorithm 1 is a 1
2 -approximation algorithm

for (1) with time complexity O(‖B‖1 · θ + ‖B‖1), where θ
is the running time of evaluating f .

We omit the proof as it is a simple modification of the
analysis of the original algorithm.

Algorithm with polynomially many oracle calls

In this section, we present an algorithm with a polynomial
number of oracle calls.

Our strategy is to simulate Algorithm 1 without evaluating
the input function f many times. A key observation is that,
at Line 4 of Algorithm 1, we do not need to know the exact

Algorithm 1 Pseudopolynomial-time algorithm

Input: f : ZE
+ → R+, B ∈ Z

E
+.

Assumption: f is DR-submodular.
1: x← 0, y ← B.
2: for e ∈ E do
3: while x(e) < y(e) do
4: α← f(χe | x) and β ← f(−χe | y).
5: if β < 0 then
6: x(e)← x(e) + 1.
7: else if α < 0 then
8: y(e)← y(e)− 1.
9: else

10: x(e) ← x(e) + 1 with probability α
α+β and

y(e) ← y(e) − 1 with the complement proba-
bility β

α+β . If α = β = 0, we assume α
α+β = 1.

11: end if
12: end while
13: end for
14: return x.

value of f(χe | x) and f(−χe | y); good approximations
to them are sufficient to achieve an approximation guarantee
close to 1

2 . To exploit this observation, we first design an
algorithm that outputs (sketches of) approximations to the
functions g(b) := f(χe | x + bχe) and h(b) := f(−χe |
y − bχe). Note that g and h are non-increasing functions in
b because of the DR-submodularity of f .

To illustrate this idea, let us consider a non-increasing
function φ : {0, 1, . . . , B − 1} → R and suppose that φ
is non-negative (φ is either g or h later on). Let δ and Δ
be the minimum and the maximum positive values of φ, re-
spectively. Then, for each δ ≤ τ ≤ Δ of the form δ(1+ ε)k,
we find the minimum bτ such that φ(bτ ) < τ (we regard
φ(B) = −∞). From the non-increasing property of φ, we
then have φ(b) ≥ τ for any b < bτ . Using the set of pairs
{(τ, bτ )}τ , we can obtain a good approximation to φ. The
details are provided in Algorithm 2.
Lemma 2. For any φ : {0, 1, . . . , B − 1} → R and ε > 0,
Algorithm 2 outputs a set of pairs {(bτ , τ)}τ from which, for
any b ∈ {0, 1, . . . , B − 1}, we can reconstruct a value v in
O(logB) time such that v ≤ φ(b) < (1 + ε)v if φ(b) > 0
and v = 0 otherwise. The time complexity of Algorithm 2
is O( 1ε log(

Δ
δ ) logB · θ) if φ has a positive value, where δ

and Δ are the minimum and maximum positive values of φ,
respectively, and θ is the running time of evaluating φ, and
is O(logB · θ) otherwise.

Proof. Let S = {(bτ , τ)}τ be the set of pairs output by Al-
gorithm 2. Our reconstruction algorithm is as follows: Given
b ∈ {0, 1, . . . , B−1}, let (bτ∗ , τ∗) be the pair with the min-
imum bτ∗ , where b < bτ∗ . Note that such a bτ∗ always exists
because a pair of the form (B, ·) is always added to S. We
then output τ∗. The time complexity of this reconstruction
algorithm is clearly O(logB).

We now show the correctness of the reconstruction algo-
rithm. If φ(b) > 0, then, in particular, we have φ(b) ≥ δ.
Then, τ∗ is the maximum value of the form δ(1+ε)k at most
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Algorithm 2 Sketching subroutine for Algorithm 3

Input: φ : {0, 1, . . . , B − 1} → R, ε > 0.
Assumption: φ is non-increasing.

1: S ← ∅. We regard φ(B) = −∞.
2: Find the minimum b0 ∈ {0, 1, . . . , B} with φ(b0) ≤ 0

by binary search.
3: if b0 ≥ 1 then # φ has a positive value.
4: Δ← φ(0) and δ ← φ(b0 − 1).
5: for (τ ← δ; τ ≤ Δ; τ ← (1 + ε)τ ) do
6: Find the minimum bτ ∈ {0, 1, . . . , B} with

φ(bτ ) < τ by binary search.
7: S ← S ∪ {(bτ , τ)}
8: end for
9: if bδ �= B then

10: S ← S ∪ {(B, 0)}.
11: end if
12: else # φ is non-positive.
13: S ← S ∪ {(B, 0)}.
14: end if
15: return S.

φ(b). Hence, we have τ∗ ≤ φ(b) < (1 + ε)τ∗. If φ(b) ≤ 0,
(bτ∗ , τ∗) = (B, 0) and we output zero.

Finally, we analyze the time complexity of Algorithm 2.
Each binary search requires O(logB) time. The number of
binary searches performed is O(log1+ε

Δ
δ ) = O( 1ε log

Δ
δ )

when φ has a positive value and 1 when φ is non-positive.
Hence, we have the desired time complexity.

We can regard Algorithm 2 as providing a value oracle for
a function φ̃ : {0, 1, . . . , B − 1} → R+ that is an approxi-
mation to the input function φ : {0, 1, . . . , B − 1} → R.

We now describe our algorithm for maximizing DR-
submodular functions. The basic idea is similar to Algo-
rithm 1, but when we need f(χe | x) and f(−χe | y), we
use approximations to them instead. Let α and β be approx-
imations to f(χe | x) and f(−χe | y), respectively, ob-
tained by Algorithm 2. Then, we increase x(e) by one with
probability α

α+β and decrease y(e) by one with the comple-

ment probability β
α+β . The details are given in Algorithm 3.

We now analyze Algorithm 3. An iteration refers to an
iteration in the while loop from Line 5. We have ‖B‖1 it-
erations in total. For k ∈ {1, . . . , ‖B‖1}, let xk and yk be
x and y, respectively, right after the kth iteration. Note that
x‖B‖1

= y‖B‖1
is the output of the algorithm. We define

x0 = 0 and y0 = B for convenience.
Let o be an optimal solution. For k ∈ {0, 1, . . . , ‖B‖1},

we then define ok = (o∨xk)∧ yk. Note that o0 = o holds
and o‖B‖1

equals the output of the algorithm. We have the
following key lemma.
Lemma 3. For every k ∈ [‖B‖1], we have

E[f(ok−1)− f(ok)]

≤ 1 + ε

2
E[f(xk)− f(xk−1) + f(yk)− f(yk−1)] (2)

Proof. Fix k ∈ [‖B‖1] and let e be the element of interest
in the kth iteration. Let α and β be the values in Line 6 in

Algorithm 3 Algorithm with polynomially many queries

Input: f : ZE
+ → R+, B ∈ Z

E
+, ε > 0.

Assumption: f is DR-submodular.
1: x← 0, y ← B.
2: for e ∈ E do
3: Define g, h : {0, 1, . . . , B−1} → R as g(b) = f(χe |

x+ bχe) and h(b) = f(−χe | y − bχe).
4: Let g̃ and h̃ be approximations to g and h, respec-

tively, given by Algorithm 2.
5: while x(e) < y(e) do

6: α← g̃(x(e)) and β ← h̃(B(e)− y(e)).
7: x(e)← x(e)+1 with probability α

α+β and y(e)←
y(e)− 1 with the complement probability β

α+β . If
α = β = 0, we assume α

α+β = 1.
8: end while
9: end for

10: return x.

the kth iteration. We then have

E[f(xk)− f(xk−1) + f(yk)− f(yk−1)]

=
α

α+ β
f(χe | xk−1) +

β

α+ β
f(−χe | yk−1)

≥ α

α+ β
α+

β

α+ β
β =

α2 + β2

α+ β
, (3)

where we use the guarantee in Lemma 2 in the inequality.
We next establish an upper bound of E[f(ok−1)−f(ok)].

As ok = (o ∨ xk) ∧ yk, conditioned on a fixed ok−1, we
obtain

E[f(ok−1)− f(ok)]

=
α

α+ β

(
f(ok−1)− f(ok−1 ∨ xk(e)χe)

)

+
β

α+ β

(
f(ok−1)− f(ok−1 ∧ yk(e)χe)

)
. (4)

Claim 4. (4) ≤ (1+ε)αβ
α+β .

Proof. We show this claim by considering the following
three cases.

If xk(e) ≤ ok−1(e) ≤ yk(e), then (4) is zero.
If ok−1(e) < xk(e), then ok(e) = ok−1(e) + 1, and the

first term of (4) is

f(ok−1)− f(ok−1 ∨ xk(e)χe)

= f(ok−1)− f(ok−1 + χe)

≤ f(yk−1 − χe)− f(yk−1)

= f(−χe | yk−1)

≤ (1 + ε)β.

Here, the first inequality uses the DR-submodularity of f
and the fact that ok−1 ≤ yk−1 − χe, and the second in-
equality uses the guarantee in Lemma 2. The second term
of (4) is zero, and hence we have (4) ≤ (1+ε)αβ

α+β .
If yk(e) < ok−1(e), then by a similar argument, we have

(4) ≤ (1+ε)αβ
α+β .
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We now return to proving Lemma 3. By Claim 4,

(4) ≤ (1 + ε)αβ

α+ β
≤ 1 + ε

2

(α2 + β2

α+ β

)
≤ 1 + ε

2
· (3),

which indicates the desired result.

Theorem 5. Algorithm 3 is a 1
2+ε -approximation algorithm

for (1) with time complexity O( |E|
ε · log(Δδ ) log ‖B‖∞ · θ+‖B‖1 log ‖B‖∞), where δ and Δ are the minimum positive

marginal gain and the maximum positive value, respectively,
of f and θ is the running time of evaluating f .

Proof. Summing up (2) for k ∈ [‖B‖1], we get

‖B‖1∑
k=1

E[f(ok−1)− f(ok)]

≤ 1 + ε

2

‖B‖1∑
k=1

E[f(xk)− f(xk−1) + f(yk)− f(yk−1)].

The above sum is telescopic, and hence we obtain

E[f(o0)− f(o‖B‖1
)]

≤ 1 + ε

2
E[f(x‖B‖1

)− f(x0) + f(y‖B‖1
)− f(y0)]

≤ 1 + ε

2
E[f(x‖B‖1

) + f(y‖B‖1
)]

= (1 + ε)E[f(x‖B‖1
)].

The second inequality uses the fact that f is non-negative,
and the last equality uses y‖B‖1

= x‖B‖1
. Because

E[f(o0) − f(o‖B‖1
)] = f(o) − E[f(x‖B‖1

)], we obtain
that E[f(x‖B‖1

)] ≥ 1
2+εf(o).

We now analyze the time complexity. We only query the
input function f inside of Algorithm 2, and the number of
oracle calls is O( |E|

ε log(Δδ ) logB) by Lemma 2. Note that
we invoke Algorithm 2 with g and h, and the minimum pos-
itive values of g and h are at least the minimum positive
marginal gain δ of f . The number of iterations is ‖B‖1, and
we need O(logB) time to access g̃ and h̃. Hence, the total
time complexity is as stated.

Remark 6. We note that even if f is not a non-negative func-
tion, the proof of Theorem 5 works as long as f(x0) ≥ 0 and
f(y0) ≥ 0, that is, f(0) ≥ 0 and f(B) ≥ 0. Hence, given
a DR-submodular function f : ZE

+ → R and B ∈ Z
E
+, we

can obtain a 1
2+ε -approximation algorithm for the following

problem:

maximize f(x)−min{f(0), f(B)}
subject to 0 ≤ x ≤ B,

(5)

This observation is useful, as the objective function often
takes negative values in real-world applications.

Polynomial-time algorithm

In many applications, the running time needed to evaluate
the input function is a bottleneck, and hence Algorithm 3 is
already satisfactory. However, it is theoretically interesting
to reduce the total running time to a polynomial, and we
show the following. The proof is deferred to the full version.
Theorem 7. There exists a 1

2+2ε -approximation algo-

rithm with time complexity Õ( |E|
ε log(Δδ ) log ‖B‖∞ · (θ +

log ‖B‖∞)), where δ and Δ are the minimum positive
marginal gain and the maximum positive value, respectively
of f and θ is the running time of evaluating f . Here Õ(T )
means O(T logc T ) for some c ∈ N.

Experiments

In this section, we show our experimental results and the
superiority of our algorithm with respect to other baseline
algorithms.

Experimental setting

We conducted experiments on a Linux server with an Intel
Xeon E5-2690 (2.90 GHz) processor and 256 GB of main
memory. All the algorithms were implemented in C# and
were run using Mono 4.2.3.

We compared the following four algorithms:
• Single Greedy (SG): We start with x = 0. For each el-

ement e ∈ E, as long as the marginal gain of adding
χe to the current solution x is positive, we add it to x.
The reason that we do not choose the element with the
maximum marginal gain is to reduce the number of or-
acle calls, and our preliminary experiments showed that
such a tweak does not improve the solution quality.

• Double Greedy (DG, Algorithm 1).
• Lattice Double Greedy (Lattice-DG): The 1/3-

approximation algorithm for maximizing non-monotone
lattice submodular functions (Gottschalk and Peis 2015).

• Double Greedy with a polynomial number of oracle calls
with error parameter ε > 0 (Fast-DGε, Algorithm 3).

We measure the efficiency of an algorithm by the number
of oracle calls instead of the total running time. Indeed, the
running time for evaluating the input function is the domi-
nant factor of the total running, because objective functions
in typical machine learning tasks contain sums over all data
points, which is time consuming. Therefore, we do not con-
sider the polynomial-time algorithm (Theorem 7) here.

Revenue maximization

In this application, we consider revenue maximization on
an (undirected) social network G = (V,W ), where W =
(wij)i,j∈V represents the weights of edges. The goal is to
offer for free or advertise a product to users so that the rev-
enue increases through their word-of-mouth effect on others.
If we invest x units of cost on a user i ∈ V , the user becomes
an advocate of the product (independently from other users)
with probability 1 − (1 − p)x, where p ∈ (0, 1) is a pa-
rameter. This means that, for investing a unit cost to i, we
have an extra chance that the user i becomes an advocate
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(c) Twitter lists

Figure 1: Number of oracle calls

Table 1: Objective values (Our methods are highlighted in
gray.)

Adolescent health
B = 102 103 104 105 106

SG 280.55 2452.16 7093.73 7331.42 7331.50
DG 280.55 2452.16 7124.90 7332.96 7331.50
Lattice-DG 215.39 1699.66 6808.97 6709.11 5734.30
Fast-DG0.5 280.55 2452.16 7101.14 7331.36 7331.48
Fast-DG0.05 280.55 2452.16 7100.86 7331.36 7331.48
Fast-DG0.005 280.55 2452.16 7100.83 7331.36 7331.48

Advogato
B = 102 103 104 105 106

SG 993.15 8680.87 25516.05 27325.78 27326.01
DG 993.15 8680.87 25330.91 27329.39 27326.01
Lattice-DG 753.93 6123.39 24289.09 24878.94 21674.35
Fast-DG0.5 993.15 8680.87 25520.83 27325.75 27325.98
Fast-DG0.05 993.15 8680.87 25520.52 27325.75 27325.98
Fast-DG0.005 993.15 8680.87 25520.47 27325.75 27325.98

Twitter lists
B = 102 103 104 105 106

SG 882.43 7713.07 22452.61 25743.26 25744.02
DG 882.43 7713.07 22455.97 25751.42 25744.02
Lattice-DG 675.67 5263.87 20918.89 20847.48 15001.19
Fast-DG0.5 882.43 7713.07 22664.65 25743.06 25743.88
Fast-DG0.05 882.43 7713.07 22658.58 25743.06 25743.88
Fast-DG0.005 882.43 7713.07 22658.07 25743.06 25743.88

with probability p. Let S ⊆ V be a set of users who ad-
vocate the product. Note that S is a random set. Following
a simplified version of the model introduced by (Hartline,
Mirrokni, and Sundararajan 2008), the revenue is defined as∑

i∈S

∑
j∈V \S wij . Let f : ZE

+ → R be the expected rev-
enue obtained in this model, that is,

f(x) = E
S

[∑
i∈S

∑
j∈V \S

wij

]

=
∑
i∈S

∑
j∈V \S

wij(1− (1− p)x(i))(1− p)x(j).

It is not hard to show that f is non-monotone DR-
submodular function (see the full version for the proof).

In our experiment, we used three networks, Adolescent
health (2,539 vertices and 12,969 edges), Advogato (6,541
vertices and 61,127 edges), and Twitter lists (23,370 vertices
and 33,101 edges), all taken from (Kunegis 2013). We regard
all the networks as undirected. We set p = 0.0001, and set
wij = 1 when an edge exists between i and j and wij = 0

otherwise. We imposed the constraint 0 ≤ x(e) ≤ B for
every e ∈ E, where B is chosen from {102, . . . , 106}.

Table 1 shows the objective values obtained by each
method. As can be seen, except for Lattice-DG, which is
clearly the worst, the choice of a method does not much af-
fect the obtained objective value for all the networks. No-
tably, even when ε is as large as 0.5, the objective values
obtained by Fast-DG are almost the same as SG and DG.

Figure 1 illustrates the number of oracle calls of each
method. The number of oracle calls of DG and Lattice-DG
is linear in B, whereas that of Fast-DG slowly grows. Al-
though the number of oracle calls of SG also slowly grows,
it is always orders of magnitude larger than that of Fast-DG
with ε = 0.5 or ε = 0.05.

In summary, Fast-DG0.5 achieves almost the best objec-
tive value, whereas the number of oracle calls is two or three
orders of magnitude smaller than those of the other methods
when B is large.

Conclusions

In this paper, we proposed a polynomial-time 1
2+ε -

approximation algorithm for non-monotone DR-submodular
function maximization. Our experimental results on the
revenu maximization problem showed the superiority of our
method against other baseline algorithms.

Maximizing a submodular set function under constraints
is well studied (Lee et al. 2009; Gupta et al. 2010;
Chekuri, Vondrák, and Zenklusen 2014; Mirzasoleiman et
al. 2016). An intriguing open question is whether we can
obtain polynomial-time algorithms for maximizing DR-
submodular functions under constraints such as cardinal-
ity constraints, polymatroid constraints, and knapsack con-
straints.
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